

HIV Compartmentalization: Pathogenesis and Clinical Implications

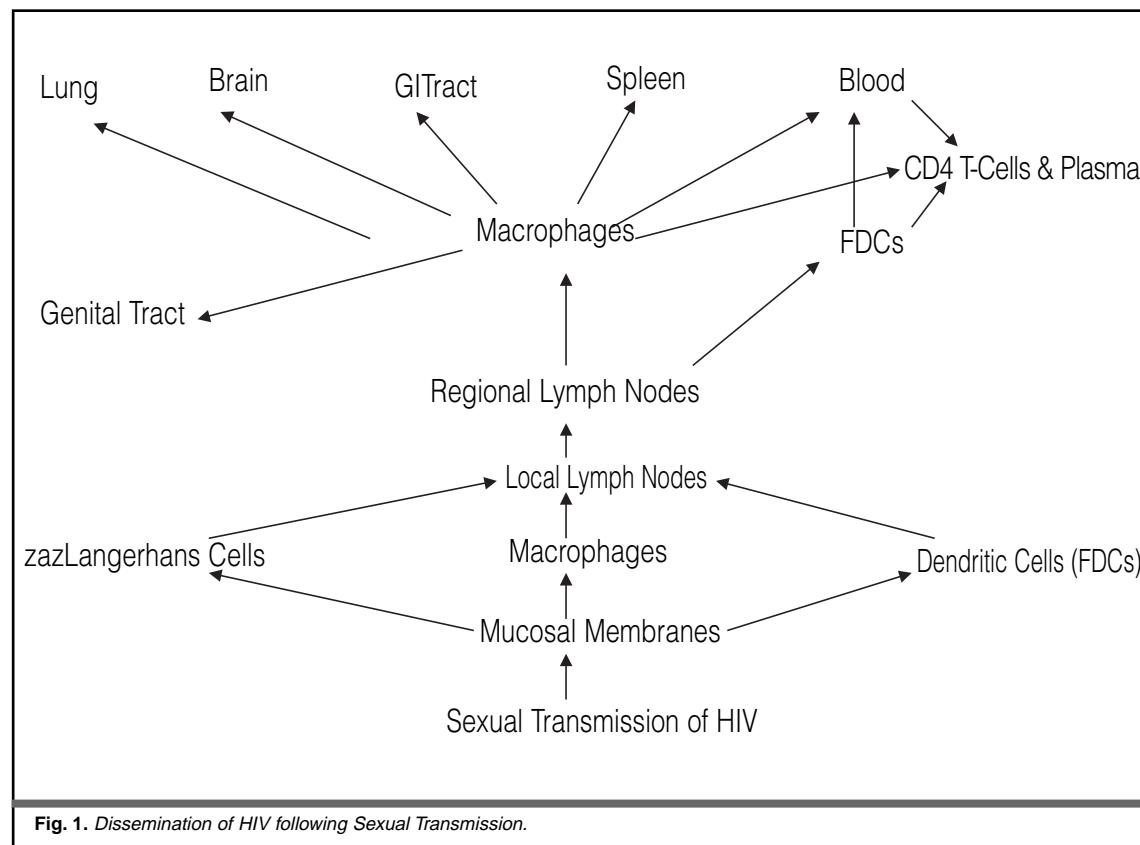
John R. Clarke, Natalie C. White, Jonathan N. Weber

Department of Genitourinary Medicine and Communicable Diseases

Abstract

Infection with HIV results in the dissemination of the virus to a number of target compartments which may act as sanctuary sites for the virus. Sanctuary sites for HIV may be divided into cellular and anatomical sites. Cellular sites for HIV include both productively and latently infected CD4+ lymphocytes, macrophages and dendritic cells while anatomical sites include blood, lymph nodes, central nervous system (CNS), genital tract, spleen and lung. Some of these sites may be inaccessible to some classes of antiretroviral drugs e.g. some protease inhibitors penetrate poorly into the CNS and genital tract. Mathematical models have been used to predict the importance of sanctuary sites and trafficking of virus between compartments on the pathogenesis of HIV infection. This review will discuss recent understanding of the role of sanctuary sites in the persistence of HIV in the host.

Key words


Introduction

Studies on the dynamics of HIV replication have demonstrated that the virus is highly active during the long clinically asymptomatic phase of the disease¹⁻³. As many as 100 million virus particles are produced each day by HIV infected host cells and although the immune system may limit the infection, HIV is never eradicated from the host. The lymph nodes appear to be the most active sites for HIV replication,⁴⁻⁶ and it is clear that the level of HIV replication in infected individuals is very important to the rate of progression to AIDS and death. The success of highly active antiretroviral therapy (HAART) has prompted interest in cellular and anatomical reservoirs of the virus which may evade antiviral immune responses and HAART⁷. Current models for HIV replication *in vivo* are based upon drug induced

changes in steady-state levels of viral RNA in blood^{1,2,7}. The half-life of virus in plasma has been calculated to be as little as 3 m, with the half-life of productively infected CD4 T-lymphocytes being 24 hours⁷⁻⁹. Intravenous inoculation of SIV into rhesus macaques indicated that viral particles were rapidly cleared from the blood compartment in less than 5 m. The cleared virus was predominately degraded but detectable levels of SIV RNA were recovered from the lymph nodes, spleen, lung and liver but not from other organs⁹. Once infected with HIV it is unlikely that the virus will be eradicated from the host because even if HAART is initiated during primary infection competent virus can still be isolated from purified peripheral blood CD4 T-lymphocytes after 3 years of therapy¹⁰. Therefore, a clear understanding of how HIV evolves once seeded within the target organs and sanctuary sites is of major importance in devising protocols for eradicating the virus from the host. Sanctuary sites for HIV may be divided into cellular and anatomical compartments¹¹.

