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Abstract

CCRS5 is the main coreceptor used by macrophage (M)-tropic strains of human
immunodeficiency virus type 1 (HIV-1) and type 2 (HIV-2), and is therefore essential
for transmission of the disease. CXCR4 is the coreceptor for (T)-tropic strains.
CCRS5 binds a number of CC-chemokines, including MIP-1c, MIP-13, RANTES, MCP-
2 and MCP-3, while CXCR4 has only a single ligand, SDF-1. A number of genetic
variants of genes encoding coreceptors and their ligands have been described, and
some of these variants have been associated with resistance to HIV infection
and/or disease progression. We review here the data accumulated so far
concerning the variants of the CCR5, CCR2, SDF-1 and RANTES genes. For some
of these variants, there is strong experimental evidence linking the modification of
gene function with the phenotype of HIV resistance. In other cases, no functional
alteration of the encoded proteins has been found, and the link between genotype
and associated phenotype has not been demonstrated so far. The best
characterized mutant is the A32 deletion mutant of the CCR5 gene, resulting in a
non-functional protein that is not transported to the cell surface. Homozygotes for
the A32 allele exhibit a strong, although incomplete, resistance to HIV infection.
Heterozygotes were shown to display retarded progression to AIDS in most
studies. Many other mutations of CCR5 have been described, some of which lead to
non-functional receptors. These variants are, however, relatively rare and are
incompletely characterized so far. Sequence variants in the CCR5 gene promoter
have been reported, but the link with CCR5 expression is not clearly established,
and the influence of these variant alleles on HIV infection and AIDS progression
will require confirmation. A variant allele of CCR2 (CCR2-64l) was associated to
delayed AIDS progression. This association was confirmed in several (but not all)
studies, but the link between a fully functional variant of a minor coreceptor and
the observed phenotype is presently unclear. A variant of the SDF-1 gene affecting
a single nucleotide in the 3’ non-coding region of the transcript was associated
with delayed progression in homozygotes. This association was, however, not
found in several other studies, and no modification of gene function could be
demonstrated so far. A recently reported variant of the RANTES gene promoter,
providing retarded progression WI|| also require confirmation in independent
studies. As a rule, care mu en before taking an a ren association
between a genot W % &f Ldb 1@&, ﬁlnf nal(data supporting a
causality link between the varlables is clearly established.

repmdumd or phnmmpymﬂ,

Keywords \Vithout the prior written permission

Chemokine receptors. HIV corﬁfpfﬁré. ﬁ‘ﬂb“?gﬁ'@nts CCR5. CCR2. SDF-1. 2
Correspofidence tof ) ‘ ) ‘ o L, ~ YN1N E
Marc Parfnéntief INNY N ‘ / W H A A A /() () 0
IRIBHN, ULB.CAmpis Exsing | ‘ ‘ | Yell L) |\ :

808 route de Lennlk
B-1070 Bruxelles 221
Belgium




AIDSREVIEWS

® 222 -

AIDS Rev 1999; 1

HIV coreceptors

Members of the G protein-coupled receptor fam-
ily act as coreceptors for HIV-1, HIV-2 and SIV'2,
The gp120 envelope protein of the virus interacts
first with CD4, promoting a conformational change
that unmasks the gp120 binding site for the core-
ceptor. The resulting trimolecular interaction be-
tween gp120, CD4 and the coreceptor further in-
duces shedding of gp120, releasing the gp41 sub-
unit of the envelope protein that mediates the ill-de-
fined membrane fusion process itself. Many
chemokine receptors and related G protein-cou-
pled receptors, including CCR2b, CCR3, CCRS,
CCR9, CX3CR1, ChemR23, APJ, Bonzo/STRL33,
Bob/GPR15 and GPR1, have been described as
coreceptors on the basis of in vitro fusion and in-
fection assays'?. However, most pathophysiologi-
cal data concerning the viral life cycle in vivo are
consistent with the use of two major coreceptors,
CCR5 and CXCR4. CCR5 is the coreceptor used by
macrophage (M)-tropic, non syncytium-inducing
(NSI) HIV-1 strains. These strains are recovered
during the first years following seroconversion, and
are therefore considered as responsible for disease
transmission. CXCR4 is used by T-ropic, syn-
cytium-inducing (SI) strains and primary isolates
that predominate during the late stages of the dis-
ease. On the basis of coreceptor usage, viral tro-
pism has been redefined as R5 and X4 for respec-
tively CCR5- and CXCR4-using strains®.

