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Abstract

devastating HIV/AIDS epidemic.

HIV-1 and HIV-2 infections have important differences in epidemiology, clinical
progression and transmission. Studies of the less transmissible and pathogenic
HIV-2 have revealed some intriguing facts, indicating that it is less prone to
replicate and perhaps can evoke a more efficient or long-lasting immune response
than HIV-1 in the human host. Several crucial aspects of HIV-2 infection are still
insufficiently characterised. However, there is now convincing evidence that
plasma viral load is considerably lower for HIV-2 than for HIV-1, despite similar
proviral (DNA) loads for the two viruses. There are reports on lower levels of
apoptosis for HIV-2, possibly indicating a lower level of harmful immune
activation. Several studies have also shown that vigorous HIV-2 specific immune
responses can be detected, especially during the asymptomatic phase of HIV-2
infection. This includes humoral as well as cell-mediated immunity (CMI). The
neutralising antibody response appears to be broader and the CMI may be more
efficient for HIV-2 as compared to HIV-1. However, comparative studies in the same
population groups on HIV-1 and HIV-2 immunity are scarce and difficult to perform.
Nevertheless, by increasing our knowledge about how HIV-2 is contained to a
higher degree than HIV-1, clinically as well as epidemiologically, we may gain
knowledge that is useful in a wider perspective in our struggle to curb the
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Introduction

While the human immunodeficiency virus type 1
(HIV-1) is on a devastating Fgloba) (trajlcadsing
immense suffering and death,’ the other human
immunodeficiency virus, -HIV-2, describes a much
more limited path’. Altholgh!sharing significant prop-
erties, the two viruses exhibit some important differ-
ences in their biology and epidemiology?{Table~1);
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Jhereasons! forl thesd/ differences are largely unex-
plained and while the amount of knowledge about
HIN-A has grown ata tremendous pace, we still lack
data-on-several)crucial aspects of HIV-2. Learning
more about HIV-2 may provide clues about how to
cope with Htvalr fhisaeview will focus on some new
data relating to the interplay between HIV-2 and the
host defence system, also including data from exper-
imental nom-human primate models. Other aspects
including the epidemiology and biology of HIV-2
have been covered by previous.reviews>*,
WhileAHW: t=has~aglopal spread, HIVF2lis con-
fined mainiyta west Africaywhefe the highest preva-
lence rates have been reported from Guinea-Bis-
sau. Fairly high numbers of cases have also
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Table 1. Comparison between HIV-1 and HIV-2.

HIV-1
Routes of transmission
Geographical distribution
Age specific prevalence
Vertical transmission*
Heterosexual transmission
Time to AIDS*
Proviral load (DNA)
Plasma RNA level
Genetic comparison

Global
15-40 %

+10 years

Peak at 20-40 years

Significantly lower for HIV-2 than for HIV-1

Significantly lower for HIV-2 than for HIV-1

HIV-2
No difference
West Africa (Portugal, India)
Increases with age
<5%

Significantly longer than for HIV-1
No difference

40-60% homology

* Without antiretroviral treatment.
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Fig. 1. Seroprevalence of HIV-1, HIV-2 and HIV-1+2 dual infections among pregnant women in Guinea-Bissau, west Africa, 1987-
99. Approximately 1,500 women were tested in each sample, apart from 1.987 (n = 707) and 1988 (n = 2539). The groups from
1989-91 were pooled due to small sample sizes (around 500 per year). From Ref. 14 and Z. da Silva & H. Norrgren, unpublished.
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appeared in Portugal and, more recently, in India.
Occasional cases have been reported from many
other parts of the world®5. Several studies have
shown that HIV-2 is associated with a lower trans-
mission rate, vertical as well as sexual, and a
reduced disease development rate compared to
HIV-129,

The HIV-2 prevalence increases with age both
among women and men2191" ~Pgpulation based
studies in Guinea-Bissau have shown peak preva-

Africa showing increased female: male prevalence
ratios in older age groups compared to younger
age groups'®. The reasons for the possible higher
susceptibility of older women to HIV-2 transmission
remain to be elucidated, but could include differ-
ences in sexual behaviour as well as immunologi-
cal/hormonal factors.

