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Abstract

Nucleoside analogue reverse trancriptase inhibitors (NRTIs) inhibit also the
function of DNA polymerase y, the only enzyme responsible for the replication of
mitochondrial DNA (mtDNA). The resulting mitochondrial dysfunction leads to
similar clinical features as can be observed in inherited mitochondrial diseases.
The most threatening event is (fatal) lactic acidosis, which will be discussed in
more detail. In this review we analyse the possible risk factors for the development
of NRTI- related mitochondrial dysfunction and consider possibilities for
therapeutic and preventive treatment.
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Introduction a demanding task psychologically, side-effects of
the medication further hampers long-term therapy.

In this review, we will discuss the toxicity of one
class of antiretroviral drugs, the nucleoside ana-
logue reverse transcriptase inhibitors (NRTIs). Since
we recently reviewed the literature, demonstrating
that the common pathway of NRTI toxicity is an in-
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During the last fifteen years, major progress has
been made in the understanding and treatment of
HIV infection. Although the initial treatment of the in-
fection with monotherapy of zidovudine (AZT) turned
out to be only shortly successful, the current guide-
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have a high affinity for these compounds™®. The
only exception for the inhibition of DNA polymerase
y is possibly lamivudine (3TC), which at this mo-
ment is the only NRTI that acts as inhibitor of the
polymerase activity and concomitantly as substrate
of the integral 3'-5" exonuclease activity of this en-
zyme: incorporation is immediately followed by
excision, enabling continuation of the DNA chain
elongation”.

DNA polymerase f is involved in repair of nuclear
DNA. So far, no clinical effects have been reported,
that were related to inhibition of this enzyme by NRTIs,
but one might envision that cancer incidence will
rise in people on long-term NRTIs, due to an inef-
fective DNA repair mechanism.

DNA polymerase y is the only enzyme responsi-
ble for the replication of mitochondrial DNA (mtDNA)
and the inhibition of this enzyme by NRTIs can eas-
ily lead to a depletion of mtDNA"""-3 also leading
to depletion of mtDNA encoded proteins. Among
these proteins are 13 subunits of the oxidative
phosphorylation (OXPHOS) system®™ and their
down regulation will definitely lead to an impaired
energy production of the cell (Fig. 1). Many hered-
itary mutations or deletions in the mtDNA have been
described, causing a heterogeneous spectrum of
characteristic clinical features (Table 1)'%19 the
down regulation of the complete mtDNA by NR-
Tls can lead to the complete spectrum of these
symptoms'-2°,

Table 1. Clinical features of mytochondrial dysfunction in
relation to NRTI adverse reactions.

Clinical features: observed as adverse event for:

Neuromuscular:

polyneuropathy ddC, ddl, d4T

myopathy AZT
Cardiomyopathy AZT, ddC, ddI
Hepatocellular:

steatosis, lactic acidosis AZT, ddl, d4T
Gastrointestinal:

pancreatitis ddl, d4T
Hematological:

pancytopenias AZT
Nephrological:

proximal tubular dysfunction ADV

ddC = zalcitabine, ddl = didanosine, d4T = stavudine,
AZT = zidovudine, ADV = adefovir (nucleotide analogue)

Mitochondrial dysfunction and NRTI
toxicity

Nearly all adverse effects that have been attrib-
uted to the use of NRTIs can indeed be found
among the list of clinical symptoms, that have been
described for hereditary mitochondrial dysfunction
(Table 1), Also the proximal tubular defect found
during treatment with the nucleotide analogue RTI
adefovir?!, is believed to be caused by impaired mi-
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tochondrial function’, since also adefovir demon-
strates high affinity for DNA polymerase y?2.

