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Abstract

Recombination is a common feature of retroviruses first described in the early
1970s. Although recognized as mutagenic strategy for rapid evolution and
adaptation for avian and murine retroviruses, the implications or even possibility of
recombination between heterogeneous HIV isolates was unclear until a few years
ago. It is obvious that recombination can occur between HIV-1 quasispecies in a
host, initially infected with single HIV-1 strain. However, the principal of retroviral
interference and HIV-specific host immune response was thought to block any
superinfection of a human host by a second HIV-1 isolate. Recent identification of
individuals infected with HIV-1 isolates from two subtypes and intersubtype HIV-1
recombinants suggests that superinfections do occur at some low frequency in the
population. It is not surprising that HIV-1 recombinants are detected with the
greatest frequency in Africa, specifically in regions where many subtypes (or
clades) co-circulate. However, a continual introduction of new subtypes (e.g. clade
A, C, D, and F) worldwide could increase the occurrence of HIV-1 recombination
outside of Africa. For example, intersubtype recombinants have now been identified
in Brazil, Argentina, Russia, and India. In contrast to the A/E recombined HIV-1 in
Thailand, these chimeric viruses are not related to recombined HIV-1 strains in
Africa but are the result of recent recombinations between clades co-circulating in
that country. Analysis of a limited set of HIV-1 chimeric genomes reveals no
selection for specific recombination sites in the HIV-1 genome. Even though “hot
spots” for recombination may occur in vitro, it is apparent that viral fitness may be
a deciding factor in the selection and transmission of specific recombined viruses
in the population. Increases in intersubtype recombination and transmission of
recombined isolates can lead to major antigenic shifts and will undoubtedly effect
the development of new vaccine and chemotherapeutic strategies.
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(100 viral particles/day) in an HIV-infected individ-
ual®#, high rate of incorrect nucleotide substitutions
during HIV reverse transcription (10/nt) in the ab-
sence of proof-reading mechanisms®, and the pli-
ant conformations/functions of many HIV-1 proteins.
In addition to this rapid accumulation of minor
genotypic changes, different HIV-1 strains can also
recombine at a high rate, generating large genetic
alterations and possible antigenic shifts®®. Recom-
bination between two genetically distinct HIV
genomes is preceded by the production of het-
erodiploid virus from a cell co-infected with at least
two different viruses. Co-infected cells can produce
diploid virus carrying a copy of each distinct RNA
genome. During the subsequent round of de novo
infection both RNA strands are potential templates
for proviral DNA synthesis by HIV-1 reverse tran-
scriptase®. A copy-choice, rather than break-and-
union mechanism is believed to be responsible for
retrovirus recombination’®'". In a copy-choice mod-
el, recombinants result from template-switching by
the polymerase during synthesis of a new
strand'®"". These templates switches are often in
addition to the first and second template
switch/strand transfer events necessary for com-
pletion of minus and plus strand synthesis, respec-
tively'? "4, Recombination during proviral DNA syn-
thesis generates a chimeric genome containing ge-
netic information from both RNA strands. As the
number of crossovers increases, so does the com-
plexity of the resulting hybrid genome. Recombina-
tion can produce heterogeneous viral populations,
the survivors of which would represent larger evolu-
tionary jumps than that observed with variants gen-
erated by nucleotide substitutions™5.16,