HIV-1 and HIV-2 differ by 40-60% at the nucleotide
level'-and HIV-2-is more closely related to some. of
the SIVs than to HIV-1. Up to seven subtypes of HIV-2

ggestod that a cona Gtebi &) b bl 3 e U B spid 10 BEl G abyF apdemologions sicnil-

transmission during the war of liberation in Guinea-

cance'®®, Subtype A is predominant throughout

Bissau some 30 years ago @ g%gjt (ﬁ) i gam in Cote d'lvoire a mixed epi-
higher prevalence rates intk@%?g ?g qgi Jgr g Q"fé(;?g] t liftagd B has been described? %,

More recent data indicate

prevalence in Guinea BisSaUMON i§ (deel

observed among men in a community study'? and

though, that the HIV-2

also in pregnant women in Bissau™ (Fié;ﬂ .|How-
ever, the HIV-2 prevalence appears to al rp

among women in the older age groups'2. A risk-fac-
tor analysis,of wives of HIV-2 infected men reported
age ab @- y a if] redic-
tor of Hl¥<2/tra sr@i)méawﬁ%%t for this
finding is provided by a study of published popula-
tion-based surveys of human retrovirus infections in

g(as \\Unolear '

The clinical significance, of HIV-2 subtypes is still

EVEf | Bimen(ef)al. reported a higher
cross-reactivity of HIV-2 subtype B with HIV-1 in

e serological assays as compared to HIV-2 sub-
uam ﬂ%ﬁwg rise to a larger number of HIV-1 and

HIV-2 dually reactive cases based on serological

diagnesis®*. =

|Lz€ at r ata at higher
deotee\of trL@mwgas cregne a cou-
pled transcription and translation assay for nefopen
reading frame interruptions, among HIV-2-infected
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Table 2. Cross-reactivity between HIV-1 and HIV-2 of serological assays with capacity to discriminate between the two viruses
when testing 293 HIV-positive samples from Guinea-Bissau. Modified from ref. 31.

Assay Frequency of dual reactivity (%)
All assays 9.9
Western blot?

any two env® 225

at least gp41/gp36° 14.7
Inno-LIA 25.2
Multispot 12.6
Pepti-LAV 10.9
Immunocomb Bispot 10.9
Wellcozyme HIV-1 ELISAY

cut-off: absorbance ratio = 1.0 23.6

cut-off: absorbance ratio = 2.0 16.1

2Diagnostic Biotechnology HIV-blot 2.2 for HIV-1 and in-house assay for HIV-2.
bPRequiring any two env bands, including gp120 and gp160, without gp41 of HIV-1.
°Requiring at least HIV-1 gp41 or HIV-2 gp36 plus any other env band of each WB.

dCross-reactivity only assessed for HIV-2, 186 samples tested.

asymptomatic individuals as compared to HIV-1
infected patients at comparable clinical stages®.
However, the role of nefin HIV-2 immunity and path-
ogenicity is still unclear.

Laboratory diagnostics

HIV-specific antibody production constitutes an
important aspect of the immune response, providing
the means for a majority of the routine diagnostic
tools currently in use. In the early days of HIV diag-
nostics, after the discovery of HIV-2, cross-reactivity
between HIV-1 and HIV-2 formed the basis for labo-
ratory assays. The assays were usually composed of
HIV-1 whole viral lysate antigen. When the differ-
ences between HIV-1 and HIV-2 started to become
unravelled, it also became clear that it would be
important to differentiate between the two viruses in
the laboratory diagnostics. Early studies showed
that the cross-reactivity was higher between anti-
gens derived from the gag and pol regions of the
viruses, while env derived proteins were able to dif-
ferentiate to a higher degree®?”. The most common
methodology for detection (screening) of HIV anti-
bodies is the enzyme-linked immunosorbent assay
(ELISA) and today there are excellent ELISA screen-
ing assays containing

th HIV-1 2: anti-
gens. It is common n t@eﬂcﬁEf@rﬁ ikﬁ)q@U

screening positive results with a second “confirma-

it possible to screen and confirm based on a combi-
nation of ELISAs and/or rapid simple assays only®>
%, which is especially important in low-resource
areas. By carefully choosing a proper combination
of assays, a high degree of accuracy may be
achieved including differentiation between HIV-1
and HIV-2 or confirmation of dual reactivities compa-
rable to differentiation by PCR3"33-%_Some previous
seroepidemiological data may have given incorrect
prevalence rates of HIV-2 due to the use of diagnos-
tic strategies not optimised for HIV-2 detection and
confirmation. This may be exemplified by a recent
report confirming a relatively high number of HIV-2
infected individuals in New York City, USA, discov-
ered after the introduction of improved laboratory
diagnostics for HIV-2%.

