

HHV-8, an Always Intriguing, Sometimes Relevant Herpesvirus

Marina Núñez, Ana Machuca, and Vincent Soriano

Service of Infectious Diseases, Hospital Carlos III, Instituto de Salud Carlos III, Madrid, Spain

Abstract

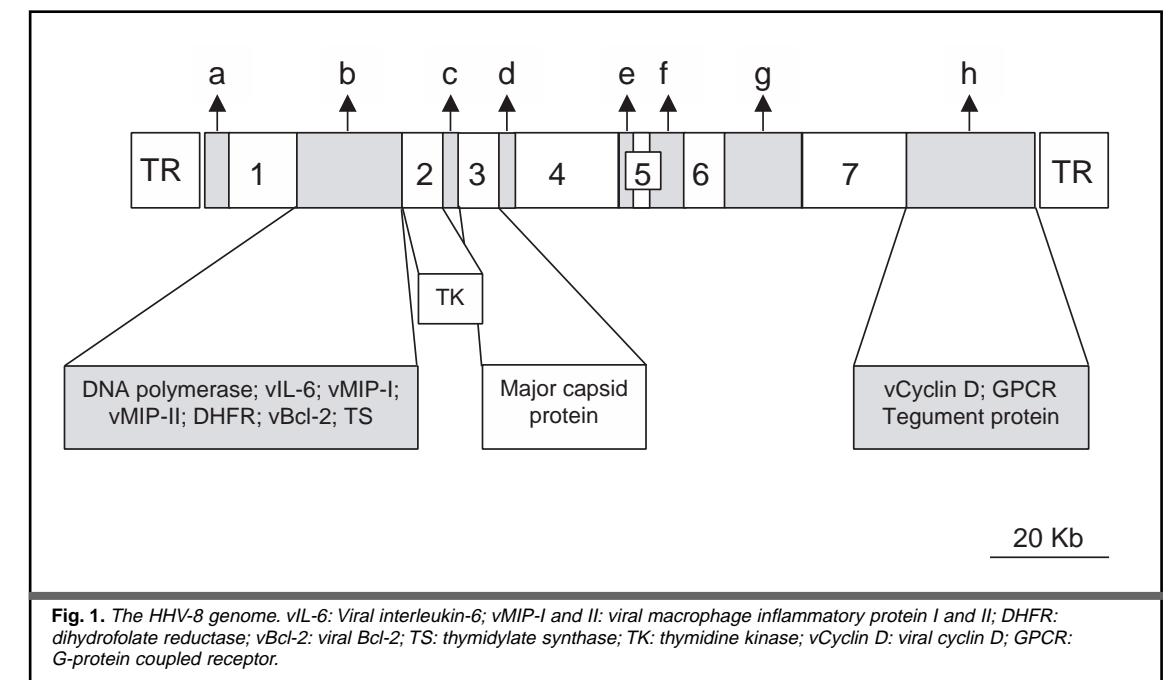
The virus associated with Kaposi's sarcoma (KSHV) is also known as the human herpesvirus type 8 (HHV-8), due to its biological and genetic homology to other human herpesviruses. Since its identification in 1994, a growing body of evidence supports its role in the pathogenesis of Kaposi's sarcoma. Moreover, other lymphoproliferative disorders, such as Multicentric Castleman's disease and primary effusion lymphomas, have been also linked to HHV-8 infection. However, many questions still remain unanswered. HHV-8 seems a necessary but not sufficient factor in the oncogenic process. The exact pathways leading to tumoural development are not well understood. This review summarises the epidemiological, clinical and biological studies on which current understanding of HHV-8 and its pathogenic role are based. The relationship between HHV-8 and HIV infection is also discussed.

Key words

HHV-8. Kaposi's sarcoma. Primary effusive lymphomas.

Introduction

Kaposi's sarcoma (KS), the most common HIV-associated tumour, was suspected for a long time to be caused by an infectious agent, based on a series of epidemiological observations¹. Chang *et al.*², using representational differential analysis, identified for the first time in 1994 DNA sequences unique to KS tissue. All four clinical subtypes of the disease (classic, endemic, iatrogenic, and epidemic) were then screened for the DNA fragment with a sensitive PCR, and were detected in most of the samples whereas all control samples were negative³⁻¹². This specificity suggested a causal role for the putative new virus in KS, prompting Chang *et al.* to name it 'Kaposi's sarcoma-associated herpesvirus' (KSHV). Given its homology to other human herpesviruses, it was named human herpesvirus type 8 (HHV-8).


Correspondence to:

Marina Núñez
Service of Infectious Diseases
Hospital Carlos III. Instituto de Salud Carlos III
Calle Sinesio Delgado 10. 28029 Madrid
Spain

The virus

The entire HHV-8 genome was sequenced in 1996^{13,14}. It consists of a 140.5-Kb long unique coding region flanked by terminal repeat units (TR). Sequence analysis has confirmed that the virus is phylogenetically most closely related to herpesvirus saimiri (family, herpesvirus; subfamily, γ -herpesvirus; genus, rhadinovirus). Like other γ -herpesviruses, HHV-8 is lymphotropic^{15,16}.

The unique coding region encodes at least 81 open reading frames (ORF). Like other members of the herpesvirus family, the HHV-8 genome is divided into seven 'block regions' (numbered 1-7), with 'intervening blocks' of DNA (designated as 'interblock regions' a-h) (see Fig. 1). Conserved block regions encode putative viral structural proteins and enzymes required for viral replication, whereas the intervening blocks encode proteins unique to the subfamily and genus¹⁷. In other known herpesviruses, interblock regions contain genes involved in the maintenance of viral latency and viral transforming properties¹⁸.