Correspondence to:

Department of Genitourinary Medicine and Communicable Diseases, Jefferiss Research Trust Laboratories, Imperial College School of Medicine, St Mary's Hospital, Paddington London W2 1PG, UK

Fig. 1. Dissemination of HIV following Sexual Transmission.

Dynamics of HIV replication

Important insights into the understanding of viral reservoirs have come from the analysis of changes in levels of virus following initiation of antiretroviral therapy (reviewed in⁷). The biphasic nature in the rate of decay of plasma virus is due to differences in the kinetics of replication in different infected cell populations⁷. The major cell of HIV infection is the CD4 T-cell which accounts for over 99% of replicating virus within the host. However, there is some controversy over which cells are the most important target during primary infection. Infected macrophages while accounting for < 1% of total infected cell burden are important in disseminating HIV throughout the host and a possible mechanism of dissemination of HIV (shown in (Fig.1)¹²). CD34 progenitor cells are very susceptible to infection with HIV and distinct quasi-species of HIV have been detected in the bone marrow compared to the blood¹³. Macrophages have been shown to be a major target cell for HIV in the bone marrow¹⁴. In addition to macrophages, Langerhans and dendritic cells at the mucosal surfaces are important targets during the sexual transmission of HIV¹⁵.

Within 7-14 days of starting antiretroviral therapy virus is cleared from productively infected CD4 T-cells which is accompanied by a 99% reduction in plasma HIV RNA viral load (reviewed in⁷). The slower rate of decay in the remaining 1% of virus infected cells is due to low levels of continuous viral repli-

cation in tissues⁷. Three cellular sources of virus are important for the persistence of HIV following the initiation of HAART: Extra-cellular virus trapped on the surface of follicular dendritic cells (FDCs) in the germinal centres of lymph nodes^{5,7,16-18}, virus replicating within tissue macrophages and latently infected CD4 T-cells⁷. The half-life of viable replicative competent virus trapped on the surface of dendritic cells was 14 days and following the initiation of HAART follicular hyperplasia and cell activation continued in the germinal centres of lymph nodes for at least 6 months¹⁹. A bi-phasic dissociation of HIV from FDCs has been postulated²⁰. Virus trapped on the surface of FDCs provide a sanctuary site in which HIV is protected from the effects of HAART. Although, some new NNRTIs may be able to inhibit endogenous reverse transcriptase activity within virions²¹ and this may be a necessary consideration in future HAART regimens, as in some instances HIV may be trapped on the surface of these cells for years²⁰. If only a small proportion of this virus remained viable then sufficient virus would exist to re-infect CD4 cells if the antiretroviral therapy was withdrawn. This could explain why HIV viraemia rebounds so quickly after the cessation of antiretroviral therapy.