PCR has also become a fairly common tool when
antibody assays do not suffice, e.g. for diagnostics
of early infections and in cases of indeterminate
antibody test results.

Studies of viral load

The recent developments of various assays for
determination-of HIV-2 plasma RNA levels-have led
to a number of reports confirming the hypothesis
quééeﬁrous indirect data indicating that the differ-

St loibgy \any dsdemiciogy of H:T ang
HIV-2 may be assomated with differences in viral

ough seme Ebaralatios ey A fivh R IBTICLT s o Giferchos botueen HIVL1 and

cence assays (IFA) or, even Jess common at present,
radio- mmunoprempﬁaﬂqm’[ s@)@tR
cific WBs provide some degree of dn‘fer ntiation
between HIV-1 and HIV-2, especially if t
elaborated by the World Health Orga

applied, requiring reactivity by at least two env

bands?,
antibog
HIV-1 a
cedure ( able inclusion of these assays in
alternative- oonflrmatory strategies has today made

HIV-2 infected individuals®'-3®-4!. More recently,

Typé spe- v\ﬁqu@tra/ parted|from @ cross-sectional study of

pat|ents stratified according to percentage CD4+ T-

terla phacytes (CD4%), that HIV-2-infected individu-
DUlEiaR

Giver plasma RNA levels than HIV-1-infect-
ed persons at high CD4% levels, Wh|le at low CD4%

More Lecently developed type- spe evels,;the plasma RNA levels milar2, No per-
ay I’SIO molud-
orPermanRr Bialions 20

ed by

ments were perfor an in- house RT-PCR
based on LTR primer sequences.
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In a study among female sex workers (FSWs) in
Senegal using an RT-PCR that amplified a portion of
the gag region of HIV-2, the median viral load was
30 times lower in the HIV-2-infected compared to
HIV-1-infected women and the plasma RNA levels
were inversely related to CD4* T-lymphocyte counts.
The differences between HIV-1 and HIV-2 appeared
to persist, irrespective of length of time infected*3.

Shanmugam et al. used an Amp-RT assay for
comparative measurements of plasma RT activity
as a marker for viral expression in a cross-sectional
sample of HIV-1 and HIV-2-infected persons*.
They, too, found a markedly lower level of plasma
RT activity in HIV-2 as compared to HIV-1 infected
individuals. In persons with CD4* cell counts > 500
x 108/, all HIV-2 carriers studied had undetectable
RT-based plasma virus loads, as compared to 48%
of the HIV-1 carriers. The differences were also evi-
dent among tuberculosis patients*.

Through the development of a methodology for
detection of plasma RNA levels for HIV-2, similar to a
well-established plasma viral load assay for HIV-1 (by
Roche), we could make direct comparisons of plasma
viral load among known seroconverters (less than two
years after seroconversion) and patients with symp-
toms, as well as in subjects with HIV-1 and HIV-2 dual
infection. The results showed that HIV-2-infected per-
sons appear to reach a significantly lower setpoint
than HIV-1-infected individuals after seroconversion
(28 times lower than HIV-1 in this study)*. There was a
clear inverse correlation between the HIV-2 viral load
and the CD4* lymphocyte levels; the HIV-2 plasma
viral load was approximately 1 log lower than HIV-1
throughout the comparable spectrum of CD4* lym-
phocyte levels.

Moreover, it has been reported that the low rate of
mother-to-child transmission of HIV-2 was associat-
ed with low maternal HIV-2 RNA levels (more than
30-fold less than HIV-1)%6.