Table 2 . Polymerase y hypothesis’?20141,

Direct proof for NRTI induced mitochondrial toxi-
city was demonstrated in zidovudine (AZT) related
myopathy in humans®*?” and zalcitabine (ddC) re-
lated neuropathy in rats®?°, Recently, in a patient
with massive liver steatosis and lactic acidosis, due

1. NRTI has to cross the target cell membrane (and the mito-
chondrial membrane).

2. NRTI needs to be (tri)phosphorylated by cellular kinases of
the target cell.

3. The tri-phosphorylated NRTI inhibits DNA polymerase .

4. The metabolism of the target tissue relies importantly on

to AZT treatment, also depletion of mtDNA in skele-

oxidative phosphorylation.

tal muscle and liver tissue was found®. The bio-
chemical abnormalities found in NRTI related lactic
acidosis, as well as the acquired L-carnitine defi-
ciency observed during d4T, AZT or adefovir treat-
ment3'32, form an indirect evidence for mitochondr-
ial failure (see below).

Except for the AZT related myopathy, no clinical
studies have been done to definitely demonstrate
mitochondrial dysfunction during the other NRTI
related side-effects. One of the main problems for
those studies in the future will be the absence of a
reliable, non-invasive test. The only assay so far,
that definitely demonstrates mitochondrial dysfunc-
tion, is a tissue biopsy, in which the several oxida-
tive phosphorylation steps can be tested biochem-
ically and the mtDNA content can be quantified.

A striking feature of the NRTI toxicity is its appar-
ent tissue specificity: Myopathy can be caused by
AZT, but hardly by any of the other NRTIs and con-
versely, neuropathy and pancreatitis are common
features in treatment with ddC, didanosine (ddl)
and stavudine (d4T), but not with the other NRTIs".
In one study, in a patient with AZT induced lactic
acidosis and myopathy, no mtDNA depletion could
be found in myocardium or kidney, while this was
clearly demonstrated in the liver and muscle tis-
sue®. Furthermore, no mtDNA depletion could be
demonstrated in brain tissue of AZT treated pa-
tients®. A possible explanation for this phenome-
non is the so-called ‘pol+y" hypothesis (Table
2)11220 |n this hypothesis four factors contribute to
an effective inhibition of DNA polymerase y by a
certain NRTI at a special tissue level, if 1) this NRTI
has the pharmacodynamic capability to enter the
target cells, if 2) the target cell possesses the right
cellular nucleoside kinases to monophosphorylate
and later on triphosphorylate the NRTI, if 3) the
triphosphorylated NRTI can inhibit DNA poly-
merase-y either by serving as a competitive (inef-
fective) alternate substrate or by chain termination

nation therapy (ter Hofstede et al., submitted for
publication).

The clinical course is characterised by an episode
of malaise, nausea and vomiting, often accompa-
nied by abdominal pain and hyperventilation (com-
pensatory for the acidosis), finally resulting in rapid
liver failure and uncontrollable arrhythmia’s (Table
3). Biochemically, lactic acidemia is found, but
more importantly, also an increase in the ratio’s of
lactate/pyruvate and B-hydroxybutyrate/acetoac-
etate. Table 4 shows an example of these values, in
a female patient, who developed lactic acidosis 7
months after she started a combination of d4T/3TC/sa-
quinavirt!. She was admitted with profuse vomiting,
for which there was no explanation after endoscop-
ic and neurologic examination. She started to hy-
perventilate on the 11th day of admission, shortly
after enteric tube-feeding was started. She dete-
riorated rapidly and died 3 weeks later, despite
bicarbonate dialysis and intensive care support.
Autopsy revealed severe hepatomegaly with micro-
scopically marked cholestasis and moderate, peri-
central, micro- and macrovesicular steatosis. Elec-
tro-microscopy showed no striking abnormalities at
the mitochondrial level, but southern blot analysis
of mtDNA gave no signal, probably due to com-
plete mtDNA depletion.

Table 3. Clinical symptoms of NRTI-induced lactic acidosis.