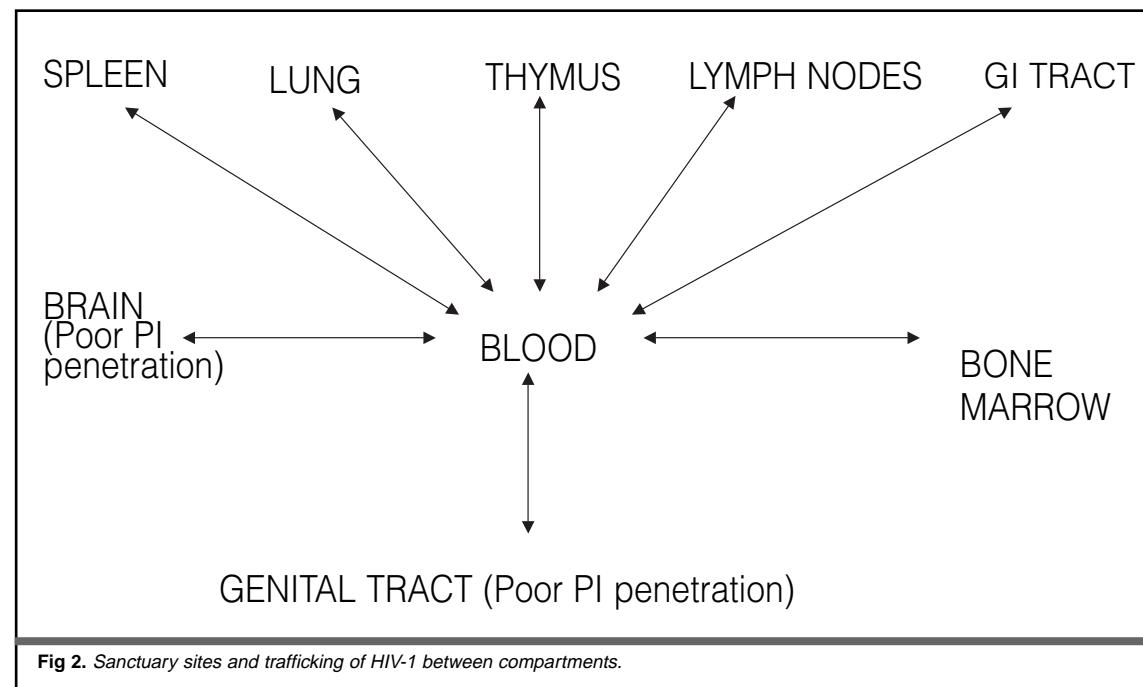
Macrophages

Mathematical models predict that infection of macrophages may be essential for the successful

establishment of HIV in the primary phase of the disease²². The number of infected macrophages appear to be low but macrophages are resistant to the cytopathic effects of HIV and are relatively long lived cells which would allow the constitutive release of virus over the life time of the cells²³⁻²⁴. The infection of cells from the monocyte/macrophage lineage enables the dissemination of HIV to target tissues and may provide a vehicle for the trafficking of viruses between target organs¹². Infection of tissue macrophages increases late in the disease process during opportunistic infections resulting in an increase in the number of macrophages that are infected and the amount of virus produced from these cells^{23,24,26,27}. Distinct differences have been detected in the quasispecies that infect CD4 T-cells and macrophages indicating that virus evolves separately in these cells. Heterogeneity in HIV proviral DNA from CD4 T-cells was much higher than that found in monocytes or in viral RNA from plasma²⁸. Analysis of V3 loop sequences from plasma and PBMCs clearly demonstrated compartmentalization²⁹. Acquisition of resistant mutations in lymphocytes may also differ from cells of the monocyte/macrophage lineage because nucleoside analogues show greater activity in monocyte derived macrophages due to the lower endogenous nucleoside pools within these cells³⁰. The peculiar characteristics of HIV replication and efficacy of antiretroviral drugs in macrophages have a natural counterpart in lymphoid tissue where macrophages provide a major focus of infection for HIV³¹. Viral infection of macrophages should be considered in therapeutic strategies wanting to achieve optimal effects in all tissue compartments where the virus seeks sanctuary³¹.

Decay rates of HIV-1 in latently infected cells indicate that eradication of HIV-1 following initiation of HAART may take as long as 60 years³². Therefore, latent infection of resting CD4 T-cells by HIV-1 provides a mechanism for life-long persistence of virus. In patients with incomplete suppression of viral replication there is clear evidence of evolution of HIV genomic RNA sequences (reviewed in⁷). However, in some patients with complete suppression of plasma viraemia, virus recovered following treatment failure was genotypically identical with baseline samples taken 2 years prior to failure, indicating the persistence of latently infected cells reviewed in⁷.

Blood and lymph nodes


Despite suppression of plasma viraemia for 18 months by HAART, HIV-1 RNA expression could be detected in the lymphoid tissues of the majority of patients and HIV-1 DNA was detected in both PBMCs and lymphoid tissue of all patients³³. Low levels of replication can still be detected in macrophages after > 6 months of HAART³⁴ and may be the reason that HIV RNA can still be detected in plasma in many individuals on HAART whose viral load is consistently below the detection limit of commercial viral load assays (< 20 copies/mL)³⁵.

In the majority of patients plasma viraemia becomes undetectable within 3 months after initiating HAART and this is accompanied by a significant reduction in the number of productively infected cells in the lymph nodes but HIV RNA expression could still be detected in these cells³⁶. Others found no evidence of viral replication in blood or lymph nodes of patients with plasma viral load of < 20 copies/mL³⁷.

Compartmentalization

Kepler and Perelson in 1998 proposed a mathematical model in 1998 that predicted that the eradication of HIV from the host will depend on the capability of totally suppressing viral replication in all infected cells within the sanctuary sites and on the elimination of these cells either due to natural death or destruction by the cellular immune system³⁸. In their model, partial suppression of HIV replication in sanctuary sites resulted in the evolution of resistant virus and treatment failure. In one compartment systems there was a relatively narrow window of drug concentrations that allowed evolution of resistant variants³⁸. When the system was enlarged to consider two spatially distinct compartments held at different drug concentrations where penetration of drug into one is sub-optimal, the range of drug concentrations that permitted the development of resistance increased³⁸. In the host the opportunity for the generation of resistance to occur was widened by having one compartment in which mutants were generated such as a sanctuary or region of low drug concentration that HIV can enter and a second compartment in which the drug concentration is high enough to give a selective advantage to the mutant. The process of generating mutants in one compartment and selecting them in another may be repeated a number of times to achieve a step wise accumulation of resistant mutants. This became a particular problem if there was significant trafficking of viruses between the two compartments. In a sanctuary where the drug penetrance is small, partially resistant strains can proliferate and produce more resistant strains which are then able to re-seed other compartments³⁸. The role of sanctuaries in the evolution of drug resistance is likely to be even more central for HAART when 3 or more drugs are used as many mutations may be needed for treatment failure.