Variability in DNA sequences encoding capsid proteins make it possible to categorise HHV-8 into distinct viral subtypes (see Table 1). Types A and C are phylogenetically closer to each other, and far from subtypes B and D. HHV-8 subtype B has been found almost exclusively in patients with KS born in Africa, while subtype D has been identified only in individuals originally from the Pacific Islands. In Europe and the USA, subtypes A and C predominate. The latest has also been detected in the Middle East and Asia. It has been suggested that HHV-8 is an ancestral virus whose genomic diversity is the result of migratory currents combined with a process of biological evolutionary selection. Studies performed so far have not been able to correlate certain HHV-8 subtypes with more aggressive KS forms^{19,20}. Although occasionally more than one genotype has been detected in the same specimens, the development of HHV-8-associated tumours in a given patient is generally linked to a single genotype²¹.

Table 1. HHV-8 subtypes based on the variability of DNA ORF K1 sequences.

HHV-8 Subtypes	Geographic area
A	Europe and USA
B	Africa
C	Europe, USA, Middle East and Asia
D	Pacific Islands

Sequencing of the HHV-8 genome has revealed homology between some of its coding regions and human genes involved in signal transduction and regulation of cell cycle progression. HHV-8 genes encode for functional proteins in both the latent and lytic phase of HHV-8 infection. It is believed that certain viral proteins mimic the action of activators and regulatory cellular proteins¹⁷ and this could ac-

count for the transforming properties of the virus, as will be discussed later. These include homologues to Bcl-2 (ORF16), cyclin-D (ORF72), G-protein-coupled receptor, interleukin 6 (IL-6), some macrophage inflammatory proteins, and interferon regulatory factor²²⁻²⁴. Some of the specific latent and lytic genes of HHV-8, which are under investigation, are listed in Tables 2 and 3.

Epidemiology

Table 2. Latent HHV-8 genes and gene products.

HHV-8 gene	HHV-8 protein	Function
ORF 73	LANA	Episome maintenance Plasmid stabilization
ORF 72	v-cyclin	Growth control
ORF 71	v-FLIP	Block apoptosis
ORF K12	Kaposins	Unknown

Table 3. Lytic HHV-8 genes and gene products.

HHV-8 gene	HHV-8 protein	Function
ORF 74	KSHV-GPCR	Chemokine homologue Constitutive signalling trigger
ORF K6	VMIP-II	Triggers angiogenesis
ORF K1	Unknown	Transmembrane signalling
ORF K9	Unknown	Blocks IFN-induced gene expression

Although there is no total agreement between the different HHV-8 serologic tests, all have shown the same epidemiological trends: HHV-8 seroprevalence is higher among homosexual men and subjects born in certain regions (Africa and Mediterranean countries)²⁵⁻²⁷.

In the general population, the highest seroprevalence has been found in Sub-Saharan African countries. For instance, in Uganda, where endemic KS is one of the most common tumours, anti-HHV-8 antibodies were detected by ELISA or immunofluorescence assays in up to 31-35% of the population^{28,29}. In Mediterranean countries the prevalence is approximately 10%, whereas in northern European, South-East Asian and Caribbean countries, seroprevalence is in the 2-4% range. In the United States, a 'mixing bowl country', HHV-8 seroprevalence is in the range of 5-20%³⁰. Moreover, in a study performed in South Africa, black individuals were more often positive for anti-HHV-8 antibodies compared to white subjects³¹. The reasons behind these racial and geographical trends are unknown. However, no sex-related differences have been observed in HHV-8 seroprevalence, despite KS occurrence in Africa among men being about 8 to 10 times as common as among women³².

In subjects with KS of any subtype or other HHV-8-related diseases like Primary Effusive Lymphomas (PEL) and Multicentric Castleman's Disease (MCD), the prevalence of HHV-8 antibodies is over 80%. For instance, in a study performed in the United Kingdom, Greece, Uganda and USA²⁹ 82% of patients with AIDS-related KS and 94% of individuals with classic KS had anti-HHV-8 antibodies.

In patients with HIV-1 infection and no KS, the HHV-8 seroprevalence is higher (20-50%) than in the general population, except in South-East Asia and the Caribbean basin, where no AIDS-associated KS has been recognised³⁰. Among HIV-infected patients, homosexual men have anti-HHV-8 antibodies more often (31-35%) than haemophiliacs, i.v. drug users or transfusion recipients (1-5%). On the other hand, HIV-negative homosexuals present higher seroprevalence for HHV-8 (8-13%) than persons deemed 'low risk' for KS, including blood donors (1-3%)^{28,29,33-35}.

HHV-8 serologic studies are limited due to the lack of highly sensitive and specific assays. Different techniques have been used in the studies mentioned above (ELISA, immunofluorescence, and immunoblot). These are designed to detect antibodies against latent nuclear antigens or capsid recombinant proteins^{29,35-36}. Of note is the fact that there is no clear correlation among the different tests when they are used in populations at low risk for HHV-8 infection. Therefore, although current serologic assays may be appropriate for epidemiological purposes, the results cannot be interpreted as markers of infection in a particular subject. Recently introduced assays combining several HHV-8 antigens, which are more sensitive and specific, might be more useful in clinical settings³². Moreover, the profile of anti-HHV-8 antibodies responding to latent or lytic antigens is not homogeneous³⁷. A deeper insight into the serological responses developed against HHV-8 might improve the diagnostic and prognostic implications of the available assays.

PCR techniques have been used during the last few years to detect HHV-8 DNA in several compartments

and body tissues³⁸⁻⁵⁰. Some studies performed on HIV-positive subjects have reported prevalences of HHV-8 infection similar to those obtained using serological assays⁵⁰. However, others have observed a poor correlation between PCR and serology, suggesting that both techniques might be complementary tools in the diagnosis of HHV-8 infection⁵¹.

The available evidence strongly suggests sexual and mother-to-child infection as the most probable routes for HHV-8 transmission^{20,26}. Sexual transmission is linked to homosexual practices, whereas the evidence for heterosexual acquisition of HHV-8 is much less convincing^{26,27}. Semen and urogenital tract biopsy specimens in healthy adults have been examined by PCR for the presence of HHV-8, obtaining a wide range of positivities (0-91%)^{44,52-56}. Results have also been highly variable in HIV-infected individuals^{44,56}; for instance, PCR performed in semen was positive for HHV-8 in 25-64% of homosexuals and 14-25% of patients with KS.