HIV diversity and worldwide distribution

Like other retroviruses, the genomic structure of
HIV is based in three structural genes: Group-spe-
cific antigen (gag), polymerase (pol), and the hy-
pervariable envelope (env)'. Since 1992, env se-
guences have been used to classify and group
prevalent viruses observed in the global epidemic.
Two types of HIV resulting from distinct zoonotic in-
troductions are recognized: HIV-1, predominant
throughout the world, and HIV-2, found primarily in
West Africa'®. HIV-1 can be further subdivided
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the global diversity observed in the AIDS pandem-
ic. As of December 1998, an estimated 33 million
people were infected with HIV, three-fourths of
which reside in developing countries (www.un-
aids.org). A “founder” effect rather than some host
restrictive/prevalence factor appears responsible
for the predominance of specific subtypes in geo-
graphical regions outside of Africa, e.g. subtype B
in the Americas and Europe. Although specific sub-
types tend to predominate in specific geographic
regions, current patterns of transmission and popu-
lation migration are increasing the rapid spread of
pre-existing and new HIV-1 subtypes in most coun-
tries and regions®?7 (Fig. 1B). For example, sub-
type E and F infections are now common along with
subtype B infections in South East Asia and South
America, respectively?®%. In Europe, a predomi-
nance of subtype B infections has now been cloud-
ed by numerous reports of established and spo-
radic introductions of new subtypes in different
countries, e.g. subtype F in Romania®', G in Rus-
sia®, E in the Czech Republic®, group O in Spain®.
In many African countries, increased commerce,
trade, travel and wars have lead to established in-
troduction of multiple subtypes in most countries®.
Extensive seroprevalence and molecular epidemio-
logical studies by UNAIDS, WHO, and others have
identified subtypes A, B, C, D, and E in Uganda®®.
Similar subtype diversity is now emerging in India,
Thailand, the Philippines, and other countries in SE
Asia?837-40_ Potential for co-infection (see below)*1-46
and genetic recombination in these popula-
tions® 151947 has complicated the classification of
new isolates based on current subtype divisions.
Finally, more than 10% of HIV-1 strains described in
the HIV database' might be mosaic or recombi-
nant forms, bearing interspersed segments of ge-
netic information from two or more subtypes'™®#’.

HIV-1 dual infections and recombination.
The “superinfection paradox”

A central dogma of retroviral co-infections is the
inability of a cell infected with one retrovirus to be
superinfected by a retrovirus of the same type. In-
terference by the primary infecting virus usually in-
volves a block or down-regulation of the host cell
receptors for the superinfecting strain*®5!, Although
ections have been de-
Id superinfect HIV-2-in-
fected cells in vitro®®57, previous studies found that
Iates could interfere or block
058 %9 suggesting an inability
of .HIV-1 infected individuals to be superinfected
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Fig. 1. (A) Phylogenetic tree analysis of env gene sequences from 187 HIV-1 isolates listed in the HIV Sequence Database
(http://hiv-web.lanl.gov)®. Full-length envelope sequences\were utilized to construct a neighbor-joining tree as previously
described??. Distance between tw%@ Il l@ dt %ﬁ)@/ﬁ@@ m onnecting branches, using the
scale (in nucleotide substitutions per nucleotide [s/nt]). Encircled are the sequences corresponeing to different HIV-1 groups: M9,
02324 and N?' as identified by color. HIV-1 sequences clustering as ‘subtype E’ and ‘subtype I', have been described as HIV-1

A/E72,73,78,80,81 and AGISI in, lt?@ nm X j v Iy . . .
(8) The distrbution of HIV A olatea thrbuaron e fane Eﬁf,-nwemzE@;,Lp@e}@mxsqm@aamﬁm of HIV-1
subtypes (A to I in group M) and groups M, N, & O in each continent is indicated; size of the letters defines the prevalence of
these subtypes in these continents. lq

ar

nf tho nithlic
Ul LITC UNMNITTOTITCUI

tive in mucosal layers, may be critical in preventing  HIV-1 pandemic has continued to spread, simulta-

superinfection Iy other strains of HIV-16283, Thas,  heols presenge’of multiple subtypes inMa gingle ge-
& O BeimanyerFUBIEat als b
gent viruses coul ntribut lution of\A m | 0 1IB)#2-44£6.5485 cussed

HIV-1 was not widely considered. Hewever, as the  below, dual infection of human host with two iso-

AIDSREVIEWS

©
=



AIDSREVIEWS

©
N

AIDS Rev 1999; 1

lates of different subtypes is the obvious progenitor
of intersubtype recombination®.

Evidence of HIV-1 co-infections were first pub-
lished in 1995. One report described an acute se-
roconverter infected with multiple strains of HIV-1
subtype B*3. Another case in Thailand involved a
dual infection with a subtype B and E isolate®.
Many combinations of dual infections with distinct
HIV-1 strains have now been reported in countries
where these subtypes co-circulate, e.g. subtype B
& E isolate co-infections in Thailand*+67, B & C, B &
D,B &F and D & F in Brazil®®% A & D in Uganda
{737}, A& C, C & F, and a triple A, D, & group O in-
fection in Cameroon’®.