High rates of mutations and replication of HIV allows for the continuous generation of diverse genetic variants *in vivo*³⁹. Selective pressures within the micro-environments of different anatomical compartments result in the emergence of dominant quasispecies which can be distinguished by their envelop sequences. It has not been established that comparable tissue-specific selective pressures lead to the independent evolution of *pol* sequences within different body compartments, nor is it known how differing rates of virus turnover in tissues might affect the pace of such evolution³⁹. The same mutations that confer resistance to antiretroviral agents

Fig 2. Sanctuary sites and trafficking of HIV-1 between compartments.

in the blood are also found in the other body compartments⁴⁰. However, subtle differences in mutations detected in various compartments may prove to be important when assessing the effectiveness of therapy. Sequential sampling at body compartments is not always possible due to the invasive nature of some techniques.

The mechanisms responsible for parallel evolution of virus in different organs are poorly understood, but tissue specific tropism of different HIV quasispecies, variations in the replication rates of virus in the different tissues and local immune responses are all likely to be involved⁴¹. Caution should be used when interpreting genotypic data as one study showed that despite clear differences in the V3 loop sequences of the major variants recovered from different tissues all HIV variants showed identical cell tropism and replicative kinetics in primary cells *in vitro*⁴². These issues are important in formulating a model for the emergence of drug resistance *in vivo* and for understanding drug trafficking and virus turnover (Fig. 2). Several studies have noted a discordance in the distribution of

quasispecies in PBMCs, plasma, spleen, brain, semen, lymph nodes and lung (Table 1). This indicates that there are anatomically distinct independently evolving HIV quasispecies at these sites³⁹.

The evolution of independent quasispecies may be even more localised as distinct genotypes of HIV have been recovered from different regions of the brain⁴³. It is conceivable that antiretroviral drugs may penetrate some areas of organs with differing efficacies leading to variations in resistance patterns within a compartment⁴³. Phylogenetic analysis of the V3-V5 envelop region of HIV confirmed tissue specific compartmentalization of blood-brain viruses but also showed that there was some trafficking of quasi-species between the two sites⁴⁴. This makes the analysis of quasispecies recovered from different compartments complex.

Subtle changes in target cell maturation may also be important for the replication of HIV. Expression of CD4 and appropriate coreceptors correlated with HIV entry into thymocytes but factors related to activation and maturation were important for the replication of HIV⁴⁵. Furthermore, quasispecies within the thymus were distinct from PBMCs⁴⁶.

Table 1. Sanctuary sites where distinct HIV quasispecies have been identified.

Sanctuary	Primary Sanctuary	Secondary References
PBMCs	plasma	29
blood	bone marrow	13
blood	brain	44
brain	brain	43
blood	thymus	46
blood	semen	63,68,69
blood	cervical secretions	71
blood	lung	72-75
brain	spleen	51

Pharmacokinetics

One concern with HAART is adequate penetration of drugs to all body compartments and sanctuary sites. AZT has been shown to penetrate all organ systems in mice but the same has not been established for man⁴⁷. Protease containing regimens target HIV reservoirs in lymphoid tissue more effectively leading to a more profound restoration of lymph node architecture⁴⁸. The blood brain barrier restricts the entry of antiviral agents into the central

nervous system thereby facilitating the creation of a reservoir of HIV that could potentially reinfect peripheral tissues. The lymphatic system could provide a potential pathway through which CNS reservoirs of HIV could directly reinfect lymphoid tissue⁴⁹. It has been shown that protease inhibitors penetrate poorly into the male genital tract⁵⁰. Duration of antiviral effect following removal or cessation of therapy varies between cell types and this is likely to be the case in individual body compartments. The long half-life of NNRTIs in plasma could result in patients who stop therapy receiving monotherapy with NNRTI for a period which could lead to the development of resistance against these drugs.

Brain and CSF

Sanctuary sites for HIV such as the brain have been recognised as contributing to the success of the infection⁵¹. HIV mediates a productive infection of brain macrophages/microglial cells⁵². HIV can be detected in the CSF during seroconversion and molecular analysis of the V3 loop shows substantial homogeneity between CSF and blood genotypes early in infection which is lost as disease progresses. Redistribution of HIV quasispecies to the brain from other sanctuary sites has been observed in patients who progress to AIDS dementia complex, although quasispecies also evolved independently in the brain when compared to the spleen⁵¹. Although, others found no differences between the V3 loops of clones from the brain and spleen of three individuals who died of HIV encephalitis and this may be due to the advanced nature of disease in these subjects⁵³.