* nausea
* vomiting

¢ abdominal pain
* hyperventilation
* liver failure

e arrhythmia

Table 4. Example of biochemical deterioration in patient with
NRTI induced lactic acidosis.
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tate equilibrium in the direction of lactate. Conse-
quently, both lactate, leading to lactic acidemia or
even lactic acidosis, as well as the lactate/pyruvate
ratio increase. This is particularly true in the post-
absorptive period, when more NAD+ for the adequate
metabolism of glycolytic substrates is needed’®.
Similarly, a postprandial increase of ketone bodies
synthesis can be observed, related to the chan-
nelling of acetyl-CoA toward ketogenesis®®. Fat
(triglycerides and free fatty acids) will accumulate
intracellularly, which can be demonstrated histolog-
ically (macrovesicular hepatic steatosis). In the pa-
tient described above, the only abnormal biochem-
ical finding on admission, was an sudden rise of
triglycerides (from 2,3 to 8,1 mmol/L).
Therapeutical considerations for mitochondrial
failure will be described below, but it is important to
stress here, that in cases of lactic acidemia, high
amounts of glucose should be avoided, since this
can rapidly lead to uncontrollable deterioration.

Risk factors

Mitochondrial dysfunction develops when the en-
ergy-generating capacity falls below a certain ener-

getic threshold'®17:204647 One can envision, that as
long as the energy-generating capacity remains
above the minimal energy requirement, no dysfunc-
tion will be noticed, although the energy-generating
capacity might already be lower than the maximum
possible (Fig. 3). Many factors can influence this
process in the cell*®,

At first, structural mtDNA defects cause impaired
mitochondrial function and decreased energy pro-
duction. Apart from the wellknown hereditary mtD-
NA defects'®#? (Fig. 3B), there is a significant mtDNA
polymorphism in the general population!*1%47,
which even increases during ageing'” (Fig. 3A).
Secondly, depletion of the exogenous factors in the
OXPHOS system, like vitamins and other co-fac-
tors, will negatively influence the oxidative phos-
phorylation system and its energy-generating ca-
pacity (Fig. 3)*. Those situations can be seen in
malnourished patients or in patients who are just re-
covering from serious infections or inflammatory
processes, like pancreatitis. Thirdly, tissues with a
higher energy demand, have a higher minimal en-
ergy requirement and will develop more easily
energy deficits'%0. Furthermore, some endocrine
disorders, toxic agents (other than NRTIs, like alco-

glucose

v
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hol, acetaldehyde, chloramphenicol and tetracy-
clines) and other extramitochondrial inborn errors
of metabolism, can negatively influence mitochon-
drial function*. All these factors can interact one
another synergistically.

In persons with a lower energy-generating ca-
pacity, mitochondrial toxicity of NRTIs will sooner
lead to energy deficits than in persons with higher
ones (Fig. 3C). Therefore, all factors mentioned
above might explain the observed inter-individual
variation of NRTI toxicity’s: Some patients develop
adverse reactions to almost all NRTIs, while others
hardly suffer any symptoms on long-term treatment.

Apart from these factors, polymorphism of DNA
polymerase-y might also display different affinities
of the NRTIs for this enzyme, which will lead to dif-
ferent individual susceptibilities for NRTI inhibition.
So far, no data are available on DNA polymerase-y
polymorphism, but polymorphism has been de-
scribed for instance for DNA polymerase-p°'.

Finally, the development of mitochondrial dys-
function is a time-dependent process. All adverse
events of the NRTIs, enlisted in Table 1, develop
only after weeks to months of exposure, possibly
accelerated by the environmental factors, men-
tioned above. Furthermore, a combination of NRTIs
might synergistically lead to increased inhibition of
mtDNA replication, and therefore to an increased
toxicity®”. The addition of hydroxyurea, which ap-
pears to enhance the antiviral effects of (some)
NRTIs®2%3, might further aggravate the already ex-

isting mitochondrial toxicity, as was recently found
for toxic hepatitis®.