The correlation found between the risk for HHV-8 infection in children and the status of their mothers suggests a mother-to-child transmission of the virus⁵⁷. However, the timing and route of such transmission are unknown, and the possibility that other family members could be the source of infection has not been ruled out. In that regard, data from a study performed in prepuberal Ugandan children suggest a pattern of horizontal transmission similar to that of the Epstein-Barr virus, the human herpesvirus most closely related to HHV-8³².

Tumoural HHV-8-associated diseases

Up to now, three diseases have been linked to HHV-8 infection: KS, PEL and MCD. Both KS and PEL occur almost exclusively among HHV-8-infected patients (with or without concurrent HIV infection), unlike MCD which develops quite often without HHV-8 infection. The role of HHV-8 in the pathogenesis of these entities is not well understood. It has been proposed that the virus could be: (i) the causative agent; (ii) a cofactor; or (iii) a bystander, whose growth and maintenance might be enhanced by the tumour. Available data suggest that HHV-8 is an essential cofactor for the development of KS and PEL.

Differences exist in cellular tropism and viral gene expression among the three diseases⁵⁸. The diverse clinical manifestations of HHV-8 infection should be the result of variable expression of the viral genome in different types of infected cells. Both B and T lymphocytes are infected in MCD. A few cells in the lesions seem to contain full HHV-8 DNA, but all of them express lytic phase genes. KS and PEL show a similar pattern of genomic expression opposed to MCD: Tumoural cells are massively infected by HHV-8 but only a few express lytic phase genes. The type of cells differs in both tumours: Spindle and endothelial cells are mainly infected in KS, whereas B cells predominate in PEL⁵⁸.

There is a notable heterogeneity in the levels of viral IL-6 expression, being much higher in PEL and

MCD compared to KS⁵⁹. The biological activity of viral IL-6 is not well known. Recent *in vitro* studies have proved that it is a multifunctional cytokine, promoting polyclonal hypergammaglobulinemia, angiogenesis, plasmacytosis in spleen and lymph nodes, and hematopoiesis in the myeloid, erythroid and megakaryocytic lineages⁶⁰.

Viral IL-6 expression in tumoural specimens correlates with other markers of the lytic viral cycle⁵⁹, seeming to play an important role in the process of cellular proliferation and tumorigenesis. Thus, ORF74 encodes the G-protein-coupled receptor, expressed both in KS and in PEL cells. Signalling by this receptor leads to cellular transformation and tumorigenicity, and induces a switch to an angiogenic phenotype mediated by the 'vascular endothelial growth factor' and the Kaposi's-spindle-cell growth factor⁶¹.

HHV-8 and KS

Evidence suggesting an involvement of HHV-8 in the pathogenesis of KS can be grouped into six categories: (i) high seroprevalence of anti-HHV-8 antibodies in patients with KS²⁹; (ii) temporal association of HHV-8 infection and KS development^{38,39,62,63}; (iii) detection of HHV-8 DNA in tumoural cells, specially lytic cycle genes^{58,64}; (iv) encoding of transforming proteins, antiapoptotic factors and inflammatory cytokines by HHV-8 genes, which have certain homology with human genes^{17,22-24}; (v) HHV-8 stimulating the proliferation of microvascular endothelial cells⁶⁵; and (vi) the impact of certain antiviral drugs on the incidence of KS⁶⁶. However, the timing and relationship between HHV-8 infection and KS oncogenesis are not well understood^{32,67,68}.

Cross-sectional studies, both serologic and genetic show a good correlation between HHV-8 infection and KS occurrence. Moreover, longitudinal studies have proved the presence of HHV-8 prior to the appearance of KS lesions in HIV-positive patients³⁸. The detection of anti-HHV-8 antibodies⁶⁹ and of HHV-8 DNA in PBMC predicts the development of KS in HIV-positive individuals^{43,49,70}. Among HIV-infected subjects with positive PCR for HHV-8 in PBMC, up to 55% developed KS over a median period of 3.5 years. In contrast, only 9% of those negative for HHV-8 PCR in PBMC subsequently developed KS^{39,41}.

It is not clear if an active and disseminated HHV-8 infection, with positive viremia, is necessary to occur at the time of KS development. Several authors have highlighted the fact that the infection might have been present a long time before the tumoural lesions were first recognised, indicating that the incubation period could be very long^{11,15,21,63}. Moreover, the detection of HHV-8 in lymph nodes from healthy subjects suggests that, during the course of HHV-8 infection, a silent infection could have been reactivated⁷¹. However, the detection of HHV-8 in PBMC from patients with KS most probably reflects infection of B cells, likewise other herpesviruses^{39,70}, and could act as an important reservoir *in vivo*.

The clinical implication of HHV-8 viremia in KS has not yet been established. The proportion of HIV-infected patients with positive PCR for HHV-8 in PBMC is in the range of 25-90%^{11,13,15,16,19,72}. HHV-8 viremia has been correlated with tumoural activity and stage in classic KS^{50,73}. Although it has been suggested that HHV-8 viremia predicts KS progression⁷³, according to other authors, it does not seem to be a useful marker of tumoural activity or response to treatment⁷².

Within KS lesions, HHV-8 infects Kaposi's spindle cells and endothelial cells and monocytes^{42,64,74,75}. The first two express the CD34 antigen, suggesting that spindle cells derive from endothelial cells. *In vitro* studies have shown that HHV-8 infection of endothelial cells induces cellular proliferation and increases survival⁶⁵.