The decay of HIV RNA viral load in CSF following the initiation of HAART was comparable to that observed in the plasma⁵⁴. However, interruption of therapy resulted in a rapid rebound of viral load in the CSF. The same mutations associated with resistance to antiretroviral drugs in HIV quasispecies from plasma are also common in CSF⁵⁵. Active efflux transport out of the CSF is a predominant mechanism limiting nucleoside analogue access to the central nervous system⁵⁶. Few studies exist that measured the half-life of drugs in tissues. The comparison of pharmacokinetics of AZT in CSF and plasma revealed that AZT penetrated into the CSF more slowly with a longer half-life⁵⁷. Poor uptake of protease inhibitors into the CNS may result in the early breakthrough of HIV RNA in CSF of patients failing HAART⁵⁸. Nelfinavir did not penetrate into the CSF⁵⁹ while indinavir was present in therapeutic concentrations⁶⁰. Poor reduction in both CSF and plasma HIV-1 RNA levels may occur in some patients and this may be due to either sub-optimal therapy or lack of compliance⁶¹. However, epidemiological studies have reported that despite the success of HAART in reducing opportunistic infections and slowing the rate of disease progression there has been no overall reduction in the levels of AIDS dementia complex⁶².

Genital Tract

It is well established that HIV is found in semen, either as cell free or cell associated virus⁶³, yet the source of the virus has not been established. Some individuals demonstrated disproportionately high levels of HIV RNA in seminal plasma compared to blood plasma⁶⁴⁻⁶⁵. HIV replication persisted in plasma and seminal fluid of nucleoside analogue experienced subjects who switched HAART regimens due to therapy failure⁶⁶. Although in retroviral naive patients triple combination antiretroviral therapy with a protease inhibitor containing regimen was found to effectively reduce cell free HIV RNA in semen⁶⁷.

Protease gene sequencing from semen and PBMCs indicated that viral populations from the two sources are distinct^{63,68}. In particularly, mutations associated with resistance to PIs were found in the blood but not semen. However, mutations associated with resistance to PIs have been recovered from the DNA of seminal cells and differences in the mutation patterns observed in PBMCs and seminal cells noted⁶⁸⁻⁶⁹. Mutations associated with resistance to antiretroviral therapy were also found in the female genital tract⁷⁰. Distinct genetic evolution was reported in blood and cervical secretions of women infected with clade A viruses⁷¹. Some evidence was found for trafficking of viruses between compartments but once seeded at target sites virus evolved independently⁷¹.

Lung

Comparison of the genetic sequence of the V3 loop of gp120 recovered from alveolar macrophages AMs and PBMCs has revealed tissue specific sequences⁷²⁻⁷⁵. Structural differences seen in this region are associated with HIV tropism for macrophage or T-cells⁷⁵. Consequently, variation in the V3 sequences between AMs and PBMCs may merely be indicative of selectivity of the different viral cell types. HIV strains from AMs, but not from peripheral blood cells, contain V3 domain nucleotide sequences with a greater degree of homogeneity in the C-terminal region⁷⁵. This suggests that strains infecting AMs have evolved further from a presumed ancestral species than those infecting blood monocytes. It is possible that, as the disease progresses, viral strains in lung and blood are not in a state of unrestricted bidirectional traffic but, instead may involve independently. For complete eradication of HIV, it is essential that drugs exert optimal therapeutic effects and suppress replication in all infected body compartments⁷⁶. In the lung, this involves the ability of drugs to penetrate alveolar spaces and alveolar macrophages. Differences in the mutations associated with resistance to nucleoside analogues have been found in the lung when compared to the lung⁷⁷⁻⁷⁹. However, it is extremely difficult to obtain sequential samples of lung tissue from patients receiving HAART therefore, to date it has not been possible to monitor the evolution of HIV quasispecies in the lung.

Conclusions

A clear understanding of how HIV evolves once seeded within target organs and sanctuary sites is of major importance in devising protocols for eradicating the virus from the host. Despite HAART low levels of HIV replication occur in various sanctuary sites and this virus may seep back into the circulatory system to re-infect CD4 cells. Viral infected cells trapped in these sanctuary sites may continue to produce virus for years. Predictions that virus trapped on the surface of FDCs may remain viable for years, if correct, would provide an inaccessible sanctuary site for HAART. Protocols need to be devised to eliminate virus from these target cells. However, the differential uptake of drugs into the CNS, genitals and lymph nodes is of grave concern if HAART is ever to be effective at eliminating HIV from sanctuaries. The ultimate goal is the elimination of HIV from the host but this seems increasingly unlikely even with immune restoration strategies.