Contrary to some earlier theories on HIV-1 evolu-
tion, evidence now suggests that intersubtype re-
combination, as a consequence of dual infection
does occur, plays a major role in shaping global
genetic diversity of HIV-130414447.71 Since 1994, nu-
merous HIV-1 isolates were shown to have chimeric
genomes in which two different genomic regions,
usually gag and env, cluster with different sub-
types®0:4789.70.7277 ‘Increased detection of intersub-
type recombinants in the HIV-1 population has
placed new emphasis on full-length HIV-1 genome
sequencing to identify new recombinants and de-
fine specific breakpoints. Consistent with the copy-
choice model of recombination', sequence analy-
sis of the entire genome from eighteen recombined
isolates has revealed complex genome structures
with multiple crossovers'®397886 (Fig. 2A). Surpris-
ingly, 4 of the 18 isolates were intersubtype recom-
binants of at least 3 different clades. In regions
where several subtypes co-circulate, a significant
proportion of HIV-1 isolates contain short sub-ge-
nomic segments that cluster with subtypes other

than that observed throughout the genome. Re-
combination in many of these viruses may have
predated extended evolution due to single substitu-
tions considering many of recombined regions may
not be flanked by defined sites of recombina-
tiOﬂ42’43‘47’69'77’85'87'93 (Flg 2B)

With few exceptions (e.g. B/F and C/B recombi-
nants found in Brazil*®7273 and A/B chimera in Rus-
sia™), more than 80% of HIV-1 intersubtype recom-
binants have been identified in the 14 African coun-
tries (Fig. 3), where multiples HIV-1 subtypes, as
well as group O isolates, are known to co-circu-
|ate47’70‘72’73’76’77*79*81‘83-85'87’90’91r94 (Flg 1B) The like-
ly epicenter of this disease, e.g. Cameroon, Zaire,
Kenya, and Tanzania, has the highest number of re-
ported HIV-1 recombinants and of co-circulating
subtypes (7, 5, 3, and 3 different subtypes, respec-
tively). Predominance of subtype A on the continent
is reflected in the favored recombination between
subtype A and another clade, e.g. A/C, A/D, and
A/G (Figs. 2 and 3). By subdividing Africa, it is evi-
dent that HIV-1 subtypes A and D have dominated
the epidemic in East and Central African countries,
whereas the incidence of subtype C in Southern
Africa is increasing with the rapid progression of
this regional pandemic®. Rapid spread of subtype
C strains has lead to increased detection of A/C re-
combinants?#’.70.7273.7681-8391 - |nterestingly, preva-
lence of subtype G in Africa is low and yet, A/G re-
combinants make up the majority (60%) of the re-
ported recombined viruses®. A/G recombinants
may have achieved a greater fitness in the viral pop-
ulation than the parental G subtype. As described
below, inability to isolate a complete subtype E iso-
late (e.g. not recombined with subtype A) in Africa
or Thailand may suggest the “death” of subtype E.