HHV-8 is detected in the majority (if not all) of tumoural cells in KS lesions. However, transcripts expressed during the lytic phase, indicating active infection, are expressed in only a small proportion of cells⁵⁸. Several homologues of cellular cytokines, chemokines and antiapoptotic factors encoded by the HHV-8 genome are expressed during the viral lytic cycle in cell lines from PEL or in KS samples⁷⁶. Cyclin-D and kaposin are readily detected in spindle cells^{64,77}, unlike viral IL-6, which is generally not expressed at detectable levels in KS specimens²³. However, the recognition of IL-6 in a subset of KS samples suggests that IL-6 expression may be important for KS pathogenesis in some settings⁵⁹.

Cellular products released during the lytic phase of HHV-8 infection exert regulatory effects on the cellular cycle and on apoptosis, and could play a key role in the tumorigenesis process. Thus, the activation of lytic cycle gene expression seems to be crucial in the oncogenesis of KS and PEL. ZEBRA and Rta proteins mediate the activation of lytic cycle genes in the Epstein-Barr virus^{78,79}. A homologous of the Rta has been recently identified for HHV-8, which corresponds to the ORF50⁸⁰.

HHV-8 and lymphoproliferative processes: PEL and MCD

PEL is a distinct subtype of non-Hodgkin's lymphoma involving the pleural, pericardial and/or peritoneal cavities, which grow as lymphomatous effusions, in the absence of clinically identifiable tumour masses⁸¹. Cancer cells derive from B cells, likewise other HIV-associated lymphomas. They have indeterminate immunophenotype, but harbour B-cell markers with clonal rearrangements of the immunoglobulin genes. PEL develops mainly, although not exclusively, in HIV-infected subjects, and HHV-8 is invariably present⁸²⁻⁸⁵. In fact, cellular lines obtained from this lymphoma have allowed a better characterisation of the virus^{15,86}. In some cases, tumoural cells are dually infected with Epstein-Barr virus and HHV-8, but the role that this interaction may have in the oncogenic process is unknown^{82,87}. All tumoural cells in PEL are infected by HHV-8, but only a minority seems to present active infection⁵⁸.

Castleman's disease is an atypical, non-malignant, lymphoproliferative disorder. It may be localised or multicentric with multisystemic involvement and generalised adenopathies. From a histological standpoint, a hialine vascular type, a plasmacytic cell type, or combination of both have been described. The last two forms are the ones occurring in HIV-positive individuals, and HHV-8 DNA has often been detected in the lesions⁸⁸⁻⁹⁰. In MCD, only a small percentage of tumoural cells are infected with HHV-8, but all of them express lytic phase genes and contain relatively high levels of transcripts, suggesting an active infection. They are located mainly within the follicular mantle of small lymphocytes surrounding the germinal centres. Although HHV-8 infects mainly B cells, it can also be detected in T cells from peripheral blood and lymph nodes^{58,91}.

IL-6 is a B-cell growth and differentiating factor. The high expression of the viral homologous of this interleukin in MCD, both in tumoural cells and in lymph nodes, suggests that HHV-8 plays an important role in this pathogenesis. Thus, IL-6 would act as an autocrine or paracrine factor in the lymphoproliferative process^{58,59}. On the other hand, the massive transcription of other genes related to the lytic phase, like Bcl-2 (ORF16), cyclin-D (ORF72), and G-protein-coupled receptor, along with IL-6 seems to be characteristic of cells belonging to aggressive forms of MCD and PEL. These proteins, involved in the control of cellular proliferation and apoptosis, may be also expressed to a lesser extent in non-malignant lymphoproliferative processes, suggesting that the distinct expression of some genes defines the nature of the different lymphoproliferative entities⁹².

HHV-8 and HIV

HHV-8 is non-pathogenic in the majority of healthy individuals, but can be highly oncogenic in the context of HIV-1 infection and iatrogenic immune suppressive conditions. This fact suggests that a defect in the cell-mediated immunity favours the development of KS and other HHV-8-related diseases. Conversely, an intact immune system is often capable of controlling the tumoural process. For instance, 39% of patients who develop KS after transplantation experience clinical remission of the disease after immunosuppressive therapy withdrawal⁹³. Moreover, in patients with a history of KS, the tumour may recur within several months after introducing immunosuppressive medications⁹⁴. An immune defect could imply a lack of control of HHV-8 infection, allowing the virus to act as an oncogenic factor. However, KS appears in individuals with no apparent immune defects in Mediterranean countries and endemic areas in Africa, indicating that there must be other factors involved in the pathogenesis of the tumour.

The frequent association of KS with HIV infection suggests an additive or synergistic effect between HIV and HHV-8 in the tumoural pathogenesis. An HIV regulatory protein, tat, stimulates the growth of

KS cells in culture^{95,96}. Thus, HIV may be permissive for KS, independently of the immune deficiency caused by the infection of CD4+ lymphocytes. However, HIV and HHV-8 seem to have separate effects on the pathogenetic process of KS. Although HIV stimulates HHV-8 replication *in vitro*⁹⁷, there are no data comparing HIV and HHV-8 viral loads *in vivo*. Moreover, serological studies have shown that anti-HHV-8 titers do not correlate with the presence or absence of HIV infection⁹⁸. Likewise, recent studies have not found a correlation between HIV RNA in plasma and the presence of HHV-8 in PBMC detected by PCR, suggesting that the two viruses do not act at the same time point and through the same ways to induce KS development⁷². This and other studies³⁸ have failed to show a correlation between HHV-8 viremia and the degree of immunosuppression.

Therapeutic implications

Retrospective studies have shown that HIV-infected patients receiving ganciclovir or foscarnet for the treatment of CMV infection had a lower risk of KS^{99,100}, suggesting a protective role against HHV-8. In a recent study, the risk of developing KS in HIV-infected patients with CMV retinitis was reduced by 75% in those treated with oral ganciclovir, and by 93% in those treated with intravenous ganciclovir, as compared with patients given placebo. According to the authors, the reduction in the incidence of KS was not explained by the use of HAART, since it was comparable for the three treatment groups⁶⁶. *In vitro* studies have shown that HHV-8 is very sensitive to cidofovir, moderately sensitive to ganciclovir and foscarnet, and slightly sensitive to acyclovir^{101,102}.