References

- Wei X, Ghosh S, Taylor M, et al. Viral dynamics in human immunodeficiency virus type 1 infection. *Nature* 1995; 373: 117-22.
- Ho D, Meumann A, Perelson A, et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. *Nature* 1995; 373: 123-6.
- Perelson A, Essunger P, Cao Y, et al. Decay characteristics of HIV-1 infected compartments during combination therapy. *Nature* 1997; 387: 188-91.
- Pantaleo G, Graziosi C, Demarest J, et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. *Nature* 1993; 362: 355-8.
- Embreton J, Zupancic M, Ribas L, et al. Massive covert infection of helper T lymphocytes and macrophages by HIV-1 during the incubation period of AIDS. *Nature* 1993; 362: 359-62.
- Haase A, Henry K, Zupancic M, et al. Quantitative image analysis of HIV-1 infection in lymphoid tissue. *Science* 1996; 274: 985-9.
- Siliciano R. Latency and reservoirs for HIV-1. *AIDS* 1999; 13 (Suppl. A) S49-S58.
- Perelson A, Neumann A, Markowitz M, et al. HIV-1 dynamics *in vivo*: Virion clearance rate, infected cell life-span, viral generation time. *Science* 1996; 271: 1582-6.
- Zhang L, Dailey P, He T, et al. Rapid clearance of simian immunodeficiency particles from plasma of rhesus macaques. *J. Virol* 1999; 73: 855-60.
- Poggi C, Profizi N, Djediouane A, et al. Long-term evaluation of triple nucleoside therapy administered from primary HIV-1 infection. *AIDS* 1999; 13: 1213-20.
- Schrager L, D'Souza M. Cellular and anatomical reservoirs of HIV-1 in patients receiving potent antiretroviral combination therapy. *JAMA* 1998; 280: 67-71.
- Haase A. Pathogenesis of lentivirus infections. *Nature* 1986; 322: 130-6.
- Ruiz M, Cicala C, Arthos J, et al. Peripheral blood derived CD34 (+) Progenitor cells: CXC chemokine receptor 4 and CC chemokine receptor 5 expression and infection by HIV. *J. Immunol* 1998; 161: 4169-76.
- Gill V, Shattock R, Freedman A, et al. Macrophages are a major target cell for HIV infection in long-term bone marrow culture and demonstrate dual susceptibility to lymphocytotropic and monocytotropic strains of HIV-1. *Br J Haematol* 1996; 93: 30-7.
- Hu J, Gardner M, Miller C. Identification of target cells in the cervicovaginal mucosa 18 hours after SIV inoculation. *Abstract 118*. San Francisco 2000: 7th CROI.
- Heath S, Tew J, Szakal A, et al. Follicular dendritic cells and human immunodeficiency virus infectivity. *Nature* 1995; 377: 740-4.
- Burton G, Masuda A, Heath S, et al. Follicular dendritic cells (FDC) in retroviral infection: Host/pathogen perspectives. *Immunol. Rev* 1997; 156: 185-97.
- Grouard G, Clark E. Role of dendritic and follicular dendritic cells in HIV infection and pathogenesis. *Curr Opin Immunol* 1997; 9: 563-7.
- Orenstein J, Feinberg M, Yoder C, et al. Lymph node architecture preceding and following 6 months of potent antiviral therapy: Follicular hyperplasia persists in parallel with p24 antigen restoration after involution and CD4 cell depletion in an AIDS patient. *AIDS* 1999; 13: 2219-29.
- Hlavacek W, Wofsy C, Perelson A. Dissociation of HIV-1 from follicular dendritic cells during HAART: Mathematical analysis. *Proc Natl Acad Sci USA* 1999; 96: 14681-6.
- Ventura M, Tarrago-Litvak L, Dolle V, et al. Effect of nucleoside analogs and non-nucleoside inhibitors of HIV-1 reverse transcriptase on cell-free virions. *Arch Virol* 1999; 144: 513-23.
- Wodarz D, Lloyd A, Jansen V, et al. Dynamics of macrophage and T cell infection by HIV. *J Theoret Biol* 1998; 196: 101-13.
- Clarke J, Mitchell D, Coker R, et al. Is the lung important as a privileged site for the human immunodeficiency virus? *Thorax* 1998; 53: 81-2.
- White N, Agostini C, Israel-Biet D, et al. The growth and the control of human immunodeficiency virus in the lung: implications for highly active antiretroviral therapy. *Eur J Clin Invest* 1999; 29: 964-72.
- Carr J, Hocking H, Li P, et al. Rapid and efficient cell to cell transmission of human immunodeficiency virus infection from monocyte-derived macrophages to peripheral blood lymphocytes. *Virology* 1999; 265: 319-29.
- Clarke J, Israel-Biet. Interactions between opportunistic microorganisms and HIV in the lung. *Thorax* 1996; 51: 875-7.
- Orenstein J, Fox C, Wahl S. Macrophages as a source of HIV during opportunistic infections. *Science* 1997; 276: 1857-61.
- Yamashita A, Yamamoto N, Matsuda J, et al. Cell type-specific heterogeneity of the HIV-1 V3 loop in infected individuals: Selection of virus in macrophages and plasma. *Virology* 1994; 204: 170-9.
- Song J, Wang B, Ge Y, et al. Significance of plasma and peripheral blood mononuclear cell derived HIV-1 sequences in establishing epidemiologic linkage between two individuals multiply exposed to HIV-1. *Microb Pathogenesis* 1999; 26: 287-98.
- Aquaro S, Perno C, Balestra E, et al. Inhibition of replication of HIV in primary monocyte/macrophages by different antiviral drugs and comparative efficacy in lymphocytes. *J Leucocyte Biol* 1997; 62: 138-43.
- Aquaro S, Calio R, Balestra E, et al. Clinical implications of HIV dynamics and drug resistance in macrophages. *J Biol Regul Homeostat Agents* 1998; 12 (Suppl. 2): 23-7.
- Finzi D, Blankson J, Siliciano J, et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. *Nature Medicine* 1999; 5: 512-7.
- Hoep B, Dumon B, Harzic M, et al. Highly active antiretroviral treatment initiated early in the course of symptomatic primary HIV-1 infection: Results of the ANRS 053 trial. *J Inf Dis* 1999; 180: 1342-6.
- Cavert W, Nortemans D, Stakus K, et al. Kinetics of response in lymphoid tissue to antiviral therapy of HIV-1 infection. *Science* 1997; 276: 960-4.
- Dornadula G, Zhang H, VanUitert B, et al. Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. *JAMA* 1999; 282: 1627-32.
- Stellbrink H, Hufert F, Tenner-Racz K, et al. Kinetics of productive and latent HIV infection in lymphatic tissue and peripheral

blood during triple-drug combination therapy with or without additional interleukin-2. *Antiviral therapy* 1998; 3: 209-14.