Thus, reports are now accumulating from different
study groups, using different methodologies, concor-
dantly showing that HIV-2 plasma RNA levels are sig-
nificantly lower than HIV-1, from early stages of the
infection. The median plasma HIV-2 RNA levels
detected in the various studies are comparable with
those of many HIV-1-infected long-term non-progres-
sors*’#8. As demonstrated by Mellors et al., the lower
the viral load early after primary HIV-1 infection, the
slower the rate of progr on to AIDS®, If tg e data
now obtained for HIV-2, i @ot
converters®, are applied for the model presented by
Mellors etal, HIV-2 |nfect|on
or “non”-progressing HIV-1 inf
tempting to conclude that HIV 2 |nfeot|on progresses
more slowly than HIV-1infg J
ble, simply because plasma vrral load Is lower How-
ever, the interplay between the virus and ta t};s&ls
complrcated and further studies are clearfy at
in order to improve our understanding of these mech-
anisms.
mangaip

appears that the Iao of pathogeni |ty SIVsm for its

natural host cannot be explained by limited viral repli-

0 |ns a ce it has been shown that u protern is qften undetec uring
@ a gor ile th t|b
centratigns/ of pite t se5 ItU rr@ﬂ re a ained ntrbod-
c

cation or by tight containment of viral production. The
mechanisms through which HIV-2 infection in humans
is contained to a higher degree than HIV-1 remain to
be identified. Differences in the interaction between
the human immune system and the two HIV types are
atempting explanation. Inherent differences in the viral
biology is yet another possibility.

CD4+ lymphocyte decline and apoptosis

The rate of decline of CD4* lymphocytes is con-
siderably slower in HIV-2-infected persons com-
pared to HIV-1 carriers. Yet, some individuals infect-
ed with HIV-2 may suffer a rapid progression to
AIDS*. When reaching the later stages of HIV-2
infection, there is an impairment of CD4* lympho-
cyte function similar to what is seen in HIV-1-infect-
ed patients®#55253,

Michel and co-workers recently reported that
immune activation measured as expression of the
activation marker HLA-DR on T lymphocytes was
lower in HIV-2 than in HIV-1-infected persons. Pos-
sibly as a consequence, the ex vivo apoptosis was
lower in HIV-2 than in HIV-1 infection and there was
a high correlation between the level of CD4* T-cell
apoptosis and serum p2-microglobulin concentra-
tion and disease progression®. These findings are
in line with the only previously published study on
lymphocyte cell death and apoptosis in HIV-2 infec-
tion, where a significantly lower level of in vitro T-cell
apoptosis was found among asymptomatic HIV-2
carriers compared to HIV-1-infected individuals at
comparable disease stages. The HIV-2 group was
similar to healthy HIV-negative controls®. Moreover,
Cavaleiro et al. showed that gp105 of HIV-2., had
an inhibitory effect on T cell proliferation and the up-
regulation of CD40L and OX40, which are co-stimu-
latory molecules important in the activation and dif-
ferentiation of the T-cell response (as well as dendritic
cell maturation). This immunosuppressive effect was
accompanied by a reduced level of apoptosis®®.

Taken together, it may be speculated that a weak-
er long-term activation of the immune system in HIV-
2 infection compared to HIV-1 contributes to the
slower T-cell depletion and disease evolution. The
importance of a general, non-HIV-specific, immune
activation for viral replication and disease progres-
sion in HIV infection has previously been pointed

t (b%ble mechanisms behind
@U%’ gﬁﬁerent Ievelszmune activation for HIV-1

and HIV-2 are poarly understood.
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IgM and' 1gG ant ies against the structural

Lﬁa(jtt s of HIV develop early after primary infection
Iﬁfer usually remain throughout the course

of infection®"82. The antibody response against the
he late
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ies wi h a neu ralrsrng e eot on live virus particles
(neutralising antibodies; NA) seem to constitute a




much smaller fraction of the total anti-HIV antibod-
ies developed during HIV infection than the “diag-
nostic” antibodies®!62,

Data from several studies indicate that NA play a
role in preventing or modulating infection with HIV,
SIV or SHIV®264, Broader and higher frequencies of
autologous NA have been demonstrated in HIV-1-
infected long-term non-progressors (LTNP) and slow
progressors, compared with other HIV-1-infected
individuals. Sera from mothers who did not transmit
virus to their children had a capacity to cross-neu-
tralise several HIV-1 isolates, whereas sera from
HIV-transmitting mothers did not have this capaci-
ty®. Hence, it is logical that autologous neutralising
antibodies have been found more frequently in
HIV-2-infected than in HIV-1-infected individuals®®
and it has been suggested that this difference in
virus-neutralising activity may contribute to the
slower disease progression in HIV-2 infection.