CCR5 was first described as a receptor for the
three related CC-chemokines MIP-1a, MIP-1f and
RANTES*. More recently, it was found that MCP-2
also constitutes a high affinity agonist, and MCP-4
a weaker agonist>’, while MCP-3 acts as a natural
antagonist of the receptor’. Its role as HIV corecep-
tor was suggested following the identification of
MIP-1a,, MIP-1p and RANTES as major HIV-sup-
pressive factors®, and this role was rapidly con-
firmed®'3. The essential role of CCR5 in HIV patho-
genesis was demonstrated by the strong resistance
to infection of individuals carrying two copies of a
non-functional allele of the coreceptor gene'*1°. As
other receptors for inflammatory chemokines,
CCR5 is involved in the recruitment of various
leukocyte populations to inflammatory sites. CCR5
is_expressed-at the surface of T cells with-a-memo-
ry/effector phenotype, maorophages and immature
dendritic cells, and m|
nervous system‘e ®.CC
jor role in a number of inflammatory diseases such

ands, such as MIP-1a, MIP-1f3, RANTES and MCP-
268 chemokine analogs such as aminooxypentane
(AOP)-RANTES?%826 and N-nonanoyl (NNY)-
RANTES?%827  monoclonal antibodies directed at
various regions of the receptor'®?%2 and small
molecular weight ligands such as TAK-779%. A
great part of the inhibition of viral entry mediated by
molecules acting at CCR5 is due to receptor inter-
nalisation. The high efficiency of AOP-RANTES in
HIV entry inhibition is attributed to its potent ago-
nistic activity, and the profound phosphorylation
and irreversible internalisation of the receptor it pro-
motes®"%,

CXCR4 was reported first as LESTR®, an orphan
receptor related to chemokine receptors, and later
recloned as fusin, on the basis of a fusion screen-
ing assay, becoming the first coreceptor identified
as such®*. SDF-1 was subsequently reported as the
ligand of CXCR4, and it is so far the only ligand
known for this receptor®®%. As deduced from the
phenotype of the CXCR4 and SDF-1 knock out
models, SDF-1 is essential for lymphopoiesis,
myelopoiesis, migration of cerebellar neurons and
vascularisation of the gastrointestinal tract®”%. As
for CCR5 ligands, molecules binding CXCR4 are
able to prevent entry of strains using CXCR4 as
coreceptor. SDF-1, peptides derived from SDF-1,
monoclonal antibodies, as well as small molecular
weight antagonists have been described*®-43,

The A32 mutation of CCR5

The search for mutations within the CCR5 coding
sequence was stimulated by the identification of
CCR5 as a major coreceptor for M-tropic HIV strains.
Sequencing of the CCR5 coding region in individu-
als belonging to the general population, or to
groups of exposed uninfected individuals, allowed
the identification of a mutant allele of the CCR5
gene bearing a 32 bp deletion in a region corre-
sponding to the second extracellular loop of the re-
ceptor™ 1544 This mutant encodes a receptor with
only four transmembrane segments. As expected
from a truncated structure, the A32 mutant is not
functional as a chemokine receptor. The variant is
not expressed at the cell surface, neither in natural
cells such as T lymphocytes or macrophages, nor
on cell lines transfected with the mutant cDNA. An-
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The strong protection of homozygotes was con-
firmed in subsequent studies, including situations
of massive parenteral contact with the virus*, but a
few seropositive individuals were reported as ho-
mozygous for A32, demonstrating that protection is
incomplete*®'. In one of these cases, the HIV
strain was characterised as using CXCR4 as core-
ceptor®. As mentioned above, no phenotype was
found in individuals homozygous for the A32 muta-
tion?®.

Heterozygotes were found to display slower pro-
gression to clinical stages of AIDS*. This associa-
tion was found in most cohorts3362, but not all6%65,
Some studies suggested that heterozygotes could
be partially protected against HIV infection%566:67,
but this was not confirmed in numerous other stud-
ies, and this effect, if real, must be considered as
mild. Since heterozygotes for the A32 allele repre-
sent up to 30% in some populations (see below), it
may have a significant impact on the average pro-
gression to AIDS in these populations. A32 het-
erozygozity has also been associated with a lower
rate of development of non-Hodgkin lymphomas in
AIDS patients®6°, although the mechanism is not
yet apparent.