37. Gunthard-Huldrych F, Wong J, Ignacio C, et al. Human immunodeficiency virus replication and genotypic resistance in blood and lymph nodes after a year of potent antiretroviral therapy. *J Virol* 1998; 72: 2422-8.

38. Kepler T, Perelson A. Drug concentration heterogeneity facilitates the evolution of drug resistance. *Proc Natl Acad Sci USA* 1998; 95: 11514-9.

39. Wong J, Ignacio C, Torriani F, et al. In vivo compartmentalization of human immunodeficiency virus: Evidence from the examination of *pol* sequences from autopsy tissues. *J Virol* 1997; 71: 2059-71.

40. Di Stefano M, Sabri F, Leitner T, et al. Reverse transcriptase sequence of paired isolates of cerebrospinal fluid and blood from patients infected with human immunodeficiency virus type 1 during zidovudine treatment. *J Clin Microbiol* 1995; 33: 352-5.

41. Sankale J-L, Sallier R, Marlink R, et al. Distinct quasispecies in the blood and the brain of an HIV-2 infected individual. *Virology* 1996; 226: 418-23.

42. Dittmar M, Simmons G, Donaldson Y, et al. Biological characterization of human immunodeficiency virus type 1 clones derived from different organs of an AIDS patient by long range PCR. *J Virol* 1997; 71: 5140-7.

43. Chang J, Jozwiak R, Wang B, et al. Unique HIV type 1 V3 region sequences derived from six different regions of brain: Region specific evolution within host-derived quasispecies. *AIDS Res Hum Retrovir* 1998; 14: 25030.

44. Korber B, Kunstman K, Patterson B, et al. Genetic differences between blood and brain derived viral sequences from human immunodeficiency virus type-1 infected patients: Evidence of conserved elements in the V3 region of the envelop protein of brain-derived sequences. *J Virol* 1994; 68: 7467-81.

45. Pedroza M, Gurney K, Torbett B, et al. Differential tropism and replication kinetics of human immunodeficiency virus type 1 isolates in thymocytes: Coreceptor expression allows viral entry, but productive infection of distinct subsets is determined at the post-entry level. *J Virol* 1998; 72: 9441-52.

46. Calabro M, Zanotto C, Calderazzo F, et al. HIV-1 infection of the thymus: Evidence for a cytopathic and thymotropic viral variant *in vivo*. *AIDS Res Hum Retroviro* 1995; 11: 11-9.

47. Diwan B, Riggs C, Logsdon D, et al. Multiorgan transplacental and neonatal carcinogenicity of 3'-azido-3'-dideoxythymidine in mice. *Toxicol Appl Pharmacol* 1999; 161:82-9.

48. Ruiz J, Van-Lunzen J, Arno A, et al. Protease inhibitor-containing regimens compared with nucleoside analogues alone in the suppression of persistent HIV-1 replication in lymphoid tissue. *AIDS* 1999; 13: F1-F8.

49. Cashion MF, Banks WA, Bost KL, et al. Transmission routes of HIV-1 gp120 from brain to lymphoid tissue. *Brain Research* 1999; 822: 26-33.

50. Taylor S, Back D, Workman J, et al. Poor penetration of the male genital tract by HIV-1 protease inhibitors. *AIDS* 1999; 13: 859-60.

51. Gatanaga H, Oka S, Ida S, et al. Active HIV-1 redistribution and replication in the brain with HIV encephalitis. *Arch Virol* 1999; 144: 29-43.

52. Wiley C, Achim C, Christopherson C, et al. HIV mediates a productive infection of the brain. *AIDS* 1999; 13: 2055-9.

53. Reddy R, Achim C, Sirko D, et al. Sequence analysis of the V3 loop in brain and spleen of patients with encephalitis. *AIDS Res Hum Retrovir* 1996; 12: 477-82.

54. Eggers C, Van Lunzen J, Buhk T, et al. HIV infection of the central nervous system is characterized by rapid turnover of viral RNA in cerebrospinal fluid. *J AIDS Hum Retrovir* 1999; 20: 259-64.

55. Chien J, Valdez H, McComsey G, et al. Presence of mutations conferring resistance to lamivudine in plasma and cerebrospinal fluid of HIV-1 infected patients. *J AIDS Hum Retrovir* 1999; 21: 277-80.

56. Sawchuk R, Yang Z. Investigation of distribution, transport and uptake of anti-HIV drugs to the central nervous system. *Adv Drug Deliv Rev* 1999; 39: 5-31.