Cross-neutralisation between HIV-1 and HIV-2
have been shown in several studies, albeit with
some conflicting results. Weiss et al. showed that
human HIV-2 antisera could cross-neutralise HIV-1,
whereas HIV-1 sera were type-specific®”. Béttiger et
al. showed bi-directional cross-neutralisation®6°
while Robert-Guroff et al. demonstrated weak cross-
neutralisation between HIV-1 and HIV-270. While all
these studies used continuous cell-lines in their
assays, a study by Nyambi et al. on human PBMCs
showed weak cross-neutralisation between HIV-1
and HIV-2; being more extensive between HIV-1
and SIVepz’'. It was reported from immunisation
experiments in rabbits that peptide antisera direct-
ed against HIV-2 reverse transcriptase and inte-
grase also cross-reacted with corresponding HIV-1
proteins, although HIV-1 sera were type specific’.
HIV-2 infected women had a more pronounced
cross-reactivity of cervicovaginal anti-HIV-2 1gG
and IgA antibodies to HIV-1 epitopes than con-
versely’,

Antibody patterns have also, similar to what can
be observed in the course of HIV-1 infection, been
suggested to have an association with disease
development; the absence of anti-p26 based on
immunoblot in early asymptomatic stages was in
one study a predictor of more rapid disease pro-
gression, especially in combination with the occur-
rence of anti-vpx".

It is well established

he thir Val’lﬁ ia:e ion
V3 of the envelope gly ohtéihs neltraliss

ing sites for both HIV-1 and HI 2. More specifically,

e AR AeE (GG, hoy o o el

V3 region, amino acids 312-315 and 329 331, were
important for b|nd|n

Wl éﬂ E reu rp@qe \/\)-]H[\/Et@rqll %ﬁw @mj the|magnitude of the T-helper
shown that monoclonal anti |rect to the  responses®.

same region could exert an effective strain
specific neutralising activity’®””. More re@s
and l\/lomer and co-workers have characterlsed m

guinea- |ments three antlgenlc det
nants |
env gp n 0 ap earU

to be of |mportance or antlbo
gets for neutralisation’8"°.

bmd g and as tar-

r| olate Uj}ﬂortiﬂ of low-grade T-helper responses in individu-
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The study of antibody responses in HIV-2 exposed
non-infected individuals (FSWs in The Gambia) could
not demonstrate HIV-specific vaginal IgA or IgG, nor
did the vaginal secretions display any HIV-neutralis-
ing activity®®.

Antibodies can also be active in antibody-depen-
dent cellular cytotoxicity (ADCC). The role of ADCC
in protection against HIV infection or AIDS develop-
ment is not completely clear®’8, In chimpanzees,
which do not usually develop disease after HIV-1
infection, a delayed ADCC or lack thereof has been
reported, while in humans a strong ADCC response
is often demonstrable®. There have been specula-
tions that ADCC may be harmful, e.g. eliminating
non-infected cells that have adsorbed viral env-
components to their surface®. However, Connick et
al. have shown that ADCC may be important for the
control of viral replication in acute HIV-1 infection®.
In addition, Baum et al. described high levels of
ADCC-mediating antibodies in LTNP, while rapid
progressors had significantly lower titres®. HIV-2
induces ADCC in a majority of infected individuals.
The response appears to be of broader specificity
and higher frequency than what has been shown for
HIV-1838688  ADCC has also been demonstrated in
HIV-2-immunised as well as infected monkeys. In
the immunized, non-infected monkeys, the ADCC
response diminished over time and required boost-
er immunisations to persist®.

Data on NA and ADCC in relation to clinical pro-
gression or non-progression and to exposure to
HIV-2 are incomplete. While it is generally easier to
demonstrate neutralising activity that is strain or iso-
late-specific, it is now important to identify epitopes
against which NAs can mediate broad cross-clade
neutralising activity involving wild-type viruses. The
general picture of broader specificities and cross-
reactivities of anti-HIV-2 sera could provide clues to
vaccine-design experiments.