CCR5 levels at the surface of leukocytes were
found to be reduced in A32 heterozygotes as com-
pared to homozygotes for the wild-type allele, af-
fecting ex vivo infection of lymphocytes by M-tropic
HIV-1 strains™®. This observation suggests that reg-
ulation of CCR5 expression does not compensate
for the non-functional allele. It was also proposed
that CCR5 expression in heterozygotes was de-
creased by more than 50%, on average, suggest-
ing that the variant receptor could act as a domi-
nant negative mutant. A mechanism for this hypo-
thetical effect was proposed, in terms of dimerisa-
tion of the mutant receptor with the wild-type recep-
tor, preventing the normal traffic of the wild-type re-
ceptor to the cell surface and its retention in the en-
doplasmic reticulum™. More extensive analysis of
CCR5 surface expression in A32 heterozygotes
has, however, revealed that expression is on aver-
age half of what is found in wtCCR5 homozygotes’".
The partial resistance to the virus can therefore be
attributed to a gene dosage effect rather than a
dominant negative property of the A32 mutant. The
slower replication of M-tropic HIV-1 strains in cells
expressing functional CCR5 from a sin llele was
confirmed in SCID mic @ft iw &?nalrﬁ
cytes derived from A32 heterozygotes72
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quencies are found in the Middle East and India
and this allele is absent in China and Japan. In oth-
er parts of the world, the A32 mutation is found as a
measure of immigration and/or admixture with pop-
ulations of European origin. In African Americans,
an allele frequency of about 2% is attributed to ad-
mixture4,

The restricted distribution of the A32 allele sug-
gests that this mutation occurred only once in the
history of human populations, and relatively recent-
ly. This hypothesis was tested by genetic analysis of
polymorphic markers located in the vicinity of the
CCR5 gene. The study of microsatellites located 11
kb upstream and 68 kb downstream of the CCR5
deletion allowed us to demonstrate a strong linkage
dis-equilibrium, the A32 allele being associated at a
high frequency with microsatellite alleles that were
otherwise rare in the population’. This confirmed
the single origin of the mutation and allowed one to
deduct the age of the gene mutant from the number
of crossing-overs and microsatellite mutations that
have occurred across history on chromosomes
bearing the A32 allele. This led to an estimate of
about 2000 years since the original mutational
event. Another study based on the analysis of poly-
morphic markers located at a greater distance from
CCR5, and on a statistical analysis of haplotypes
provided a similar estimate of about 700 years’®.
The recent origin of the mutation suggests a posi-
tive selective pressure in favor of the mutant allele.
It is not clear, however, what the nature of this se-
lective pressure is and whether it is still active to-
day. The HIV pandemia is certainly too recent to
have played a role. The major role of CCR5 demon-
strated in diseases such as rheumatoid arthritis
might suggest hypotheses for such selection, al-
though limited protective effects of the A32 allele on
rheumatoid arthritis symptoms were observed?’.
Recently, it was suggested that individuals carrying
the CCR5A32 mutation had a reduced risk of de-
veloping asthma’®.

Other CCR5 mutations

Other mutations affecting the coding sequence
of CCR5 have been described’®®2, So far, 22 vari-
ants have beenfound, 18 of which affect the prima-
ry structure of the receptor (Fig. 1). This high ratio
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Fig. 1. Schematic representation of CCR5.
The putative transmembrane organization of CCR5 is represented,

protein-coupled kinases are indicated.

natural variants of the receptor'#1579-82, C101X is a mutation resulting in a stop codon. DK288 indicates the deletion of a full
codon. FS299 is a frameshift that results in a truncated receptor. Putative palmitoylation and phosphorylation sites by the G