The clearance of HHV-8 viremia in the majority of patients with HIV and KS treated with liposomal doxorubicin, which was not explained by changes in the CD4 or total lymphocyte counts, has led to the suggestion that this chemotherapeutic agent might have an antiviral effect against HHV-8⁷². In one study⁹⁸, HHV-8 could not be detected in patients experiencing complete remission after treatment of KS with liposomal doxorubicin.

A relevant point for the use of antiviral drugs as prophylaxis for HHV-8-associated proliferative diseases is the timing of such treatment. Cidofovir and ganciclovir do not inhibit DNA synthesis during the latent cycle, suggesting that viral DNA replicates by DNA polymerases from the host. Therefore, a clinical benefit is not expected for PEL and KS, since latent cycle cells predominate in both tumours¹⁰¹. Assuming that HHV-8 replication occurs prior to the onset of KS and that reactivation of the virus from latent phase is crucial for the pathogenesis of KS, a protective role of the antiviral treatment in those patients infected by HHV-8 without KS might theoretically be expected¹⁰¹. On the other hand, *in vitro* studies have shown that α -interferon inhibits both the reactivation of HHV-8 in PEL cells and the latent infection in PBMC from immunosuppressed patients with or without KS¹⁰³.

Lastly, studies evaluating agents aimed at blocking the Rta protein or the transcription of the ORF50 in the

HHV-8 genome, which are key pieces in the activation of the lytic cycle, are currently in development.