57. Rolinski B, Bogner J, Sadri I, et al. Absorption and elimination kinetics of zidovudine in the cerebrospinal fluid in HIV-1 infected patients. *J AIDS Hum Retrovir* 1997; 15: 192-7.

58. Kravcik S, Gallicano K, Roth V, et al. Cerebrospinal fluid HIV RNA and drug levels with combination ritonavir and saquinavir. *J AIDS Hum Retrovir* 1999; 21: 371-5.

59. Aweka F, Jayewardene A, Staprans S, et al. Failure to detect nelfinavir in the cerebrospinal fluid of HIV-1 infected patients with and without AIDS dementia complex. *J AIDS Hum Retrovir* 1999; 20: 39-43.

60. Martin C, Sonnerborg A, Svensson JO, et al. Indinavir based treatment of HIV-1 infected patients: Efficacy in the central nervous system. *AIDS* 1999; 13: 1227-32.

61. Staprans S, Marlowe N, Glidden D, et al. Time course of cerebrospinal fluid responses to antiretroviral therapy: Evidence for variable compartmentalization of infection. *AIDS* 1999; 13: 1051-61.

62. Dore G, Correll P, Li Y, et al. Changes to AIDS dementia complex in the era of highly active antiretroviral therapy. *AIDS* 1999; 13: 1249-53.

63. Byrn R, Kiessling A. Analysis of human immunodeficiency virus in semen: Indications of a genetically distinct virus reservoir. *J Reproductive Immunol* 1998; 41: 161-76.

64. Tachet A, Dulost E, Salmon D, et al. Detection and quantification of HIV-1 in semen: Identification of a subpopulation of men at high risk of viral sexual transmission. *AIDS* 1999; 13: 823-31.

65. Dulouet E, Tachet A, De Almeida M, et al. Detection of HIV-1 in seminal plasma and seminal cells of HIV-1 seropositive men. *J Reproductive Immunol* 1998; 41: 27-40.

66. Ball J, Rowe T, Curran R, et al. Poor reduction of HIV-1 RNA titres in nucleoside reverse transcriptase inhibitor experienced patients treated with indinavir combination therapy. *Sexually Transmitted Diseases* 1999; 75: 337-9.

67. Liuzzi G, Chiriaci A, Bagnarelli P, et al. A combination of nucleoside analogues and a protease inhibitor reduces HIV-1 RNA levels in semen: Implications for sexual transmission of HIV infection. *Antiviral Therapy* 1999; 4: 95-9.

68. Eron J, Vernazza P, Johnston D, et al. Resistance of HIV-1 to antiretroviral agents in blood and seminal plasma: Implications for transmission. *AIDS* 1998; 12: F181-F9.

69. Mayer KH, Boswell S, Goldstein R, et al. Persistence of human immunodeficiency virus in semen after adding indinavir to combination antiretroviral therapy. *Clin Inf Dis* 1999; 28: 1252-9.

70. Zhang H, Dornadula G, Beumont M, et al. Human immunodeficiency virus type 1 in the semen of men receiving highly active antiretroviral therapy. *N Engl J Med* 1998; 339: 1803-9.

71. Poss M, Rodrigo A, Gosink J, et al. Evolution of envelop sequences from the genital tract and peripheral blood of women infected with clade A human immunodeficiency virus type 1. *J Virol* 1998; 72: 8240-51.

72. Nakata K, Weiden M, Harkin T, et al. Low copy number and limited variability of proviral DNA in alveolar macrophages from HIV-1 infected patients: Evidence for genetic differences in HIV-1 between lung and blood macrophage populations. *Mol Med* 1995; 1: 744-57.

73. Alimohammadi A, Coker R, Miller R, et al. Genotypic variants of HIV-1 from peripheral blood and lung of AIDS patients. *AIDS* 1997; 11: 831-2.

74. Hughes E, Bell J, Simmonds P. Investigation of the dynamics of the spread of HIV to brain and other tissues by evolutionary analysis of sequences from p17 gag and env genes. *J Virol* 1997; 72: 1272-80.

75. Itescu S, Simonelli P, Winchester R, et al. Human immunodeficiency virus type 1 strains in the lungs of infected individuals evolve independently from those in peripheral blood and are highly conserved in the C-terminal region of envelop V3-loop. *Proc Natl Acad Sci USA* 1994; 91: 11378-82.

76. VanOt Wout A, Ran L, Kuiken C, *et al.* Analysis of the temporal relationship between HIV-1 quasispecies in sequential blood samples and various organs obtained at autopsy. *J Virol* 1998; 72: 488-96.
77. Gates A, Coker R, Miller R, *et al.* Zidovudine resistant variants of HIV-1 in the lung. *AIDS* 1997; 11: 702-3.
78. Atkins M, Strappe P, Kaye S, *et al.* Quantitative differences in the distribution of zidovudine resistance mutations in multiple post-mortem tissues from AIDS patients. *J Med Virol* 1998; 55:138-46.
79. White N, Israel-Biet D, Coker R, *et al.* The nucleotide reverse transcriptase resistance pattern in the blood and lung. Poster 363. Seventh European Conference on Clinical Aspects and Treatment of HIV-infection 1999.