as well as the location of amino acid substitutions found, in

vestigated in terms of functional consequences®.
The C20S mutant, that affects a disulfide bond es-
sential for receptor function'®”, is associated with
poor expression at the cell surface, inability to bind
or functionally respond to chemokines, and strong
reduction in coreceptor function. A29S was found to
result in poor chemokine binding, but kept un-
changed its ability to mediate HIV entry. Other mu-
tants, such as 142F, L55Q and A73V were associat-
ed with milder phenotypes. Among the other muta-
tions, C101X and FS299 cause premature termina-
tion of the polypeptide chain and are therefore ex-
pected to result in non-functional receptors. The
C20S, 142F and C101X alleles were found in
seronegative high-risk.individuals bearing the A32
allele on the other chromosome’ 82, Although 142F
appears as a functional HIV coreceptor, the func-

tion of C20S and C101 @stgg@ry(ir@a

viduals bearing CCR5A32 on one chromosome and
112T, A73V or L55Q on the other chromosome wer
seropositive’, suggesting thtéﬁa@é@ﬁﬂa@éﬁnér
encode functional coreceptors.

without the

Variants of the CCR5 gene promoter

able in individuals homozygous for the wild-type al
lele, and it has been shown that ex vivo infection ef-
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that cell surface expression of the coreceptor plays
a major role in the effectiveness of viral replication.
With the aim of uncovering the genetic substrate for
CCR5 expression variability, various groups have
investigated promoter variants and their correlation
with AIDS progression.

The structure of CCR5 gene is represented in
Fig. 28588 As for many other G protein-coupled re-
ceptors, the coding region is contained in a single
exon. The major transcripts encoding CCR5 are un-
der control of the so-called downstream promoter
P4 A 1.9 kb intron interrupts the 3" untranslated re-
gion of the transcripts resulting from the activity of
P, between nucleotides —11 and -12 relative to the
start of translation. Longer and rarer transcripts
have been identified, involving two additional ex-
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Fig. 2. Structure of the CCR5 gene and flanking regions, including the CCR2 gene. Exons are indicated by boxes, and coding
sequences are represented in black. The position of the upstream promoter (Pu) and downstream promoter (Pd) is indicated. The
downstream promoter is used much more efficiently. The location of the sequence variants in the promoter region, associated or
not with phenotypic variation of progression to clinical stages of AIDS, is indicated. The positions of the CCR5A32 and CCR2-64/
mutations are indicated as well. Numbering is based on a translation start site as proposed at the CCR5-AIDS Symposium in

sion. Functional testing of the promoters, or direct
measure of CCR5 expression on white blood cells
from homozygotes for these haplotypes, did not al-
low the demonstration of a significant modification
of CCR5 expression levels. An association with dis-
ease progression was also reported for a single
base substitution (-2459) within the promoter®.
Another study has identified additional haplo-
types and demonstrated that the number of haplo-
types frequent in Caucasians is much smaller than
the number found in populations originating from
Africa®. Analysing the correlation between CCR5
promoter haplotypes and AIDS progression, these
authors found that the spectrum of CCR5 haplo-
types associated with disease acceleration or retar-
dation differs between African Americans and Cau-
casians. Moreover, these authors suggest a com-
plex interaction between CCR5 haplotypes, the ef-
fect of one haplotype depending on the_ identity of

the other allele. If confirfyied, l;ye@crvcvtgtﬁjdﬁ 'ard'rygsg U

between CCR5 promoter all

consistent with a simple correlation between haplo-
type and CCR5 expression. MMQ@&Q of
many CC-chemokine receptors around the CCR5

The CCR2-64l variant

A mutant allele of CCR2 (CCR2-64l) was de-
scribed, in which a valine within the first transmem-
brane segment of the receptor was replaced by an
isoleucine®. The allele frequency does not vary
much among populations, with an average fre-
quency of 10 to 20%%*. CCR2-64 has no influence
on the incidence of HIV-1 infection, but heterozy-
gotes for this allele were found to display slower
progression to AIDS than homozygotes for the wild-
type allele®. Some studies have confirmed the as-
sociation of the CCR2-64l allele with slower disease
progression®%, others did not®88597.9%8 QOne study
reported a protective effect of the 641 variant on
African Americans, but not on Caucasians®’.