References

- Beral V. Epidemiology of Kaposi's sarcoma. *Cancer Surv* 1991; 10: 5-22. [Erratum, *Cancer Surv* 1992; 12: following 225].
- Chang Y, Ceserman E, Pessin M, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. *Science* 1994; 266: 1865-9.
- Moore P, Chang Y. Detection of herpesvirus-like DNA sequences in Kaposi's sarcoma in patients with and those without HIV infection. *N Engl J Med* 1995; 332: 1181-5.
- Ambroziak J, Herndier B, Glogau R, et al. Herpes-like sequences in HIV-infected and uninfected Kaposi's sarcoma patients. *Science* 1995; 268: 582-3.
- Huang Y, Li J, Kaplan M, et al. Human herpesvirus-like nucleic acid in various forms of Kaposi's sarcoma. *Lancet* 1995; 345: 759-61.
- Dupin N, Grandadam M, Calvez V, et al. Herpesvirus-like DNA sequences in patients with Mediterranean Kaposi's sarcoma. *Lancet* 1995; 345: 761-2.
- Chang Y, Ziegler J, Wabinga H, et al. Kaposi's sarcoma-associated herpesvirus and Kaposi's sarcoma in Africa. *Arch Intern Med* 1996; 156: 202-4.
- Marchioli C, Love J, Abbott L, et al. Prevalence of human herpesvirus 8 DNA sequences in several patient populations. *J Clin Microbiol* 1996; 34: 2635-8.
- Chuck S, Grant R, Katongole-Mbidde E, et al. Frequent presence of a novel herpesvirus genome in lesions of human immunodeficiency virus-negative Kaposi's sarcoma. *J Infect Dis* 1996; 173: 248-51.
- Dictor M, Rambech E, Way D, et al. Human herpesvirus 8 (Kaposi's sarcoma associated herpesvirus) DNA in Kaposi's sarcoma lesions, AIDS Kaposi's sarcoma cell lines, endothelial Kaposi's sarcoma simulators, and the skin of immunosuppressed patients. *Am J Pathol* 1996; 148: 2009-16.
- O'Neill E, Henson T, Ghorbadi A, et al. Herpes virus-like sequences are specifically found in Kaposi's sarcoma lesions. *J Clin Pathol* 1996; 49: 306-8.
- Su I, Hsu I, Chang Y, et al. Herpesvirus-like DNA sequences in Kaposi's sarcoma from AIDS and non-AIDS patients in Taiwan. *Lancet* 1995; 345: 722-3.
- Moore P, Gao S, Dominguez G, et al. Primary characterization of a herpesvirus agent associated with Kaposi's sarcoma. *J Virol* 1996; 70: 549-58.
- Russo J, Bohenzky R, Chien M, et al. Nucleotide sequence of the Kaposi's sarcoma-associated herpesvirus (HHV-8). *Proc Natl Acad Sci U S A* 1996; 93:14862-7.
- Ceserman E, Moore P, Rao P, et al. *In vitro* establishment and characterization of two acquired immunodeficiency syndrome-related lymphoma cell lines (BC-1 and BC-2) containing Kaposi's sarcoma-associated herpesvirus-like (KSHV) DNA sequences. *Blood* 1995; 86: 2708-14.
- Gaidano G, Cechova K, Chang Y, et al. Establishment of AIDS-related lymphoma cell lines from lymphomatous effusions. *Leukemia* 1996; 10: 1237-40.
- Gillison M, Ambinder R. Human herpesvirus-8. *Curr Opin Oncol* 1997; 9: 440-9.
- Kieff E. Epstein-Barr virus and its replication. In: *Fundamental Virology*. (eds.). Fields BN, Knipe DM, Howley PM Philadelphia: Lippincott-Raven; 1996: 1109-63.
- Cook P, Whitby D, Calabro M-L, et al. Variability and evolution of Kaposi's sarcoma-associated herpesvirus in Europe and Africa. *AIDS* 1999; 13: 1165-76.
- Zong J, Ciufo D, Alcendor D, et al. High-level variability in the ORF-K1 membrane protein gene at the left end of the Kaposi's sarcoma-associated herpesvirus genome defines four major virus subtypes and multiple variants or clades in different human populations. *J Virol* 1999; 73: 4156-70.
- Gao S, Zhang Y, Deng J, et al. Molecular polymorphism of Kaposi's sarcoma-associated herpesvirus (Human Herpesvirus 8) latent nuclear antigen: Evidence for a large repertoire of viral genotypes and dual infection with different viral genotypes. *J Infect Dis* 1999; 180: 1466-76.
- Ceserman E, Nador R, Bai F, et al. Kaposi's sarcoma-associated herpesvirus contains G protein-coupled receptor and cyclin D homologs which are expressed in Kaposi's sarcoma and malignant lymphoma. *J Virol* 1996; 70: 8218-23.
- Moore P, Boshoff C, Weiss R, et al. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. *Science* 1996; 274: 1739-44.
- Nicholas J, Ruvolo V, Zong J, et al. A single 13-kilobase divergent locus in the Kaposi sarcoma-associated herpesvirus (human herpesvirus 8) genome contains nine open reading frames that are homologous to or related to cellular proteins. *J Virol* 1997; 71: 1963-74.
- Calabro M, Sheldon J, Favero A, et al. Seroprevalence of Kaposi's sarcoma-associated herpesvirus/human herpesvirus 8 in several regions in Italy. *J Hum Virol* 1998; 1: 207-13.
- Smith N, Sabin C, Gopal R, et al. Serologic evidence of human herpesvirus 8 transmission by homosexual but not heterosexual sex. *J Infect Dis* 1999; 180: 600-6.
- Martin J, Ganem D, Osmond D, et al. Sexual transmission and the natural history of human herpesvirus 8 infection. *N Engl J Med* 1998; 338: 948-54.
- Gao S, Kingsley L, Li M, et al. KSHV antibodies among Americans, Italians, and Ugandans with and without Kaposi's sarcoma. *Nat Med* 1996; 2: 925-8.
- Simpson G, Schulz T, Whitby D, et al. Prevalence of Kaposi's sarcoma associated herpesvirus infection measured by antibodies to recombinant capsid protein and latent immunofluorescence antigen. *Lancet* 1996; 348: 1133-8.
- Hatlynne L, Ablashi D. Seroepidemiology of Kaposi's sarcoma-associated herpesvirus (KSHV). *Semin Cancer Biol* 1999; 9: 175-85.
- Sitas F, Carrara H, Beral V, et al. Antibodies against human herpesvirus 8 in black south african patients with cancer. *N Engl J Med* 1999; 340: 1863-71.
- Jaffe H, Pellet P. Human herpesvirus 8 and Kaposi's sarcoma - Some answers, more questions. *N Engl J Med* 1999; 340: 1912-3.
- Kedes D, Operksalski E, Busch M, et al. The seroepidemiology of human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus): Distribution of infection in KS risk groups and evidence for sexual transmission. *Nat Med* 1996; 2: 918-24.
- Kedes D, Ganem D, Ameli N, et al. The prevalence of serum antibody to human herpesvirus 8 (Kaposi's sarcoma-associated herpesvirus) among HIV-seropositive and high-risk HIV-seronegative women. *JAMA* 1997; 277: 478-81.
- Lin S, Sun R, Heston L, et al. Identification, expression, and immunogenicity of Kaposi's sarcoma-associated herpesvirus-encoded small viral capsid antigen. *J Virol* 1997; 71: 3069-76.
- Miller G, Rigsby M, Heston L, et al. Antibodies to butyrate-inducible antigens of Kaposi's sarcoma-associated herpesvirus in patients with HIV-1 infection. *N Engl J Med* 1996; 334: 1292-7.
- Chandran B, Smith M, Koelle D, et al. Reactivities of human sera with human herpesvirus-8-infected BCBL-1 cells and identification of HHV-8-specific proteins and glycoproteins and the encoding cDNAs. *Virology* 1998; 243: 208-17.
- Collandre H, Ferris S, Grau O, et al. Kaposi's sarcoma and new herpesvirus. *Lancet* 1995; 345: 1043.
- Whitby D, Howard M, Tenant-Flowers M, et al. Detection of Kaposi's sarcoma associated herpesvirus in peripheral blood of HIV-infected individuals and progression to Kaposi's sarcoma. *Lancet* 1995; 346: 799-802.
- Heredia A, Vallejo A, Hewlett J, et al. Detection of herpesvirus type 8 (HHV-8) sequences in patients with Kaposi's sarcoma in Spain. *J AIDS Hum Retrovirol* 1996; 11: 310-1.
- Moore P, Kingsley L, Holmberg S, et al. Kaposi's sarcoma-associated herpesvirus infection prior to onset of Kaposi's sarcoma. *AIDS* 1996; 10: 175-80.
- Blasig C, Zietz C, Haar B, et al. Monocytes in Kaposi's sarcoma lesions are productively infected by human herpesvirus 8. *J Virol* 1997; 71: 7963-8.
- Smith M, Bloomer C, Horvat R, et al. Detection of human herpesvirus 8 DNA in Kaposi's sarcoma lesions and peripheral blood of human immunodeficiency virus-positive patients and correlation with serologic measurements. *J Infect Dis* 1997; 176: 84-93.

44. Howard M, Whitby D, Bahadur G, et al. Detection of human herpesvirus 8 DNA in semen from HIV-infected individuals but not healthy semen donors. *AIDS* 1997; 11: 15-9.

45. Sirianni M, Uccini S, Angeloni A, Faggioni A, Cottoni F, Ensoli B. Circulating spindle cells: Correlation with human herpesvirus-8 (HHV-8) infection and Kaposi's sarcoma. *Lancet* 1997; 349: 255.

46. Huang Y, Jun Li J, Poiesz B, et al. Detection of the herpesvirus-like DNA sequences in matched specimens of semen and blood from patients with AIDS-related Kaposi's sarcoma by polymerase chain reaction *in situ* hybridization. *Am J Pathol* 1997; 150: 147-53.

47. LaDuca J, Love J, Abbott L, et al. Detection of human herpesvirus 8 DNA sequences in tissues and body fluids. *J Infect Dis* 1998; 178: 1610-5.

48. Lebbé C, Blum L, Pellet C, et al. Clinical and biological impact of antiretroviral therapy with protease inhibitors on HIV-related Kaposi's sarcoma. *AIDS* 1998; 12: 45-9.