A
LTR gag pol Acc env nef FRAGMENT RECOMBINANT COUNTRY REF
AIC AIC AIC  C/A A Full genome A/C India 39
C/A  AC CA AC C Full genome AC India 39
C C C C/A  AC Full genome AC India 39
A A A AC Full genome A/C Ethiopia 82
AIC AIC A C/A A Full genome A/C Zambia 19,83
C/A  AC C/A AC C Full genome A/C Rwanda 19,81
E A A AE E/A A Full genome A/E Thailand 78
E A A AE E/A A/ Full genome A / E Thailand, C.A.R. 19,80
G G G/A Full genome Nigeria 19,81
G G/A ria 19,81
A AG NOGTQa[\% Of Ej:lq;t%o;pu}g“cat@@ may tVrZ:ana 19,84
B/F B F/B F F/B Full genome Brazil 19,81
G A G/A Djibouti 79
LS. Eepiduptgar photog@pying 2 "
AD Al D/A Full genome A/D/Y Zaire 19
G G / 19,85
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J A/G G Full genome A/G/J Burkina Faso 86
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B
LTR gag pol Acc env nef FRAGMENT RECOMBINANT COUNTRY REF
A D A gag + pol + env A/D Lebanon 75
A G gag + pol + env A/G Lebanon 75
C C B gag + pol + env C/B Brazil 73
B/F B B gag + pol + env B/F Brazil 73
A A E gag + pol + env A/E Thailand 73
C C/IA A gag + pol + env C/A Rwanda 73
A/IC C A gag + pol + env A/C Rwanda 73
D/A D D gag + pol + env D/A Uganda 73
A A D gag + pol + env A/D Uganda 73
B F B gag + pol + env B/F Brazil 69
F/B F F gag + pol + env F/B Brazil 69
B/F F F gag + pol + env B/F Brazil 69
B/F F B gag + pol + env B/F Brazil 69
C B gag + env C/B Brazil 72
B/F B gag + env F/B Brazil 72
C A gag + env C/A Rwanda 72
A/D A gag + env D/A Rwanda 72
A/C A gag + env C/A Rwanda 72
A E gag + env A/E Thailand 72
D/A D gag + env A/D Uganda 72
A D gag + env A/D Uganda 72
AIG H gag + env A/G/H Zaire 87
D A gag + env D/A Sweden 71
AD A/D gag + env A/D Kenya 47
AD D/A gag + env A/D Zaire 47
AD gag + env A/D Uganda 47
A/D gag + env A/D Cote d'Ivoire 47
D/A gag + env A/D Gabon 47
AIG gag + env A/G Gabon 47
AIG gag + env A/G Gabon 47
C/A gag + env C/A Zambia 47
B/F gag + env B/F Brazil 47
G A gag + env G/A Zaire 85
A B gag + env A/B Russia 74
D G gag + env D/G Russia 88
A G/A gag + env A/G Nigeria 77
A E pol + env A/E Camerron 70
A G pol + env A/G Cameroon 70
B A pol + env B/A Cameroon 70
A/IC A/IC pol + env A/C Cameroon 70
C/F C/F pol + env C/F Cameroon 70
A2 A pol + env A/ HIV-2 Cameroon 70
AD A LTR + env A/D Tanzania 76
C A LTR + env C/A Tanzania 76
D A LTR + env D/A Tanzania 76
C/A C LTR + env C/A Tanzania 76
C/D D/C LTR + env C/D Tanzania 76
D/A D/A LTR + env D/A Tanzania 76
C D/C LTR + env C/D Tanzania 76
AIC A LTR +env ATC Tanzania 76
D LTR + env D/C Tanzania 76
trasubtyp 42
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B (Intrasubtype) Australla 89
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Fig. 3. Geographic distribution of HIV-1 intersubtype recombinants worldwide. The origin of identification for each hybrid strain

from nine countries of America, Europe, and Asia is shown on this map. Numerous HIV-1 mosaic genomes were detected in 14
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Fig. 4. Phylogenetic trees showing two segments of several HIV-1 intersubtype recombinant sequences. 195 full-length env and
88 full-length gag sequences were used for this analysis. This tree includes complete names from the Human Retroviruses and
AIDS Database'® for the intersubtype recombinants within or between the env and gag genes. Note that most recombinants have
env sequences cluster with one subtype but have gag sequences that cluster with another subtype (e.g., AC. ., ;a11154 hybrid is

subtype C in env, but cluster with subtype A sequences in the gag region).

pandemic. However, there is evidence of recombi-
nation in regions (e.g. the Americas and Europe)
where the seroprevalence of HIV is lower than in
Africa and where several HIV-1 subtypes were in-
troduced separately30:47:6972% |n fact, B/F isolates
in Brazil were of the first HIV-1 intersubtype recom-
binants reported®. An increasing number of B/F
and C/B recombinants, with different genomic
breakpoints, have now been described in Brazil
and Argentina®.727381.92 Only a few cases of HIV-1
recombinant have been identified in Europe, e.g.
HIV-1 D/G and A/E in Russia’™?®, HIV-1 A/D recom-
binant from an African immigrant in Sweden’", and
an A/H/Mal-like hybrid genome in Norway%. How-
ever, HIV-1 A/B recombinants appear to be circulat-
ing among intravenous drug users in Russia’. Fi-

nally, increased prevalence of subtype ains in
the escalating epidemiﬂ%@wcﬁh@ﬁ%h&%&bﬂe&j @U

detection of A/C recombinant genomes®. Thus, ap-

the recombined isolate and an isolate of a third sub-
type, were likely responsible for these triple recom-
binations. Full-length genome sequencing may be
necessary to identify triple recombinants. For ex-
ample, an HIV-1 isolate from Cyprus (94CY032.3)
originally identified as subtype I°7 has now been ful-
ly sequenced and re-designated as an A/G/I triple
recombinant®’ (Figs. 2A and 3). Finally, no group
M/group O recombinant strains have been reported
in the literature' may be attributable to low preva-
lence of HIV-1 group O strains. However, evidence
of an intergroup M/O recombinant HIV-1 was re-
cently presented at the 6th Annual International Dis-
cussion Meeting on HIV Dynamics and Evolution®.
RecombinationbetweenHIV-1-group-O-and. M
strains would represent the largest evolutionary

'uimp between any two HIV-1 strains due to the high
b hetid distanc :aiy° ftween these groups.
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infection by co-circulating clades in these regions
and not due to the ‘font‘r@@g’@s[\lV\te }—p/r] AE
in Thailand.