Reversibility and treatment options

In contrast to inherited MtDNA defects, acquired
mtDNA deletions (and thus the mitochondrial dys-
function) might be restored, when the inducing
agents, the NRTIs, are removed. There are no data
about kinetics of mtDNA replenishment after inter-
ruption of NRTIs, nor about the recuperation of mi-
tochondrial function in these situations. Looking to
the recovery of bone-marrow after the cessation of
AZT in patients with AZT induced anaemia (or leu-
copenia), one has to conclude that mitochondrial
toxicity can be reversed completely and rapidly.
Some tissues, however, seem to recover only very
slowly; NRTI induced neuropathy can last for
months after NRTIs have been stopped. The factors
that determine this recuperation capacity are un-
known, but tissues with a high cell turnover (like
bone-marrow) seem to have an advantage over
cells that divide slowly (like neurons), as if tissue
function can only be restored by renewal of cells.
The healing of AZT induced myopathy®® is at vari-
ance with this view, but the fact that hepatic steato-
sis (and in some cases also lactic acidosis®”40:42:43)
can disappear rapidly, supports it. Apparently, both
cell vulnerability and cell division capacity seem to
play a role, but no data are available to further clar-
ify this issue.
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Suppletion of essential co-factors (e.g. thiamine,
riboflavin and L-carnitine), artificial electron accep-
tors (vitamin C and K,) and anti-oxidants [coen-
zyme Q,, (CoQ,,), L-carnitine, and a-tocopherol (vi-
tamin E)] has been tried in congenital mitochondri-
al diseases with varying success®%. Therefore,
these substances might be beneficial in NRTI mito-
chondrial diseases as well, as was already demon-
strated with vitamin C and E at supranutritional
dosages in AZT treated mice®. Recently, a few
case reports have been published, in which treat-
ment with either riboflavin (50 mg daily)*43 or
CoQ,, (dosage not given)* seemed to induce the
recovery of NRTI related lactic acidosis. In the last
case’®, NRTI treatment was stopped as well, but in
the first two cases, NRTI interruption was not men-
tioned*>%3. As we have outlined above, we believe
cessation of NRTI therapy is essential in these cas-
es. In vitro, L-carnitine both prevented and im-
proved AZT induced myopathy8®%. Accumulation
of acyl-CoA in mitochondrial dysfunction (see
above) causes L-carnitine deficiency*® and in fact
this is exactly what was observed in patients suffer-
ing NRTI induced neuropathy®', but also in adefovir
(= nucleotide analogue RTI) induced nephropathy®.

Based on these results, there seems to be a ra-
tionale not only to treat, but also to prevent NRTI in-
duced mitochondrial toxicity’s with suppletion of
L-carnitine®’, ribiflavin, CoQ,, and others. Placebo-
controlled, randomized studies need to be done, in
order to demonstrate the beneficial effects of these
compounds and the minimal effective dosages.

As long as definite data are missing, in cases of
lactic acidosis, one should give these supplements
and add not only riboflavin, but also thiamine,
CoQ,, and L-carnitine. The dosages used for these
supplements have had a wide variation and were
seldomly based on dose-effect studies®®. Dosage
recommendation is therefore arbitrary (Table 5) and
should also be subjected to controlled studies.

Table 5. Possible therapy in NRTI-mitochondrial dysfunction®-¢2,

Substance Daily dose range

thiamine (vitamin B1) 0.5-300m

riboflavin (vitamin B2) 30 — 400 mg

vitamin C 250 — 4000 mg

a-tocopherol (vitamin E) 200 - 400 U

vitamin K, 20 —,500 '

coenzyme Q,, N 0 p &r—EOdag th IS F

L-carnitine 50 — 200 mg/kg
Conclusions

NRTI induced mit ial ion., |
dasic paogenetc. SILTLINCAGLcbLSARLION
NRTI related toxicity’s, but several contributing fac-
tors might aggravate the symptoms. Th@ﬁ i

of NRTI induced mitochondrial dysfunction is
time-dependent process and symptoms develop

LErRARYCET

rapidly irreversible. NRTI treatment should be stop-

ped immediately and the addition of substances,
like thiamine, riboflavin, CoQ and L-carnitine should
be considered.

These substances might also play a role in post-
poning, preventing or even treatment of the other
NRTI related toxicity’s.
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