49. Briz M, Martín T, Yebra M, et al. Human herpesvirus 8 detection in patients diagnosed with AIDS-associated Kaposi's sarcoma or AIDS-associated Castleman's disease. *Med Clín (Barc)* 1998; 110: 662-4.

50. De Milito A, Catucci M, Venturi G, et al. Antiretroviral therapy with protease inhibitors in HIV-1 and human herpesvirus 8-coinfected patients. *J Med Virol* 1999; 57: 140-4.

51. Challine D, Lerable J, Laperche L, et al. Human herpesvirus 8 (HHV-8) antibody detection and HHV-8 DNA detection by PCR are complementary to detect HIV-infected patients at risk of Kaposi's sarcoma (KS). San Francisco 1999: Abstract 111. 39th ICAAC.

52. Monini P, De Lellis L, Fabris M, et al. Kaposi's sarcoma-associated herpesvirus DNA sequences in prostate tissue and human semen. *N Engl J Med* 1996; 334: 1168-72.

53. Corbellino M, Bestetti G, Galli M, et al. Absence of HHV-8 in prostate and semen. *N Engl J Med* 1996; 335: 1237.

54. Tasaka T, Said J, Morosetti R, et al. Is Kaposi's sarcoma-associated herpesvirus ubiquitous to urogenital and prostate tissues? *Blood* 1997; 89: 1686-9.

55. Viviano E, Vitale F, Ajello F, et al. Human herpesvirus type 8 DNA sequences in biological samples of HIV-positive and negative individuals in Sicily. *AIDS* 1997; 11: 607-12.

56. Lin J, Lin S, Mar E, et al. Is Kaposi's sarcoma-associated herpesvirus detectable in semen of HIV-infected homosexual men? *Lancet* 1995; 346: 1601-2.

57. Bourboulia D, Whitby D, Boshoff C, et al. Serologic evidence for mother-to-child transmission of Kaposi's sarcoma-associated herpesvirus infection. *JAMA* 1998; 280: 31-2.

58. Staskus K, Sun R, Miller G, et al. Cellular tropism and viral interleukin-6 expression distinguish human herpesvirus 8 involvement in Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. *J Virol* 1999; 73: 4181-7.

59. Cannon J, Nicholas J, Orenstein J, et al. Heterogeneity of viral IL-6 expression in HHV-8-associated diseases. *J Infect Dis* 1999; 180: 824-8.

60. Aoki Y, Jaffe E, Chang Y, et al. Angiogenesis and hematopoiesis induced by Kaposi's sarcoma-associated herpesvirus-encoded interleukin-6. *Blood* 1999; 93: 4031-3.

6.1 Bais C, Santomasso B, Coso O, et al. G-protein-coupled receptor of Kaposi's sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. *Nature* 1998; 391: 24-5.

62. Gao S, Kingsley L, Hoover D, et al. Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. *N Engl J Med* 1996; 335: 233-41.

63. Lefrere J, Meyohas M, Mariotti M, et al. Detection of human herpesvirus 8 DNA sequences before the appearance of Kaposi's sarcoma in human immunodeficiency virus (HIV)-positive subjects with a known date of HIV seroconversion. *J Infect Dis* 1996; 174: 283-7.

64. Staskus K, Zhong W, Gebhard K, et al. Kaposi's sarcoma-associated herpesvirus gene expression in endothelial (spindle) tumor cells. *J Virol* 1997; 71: 715-9.

65. Flore O, Rafii S, Ely S, et al. Transformation of primary human endothelial cells by Kaposi's sarcoma-associated herpesvirus. *Nature* 1998; 394: 588-92.

66. Martin D, Kuppermann B, Wolitz R, et al. Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. *N Engl J Med* 1999; 340: 1063-70.

67. Gallo R. The enigmas of Kaposi's sarcoma. *Science* 1998; 282: 1837-9.

68. Ensoli B, Sirianni M. Kaposi's sarcoma pathogenesis: A link between immunology and tumor biology. *Crit Rev Oncog* 1998; 9: 107-24.

69. Renwick N, Halaby T, Weverling G, et al. Seroconversion for human herpesvirus 8 during HIV infection is highly predictive of Kaposi's sarcoma. *AIDS* 1998; 12: 2481-8.

70. Browning P, Sechler J, Kaplan M, et al. Identification and culture of Kaposi's sarcoma-like spindle cells from the peripheral blood of human immunodeficiency virus-1-infected individuals and normal controls. *Blood* 1994; 84: 2711-20.

71. Bigoni B, Dolcetti R, de Lellis L, et al. Human herpesvirus 8 is present in the lymphoid system of healthy persons and can reactivate in the course of AIDS. *J Infect Dis* 1996; 173: 542-9.

72. Núñez M, Machuca A, Soriano V, et al. Clearance of HHV-8 viremia in HIV-1 positive patients with Kaposi's sarcoma treated with liposomal doxorubicin. *AIDS* (In press).

73. Brambilla L, Boneschi V, Berti E, et al. HHV-8 cell-associated viraemia and clinical presentation of Mediterranean Kaposi's sarcoma. *Lancet* 1996; 347: 1338.

74. Stürzl M, Brandstetter H, Zietz C, et al. Expression of HHV-8 latency-associated T0.7 RNA in spindle cells and endothelial cells of AIDS-associated, classical and African Kaposi's sarcoma. *Int J Cancer* 1997; 72: 68-71.

75. Dupin N, Fisher C, Kellam P, et al. Distribution of human herpesvirus-8 latently infected cells in Kaposi's sarcoma, multicentric Castleman's disease, and primary effusion lymphoma. *Proc Natl Acad Sci USA* 1999; 96: 4546-51.

76. Sun R, Lin S, Staskus K, et al. Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. *J Virol* 1999; 73: 2232-42.

77. Davis M, Sturzl M, Blasig C, et al. Expression of human herpesvirus 8-encoded cyclin D in Kaposi's sarcoma spindle cells. *J Natl Cancer Inst* 1997; 89: 1868-74.