Several studies have now described infections
by three HIV-1 isolates of different dia eEF[
A/D/O™). However, such a ‘triple’ infection is likely
rare and.probab
high pri jon|of

is concelvable that two co-infections) the first with
two isolates of different subtypes and a second with
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ed convergence chance occurrence of identi-
cal nucleotides in sequences of different lin-
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eages)®, creates further problems in analyzing po-
tential recombinants. Figure 4 shows several exam-
ples of HIV-1 intersubtype mosaic genomes identi-
fied as recombinants based on phylogenetic rela-
tionships using gag and env sequences. However,
even traditional methods of sequence and phyloge-
netic analyses are not always sufficient to distin-
guish mosaic from non-mosaic genomes. Preferen-
tial sequencing of the env gene for most phyloge-
netic studies prevents detection of intergenic re-
combinations, e.g. crossover points between HIV-1
genes. Even cases of intragenic recombination
(e.g. within env) are often misinterpreted due to a
clustering with a specific subtype. After the first re-
ports of HIV-1 recombination347.1%0 different proce-
dures were developed and adopted for identifica-
tion of HIV-1 recombinants and mapping of break-
points. Viral epidemiology signature pattern analy-
sis, or VESPA, is an algorithm designed to reduce
the level of homoplasy in sequence data sets, and
thereby increase the signal-to-noise ratio'®'. How-
ever, VESPA is often difficult to implement and has
been replaced with more user-friendly approaches
to detect recombinants. One method involves
bootscanning for recognition of subtype-specific
segments in the HIV-1 recombinant genomes'®. A
sequence of at least 1500 nucleotides from the
sample is aligned with reference sequences of
different subtypes. Bootstrapped phylogenetic
analyses are then applied to segments 200-500 nu-
cleotides in length and with a 50% overlap. Recom-
binant genomes will cluster with two parental sub-
types on either side of a breakpoint in the genome
with bootstrap values greater than 70%'%. Finally,
Recombinant Identification Program (RIP) is a com-
puter program developed to recognize recombi-
nant genomes'®. As with the bootscanning
method, query sequences are aligned with isolates
of different subtypes for detection of subtype-spe-
cific sequences in two distinct genomic regions.
RIP can also provide a detailed output of the inter-
subtype recombinant and possible breakpoints for
recombination'®. Although other methods for iden-
tification of recombinants have been applied to HIV-1
(e.g., Likelihood Method'®), bootscanning and RIP
analyses remain the most reliable and utilized tech-
niques for the detection and characterization of in-
tersubtype chimeric genomes.

events'®, Potential ‘hot spots’ of recombination in

be mapped to regions of RNA secondary structures
which retard polymerase| ﬂq\@r[[ﬁnt‘[*ﬁ‘@ @FW
opposite a conserved genomic SequUENCce may pro-
mote an RNA template switch and generatio
recombined genome'®. These pause s®§
preferred sites of amino acid substitutions. Howev-

of a

Many recombined HIV;1 genomes h a com-
plex mosaic appearan @e}ﬁﬁr@ti@? &&kﬁv@

2l

a strong selection for viral fitness in the population
and for quasi-species resistant to antiretroviral
drugs or host immune response in an infected indi-
vidual. The information compiled for this review and
presented in figure 5 summarizes percentages of
recombination sites in the principal genes of HIV-1.
From this data set (limited to the reported recombi-
nants), it appears that sites of recombination are
distributed randomly along the HIV-1 genome.