As CCR2 is used as a coreceptor only by a few
strains, it is unlikely that the effect of the mutation is
similar to that of CCR5A32. Moreover, the V64! sub-
!s@tjtption in a transmembrane domain is conserva-

¢(and (CORS m@?gn isoleucine at the corre-

sponding position that the first a helix of the

utant is jdentical to that of CCR5 (Fig. 3).
[ &%@E&S@ﬁb@@m keep its functional proper-

ties in terms of chemokine binding, activation of in-
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Fig. 3. Transmembrane organization of CCR2b and location of the V641 mutation associated with delayed progression to AIDS.
Amino acids identical between CCR2b and CCR5 are represented in black. Note that the substitution in the CCR2b sequence
results in a first transmembrane domain which is fully identical to CCR5.
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Fig. 4. Structure of the SDF-13 ¢cDNA and location of the 3’ sequence variation (G to A at position 801) described as delaying
AIDS progression for homozygous carriers'®. The open reading frame is represented in black. Numbering is relative to the start

ing sequence of CCR2 is located some 17 kb up-
stream of that of CCR5 (Fig. 2), and other
chemokine receptor genes, such as CCR1, CCR3
and the orphan receptor CCRL-2 are located at
close proximity. The sequence of a BAC covermg
the CCR2 and CCR5 g s?@ﬁﬁb@
bases (GenBank accession humber U95626 -
though at larger distance, CCR4, C
CXCR1 and XCR1 are alsol loddied Or
chromosomal segment. A Imkage between the 64l
allele and a base su

to T transition at po ﬁvﬁbmtm?t@e@@f
translational start) has been described'®. The n
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The SDF1-3’A variant

The alteration of the CCR5 coding region and its
relationtoHIV-1"resistance has stimulated the
search for other mutations in key genes encoding

reca%Fers or coreceptor ligands. No mutations

h@aﬂ)rma/ t re of CXCR4 or SDF-1

have been described to date, in accordance with
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transcript encoding SDF-1p was, however, de-

\\scribled A % o AIrERSitio {SDF1-3'A) was found

at position 801 relative to the ATG start codon, with-
526 bp transcript'®. This allele was found to
fiable frequencies in world populations,
the highest frequencies being found in Asian (25-
-709 pula-

‘A was
ygous
progression rates similar to




homozygotes for the wild-type allele. It was sug-
gested that increased stability of SDF-1 transcripts
could explain the phenotype, resulting in higher
production of SDF-1 and inhibition of the entry of
CXCR4-using strains. Such an effect would howev-
er be expected to be dominant rather than reces-
sive. Moreover, modifications of stability or transla-
tion efficiency for the variant SDF-1 transcript could
not be demonstrated!%4,

Another study showed an association of the
SDF1-3'A/3'A genotype with accelerated disease
progression rather than slower progression®’. Ac-
celerated progression to AIDS, but prolonged sur-
vival following AIDS diagnosis, was reported in an-
other'®, In still other reports, no association with
progression was found®7:58.%,

RANTES promoter polymorphisms

Polymorphisms in the RANTES promoter were
described recently'®. One of these variants, called
RANTES-28G, was found to be associated with re-
duced CD4+ lymphocyte depletion, and to in-
creased levels of RANTES transcription. No confir-
mation of these findings has been reported so far.

Conclusions

A number of variant alleles in HIV coreceptors or
natural ligands of these chemokine receptors have
been described. Altogether, only the association
between non-functional CCR5 variants and HIV in-
fection or AIDS progression is unambiguously es-
tablished. Homozygotes for the A32 allele of CCR5
display strong but incomplete resistance to HIV in-
fection. Heterozygotes exhibit delayed progression
to AIDS. Although incompletely characterised, it is
likely that some other (and rarer) CCR5 mutants are
non-functional and should also provide relative pro-
tection to their carriers. Other genetic variants will
require additional studies in order to clarify their
links with HIV/AIDS pathogenesis. The association
between CCR5 promoter variants and disease pro-
gression is presently unclear, given the conflicting
reports and the lack of evidence so far that the ge-
netic variations actually affect CCR5 expression.
The 641 variant of CCR2 was associated in several
(but not all) studies with delayed progression, but

o been described o0 1) TS TEboris Tﬁaﬂﬁ?@ubhgmj@m@

tion between the SDF1-3'A variant and delayed
AIDS progression was not

n. Cell 1996; 86: 367-77.
studies, and the mutation dggﬁ)m Seemq{?g?ggtr p16 u'L, Pa?lmiﬁg N, et al. CCRS5 levels and expression

SDF-1 expression. The &ﬁd of thf recentl{y de-
scribed RANTES proMdter/ Variaht o(be
confirmed in other cohorts.
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