78. Francis A, Ragozzi T, Gradoville L, et al. Amino acid substitutions reveal distinct functions of serine 186 of the Zebra protein in activation of early lytic cycle genes and synergy with the Epstein-Barr virus R transactivator. *J Virol* 1999; 73: 4543-51.

79. Ragozzi T, Miller G. Role of the Epstein-Barr virus Rta protein in activation of distinct classes of viral lytic cycle genes. *J Virol* 1999; 73: 9858-66.

80. Sun R, Lin S, Gradoville L, Yuan Y, Zhu F, Miller G. A viral gene that activates lytic cycle expression of Kaposi's sarcoma-associated herpesvirus. *Proc Natl Acad Sci USA* 1998; 95: 10866-71.

81. Carbone A, Gaidano G. HHV-8-positive body-cavity-based lymphoma: A novel lymphoma entity. *Br J Haematol* 1997; 97: 515-22.

82. Ceserman E, Chang Y, Moore P, et al. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. *N Engl J Med* 1995; 332: 1186-91.

83. Nador R, Ceserman E, Knowles D, et al. Herpes-like DNA sequences in a body-cavity-based lymphoma in an HIV-negative patient. *N Engl J Med* 1995; 333: 943.

84. Carbone A, Tirelli U, Gloghini A, et al. Herpesvirus-like DNA sequences selectively cluster with body-cavity-based lymphomas throughout the spectrum of AIDS-related lymphomatous effusions. *Eur J Cancer* 1996; 32A: 555-6.

85. Said J, Tasaka T, Takeuchi S, et al. Primary effusion lymphoma in women: Report of two cases of Kaposi's sarcoma herpes virus-associated effusion-based lymphoma in human immunodeficiency virus-negative women. *Blood* 1996; 88: 3124-8.

86. Arvanitakis L, Mesri E, Nador R, et al. Establishment and characterization of a primary effusion (body cavity-based) lymphoma cell line (BC-3) harboring Kaposi's sarcoma-associated herpesvirus (KSHV/HHV-8) in the absence of Epstein-Barr virus. *Blood* 1996; 88: 2648-54.

87. Carbone A, Gloghini A, Vaccher E, et al. Kaposi's sarcoma-associated herpesvirus DNA sequences in AIDS-related and AIDS-unrelated lymphomatous effusions. *Br J Haematol* 1996; 94: 533-43.

88. Oksenhendler E, Duarte M, Soulier J. Multicentric Castleman disease in HIV infection: A clinical and pathological study of 20 patients. *AIDS* 1996; 10: 61-7.
89. Parravicini C, Corvellino M, Paulli M. Expression of a virus-derived cytokine, KSHV vIL-6, in HIV-seronegative Castleman's disease. *Am J Pathol* 1997; 151: 1517-22.
90. Soulier J, Grollet L, Oksenhendler E. Kaposi's sarcoma-associated herpesvirus-like DNA sequences in multicentric Castleman's disease. *Blood* 1995; 86: 1276-80.
91. Kikuta H, Itakura O, Taneichi K, et al. Tropism of human herpesvirus 8 for peripheral blood lymphocytes in patients with Castleman's disease. *Br J Haematol* 1997; 99: 790-3.
92. Luppi M, Barozzi P, Maiorana A, et al. Expression of cell-homologous genes of human herpesvirus-8 in human immunodeficiency virus-negative lymphoproliferative diseases. *Blood* 1999; 94: 2931-3.
93. Safai B, Schwartz J. Kaposi's sarcoma and the acquired immunodeficiency syndrome. AIDS: Etiology, Diagnosis, Treatment and Prevention'. Devita VT, Hellman S, Rosenberg SA (eds.). Lippincott, Philadelphia 1998; 12: 209-23.
94. Doutrelepont J, de Pauw L, Gruber S. Renal transplantation exposes patients with previous Kaposi's sarcoma to a high risk of recurrence. *Transplantation* 1996; 62: 463-6.
95. Ensoli B, Barillari G, Salahuddin S, et al. Tat protein of HIV-1 stimulates growth of cells derived Kaposi's sarcoma lesions of AIDS patients. *Nature* 1990; 345: 84-6.
96. Ensoli B, Gendelman R, Markham P, et al. Synergy between basic fibroblast growth factor and HIV-1 tat protein in induction of Kaposi's sarcoma. *Nature* 1994; 371: 674-80.
97. Harrington W Jr, Sieczkowski C, Sosa C, et al. Activation of HHV-8 by HIV-1 tat. *Lancet* 1997; 349: 774-5.
98. Poggi C, Lafevilade A, Profizi N, et al. HHV-8 in PBMC and Kaposi's sarcoma activity. *Infection* 1997; 25: 326.
99. Glesby M, Hoover D, Weng S, et al. Use of antiherpes drugs and the risk of Kaposi's sarcoma: Data from a multicenter AIDS cohort study. *J Infect Dis* 1996; 173: 1477-80.
100. Mocroft A, Youle M, Gazzard B, et al. Anti-herpesvirus treatment and risk of Kaposi's sarcoma in HIV infection. *AIDS* 1996; 10: 1101-5.
101. Medveczky M, Horvath E, Lund T, et al. In vitro antiviral drug sensitivity of the Kaposi's sarcoma-associated herpesvirus. *AIDS* 1997; 11: 1327-32.
102. Kedes D, Ganem D. Sensitivity of Kaposi's sarcoma-associated herpesvirus replication to antiviral drugs: Implications for potential therapy. *J Clin Invest* 1997; 99: 2082-6.
103. Monini P, Carlini F, Stürzl M, et al. Alpha interferon inhibits HHV-8 reactivation in primary effusion lymphoma cells and reduces HHV-8 load in cultured peripheral blood mononuclear cells. *J Virol* 1999; 73: 4029-41.