Implications of HIV-1 recombination

a) Diversity and evolution

A high point mutation rate can result in rapid HIV-1
evolution®'18. However, an efficient mechanism of
recombination could generate jumps in HIV-1 evo-
lution and select for viruses with a higher fitness.
Recombination could also act as a potential re-
pair/rescue mechanism in instances of deleterious
deletions or mutations in one RNA strand of a het-
erodiploid virus. As described below, recombina-
tion of HIV-1 variants with different substitutions has
been implicated in emergence of multi-drug resis-
tant viruses. Thus, this mechanism can promote a
high rate of sequence exchange among (1) quasi-
species during a mono-subtype/strain infection or
between (2) different subtypes/strains in a co-infec-
tion or superinfection. In addition, the exact site of
recombination could generate an amorphous se-
quence, dissimilar to both subtypes or strains. Se-
lection of these sequences along with flanking re-
gions may alter biological phenotype or promote
rapid escape from immune pressure. Regardless of
the implications to disease progression or HIV-1 bi-
ology, spread of such hybrid viruses poses practi-
cal challenges to future diagnostic tests and mole-
cular epidemiological studies. It is quite obvious
that full genome sequencing is not feasible as a
screen for HIV-1 recombinants. Other techniques
such as modified heteroduplex tracking assay'"” or
DNA hybridization techniques using overlapping
probes from different subtypes allow for rapid de-
tection of recombinants.

b) Drug resistance escape

Several mutations in,the HIV-1 pol gene (pro-
U !@L@&ﬁ@lﬁh m&# tbﬁ%oriptase, RT) confer re-

sistance to antiretroviral drugs'®-'1°. Based on a vi-
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every single-site and possibly double-site mutant

P@lpﬂ?r@}%prﬁﬁgqgﬂy] in an HIV-infected in-

ividua wever, there is a limited pool of virus
ontaining three mutations, generally required for
Uhléﬁ ffo three antiretroviral drugs. Several re-
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Fig. 5. A summary of the recombination breakpoints or crossover sites in the HIV-1 genome. This figure was compiled from all the
characterized recombinants and is displayed as percentage of breakpoints per genomic region.

ther a reverse transcriptase or protease inhibitor.
Dual resistance of viral progeny is due to linked
drug resistant mutations on chimeric genomes with
defined breakpoints in the pol gene. Finally, the
possibility exists in developing countries where sev-
eral subtypes co-circulate that treatment of HIV-in-
fected individuals with highly active antiretroviral
therapy (HAART) may give rise to both drug resis-
tant and intersubtype recombinants. Considering
that many non-subtype B isolates have drug resis-
tant sequences in their wild type genome, intersub-
type recombination may pose a significant threat to
sustained efficacy of these drugs in these regions.

¢) Host immune escape and vaccine
development

Evidence of recombination and circulation of
these recombined strains suggest that HIV-1-infect-
ed individuals can be superinfected with another
strain. Interference may be controlled by the diver-
gence of superinfecting HIV-1 strain from estab-
lished isolate. However, lack of defined clade
specificity by humoral or CD8+ T cell-mediated im-
mune response suggests that susceptibility to su-
perinfection by an HIV-1 strain from any subtype
may be difficult to predict. Continual spread of HIV-1
recombinant viruses will influence genetic diversity
and have a significant impact on vaccine develop-
ment. Vaccines derived from single isolates or
clades may naturally select for recombined HIV-1
strains in the population since these may constitute

genesis, e.g. transmission, virulence, and replica-
tion. Recombination may be an important muta-
genic strategy to increase viral fitness and to evade
selective pressure (e.g., antiretroviral therapy, host
immune response, and potential vaccines). Finally,
it appears that the amount of circulating HIV-1
intersubtype recombinants is underestimated in the
population. Improved detection techniques and
computer-statistical methods must be developed to
identify and characterize both inter- and intra-sub-
type recombinations. Increased surveillance and
molecular epidemiological studies will evaluate the
contribution of recombined strains to HIV evolution.
Specifically, will new HIV-1 subtypes emerge due to
recombination and will HIV-1 subtype classification
survive this explosion of genetic diversity? In only a
few years, studies on HIV evolution have evolved
from tracking a few HIV-1 subtypes in the main HIV-1
group to an inclusion of two new HIV-1 groups (O
and N), new subtypes in both groups M and O, and
of numerous intersubtype recombinants. The AIDS
epidemic is not the result of a single viral isolate but
rather a population of HIV-1 strains so diverse that
classification as even a single type (e.g. HIV type 1)
may be too limiting. Thus, a greater understanding
of HIV-1 evolution will definitely impact on the de-
velopment of any new vaccine or chemotherapeu-
tic strategy.
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