Cell-mediated immune responses

There is mounting evidence that cell-mediated
immune responses are important for protection
against and control of HIV/AIDS®9', Several groups
have provided evidence for HIV-1-specific CTL and
T-helper cell responses in individuals who are able to
cope With exposure to HIV without becoming infect-

i ell as in HIV-1rinfected LTNP%>%, Rosen-
b 1§ @t &) showed! th ab@w infected LTNP and
persons with pr|mary HIV-1 infection who had

showed an inverse relationship between plasma

ese flndlngs contrast with previous

With|éhfonic HIV-1 infection®”%. Taken together,
these observations could mdloate that a chronic,

ro resswe HIV |nfect|on wil he HIV-
une n e
t ht ei ov

ot suf-
ata on specific cell- med|ate |mmune responses

to HIV-2 are scarcer. Pinto et al. demonstrated the
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occurrence of T-helper cell responses to synthetic
SIV and recombinant HIV-2 antigens in HIV-2-infect-
ed individuals™'"1%2 CTL activity has been demon-
strated in a majority (7 of 9 studied) of asymptomatic
HIV-2 carriers, directly from peripheral blood'® and
in re-stimulated effector cells from PBMCs (15 of 18
studied)'®. Two of six highly exposed FSWs in Gam-
bia were shown to have both HIV-1 and HIV-2-specif-
ic CTL'%, Ariyoshi et al. reported an inverse correla-
tion between HIV-2-specific CTL activity and HIV-2
proviral load in 20 HIV-2-infected individuals stud-
ied'%. HIV-2 gag-specific CTL were shown to fre-
quently (9 of 11 studied) cross-react with HIV-1 gag
expressed in vaccinia virus recombinant infected tar-
get cells™. Some CTL epitopes mediate cross-reac-
tivity between HIV-1 and HIV-2 while others do not,
despite close relationship'5197.1% |n Guinea-Bissau
we have demonstrated the occurrence of an anti-
HIV-2 specific T-helper response in nearly half of the
HIV-2 - infected individuals tested. Furthermore,
increased anti-HIV-2 specific T-cell proliferative
responses were also found in HIV-2-exposed, but
non-infected persons as compared to HIV-seronega-
tive presumed non-exposed controls™®®,

The non-cytolytic soluble CD8* T-cell antiviral fac-
tor (CAF)''°, has not been studied in human HIV-2
infection as yet; only in macaque and baboon HIV-2
experiments (below). Little is also known about
cytokine profiles in HIV-2 infection. However, Seki-
gawa and co-workers reported that recombinant
HIV-2 env glycoprotein could stimulate a higher pro-
duction of INF-y and IL-16 than HIV-1 env could™".
Both INF-y and IL-16 can inhibit viral replication.

In summary, HIV-2 specific cell-mediated immune
responses seem to prevail in a larger proportion of
HIV-2 carriers than among HIV-1-infected persons.
This resembles the situation in HIV-1-exposed non-
infected or LTNP groups and suggests that a more vig-
orous and effective immunity is mounted in response
to HIV-2 which might lead to a lower rate of virus repli-
cation. However, the number of HIV-2-infected individ-
uals studied is still limited and further studies are
required to reach more convincing conclusions.

Chemokines and coreceptors
Chemokines are small cytokine-like soluble pro-

teins, which act in the process of chemotaxis of leuko-
cytes. Chemokines appear early jn the  immune
response and one of t&@n@wc’:{ﬂj ie6)i

immune-competent cells to the action site. In any virus

immune response is being built up''2118,

CD4 molecule. CCR5 and CXCR4 are thG?ddw main
co-receptors for HIV-1, corresponding tﬁb
main groups of chemokines, the a- and the f-
chemokines, als

concentrations may lead to down-regulation of the

reorid

sl oot eyt olicialNicleis @it laera i
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amed CC- and CXC-chemokines,
respec 1, in ieve theln
antivira tt ro@ﬁm @W%ZQ% p-U
tors, but ithas also been shown that high chemokine

receptors expressed on the cell surface!'®116,
Recently the p-chemokines MIP-1a, MIP-1b, and
RANTES were also shown to exert an anti-apoptotic
effect on lymphocytes from HIV-infected as well as
healthy non-infected individuals'"’.

Data on chemokines in relation to HIV-2 infection are
scarce. HIV-2 can use CCR5 and CXCR4 as co-recep-
tor, but unlike HIV-1, also uses a whole range of other
co-receptors for entry of target cells''®122, Certain lab-
oratory-adapted HIV-2 strains have been shown to
infect CD4-negative cells primarily through the CXCR4
receptor'?124 More recently, primary HIV-2 isolates
were shown to infect CD4-negative cells via CXCR4 as
well as CCR5'%, Furthermore, the second extra-cellu-
lar loop of human CXCR4 was shown to be critical for
this CD4-independent entry into target cells'.

Schramm et al. investigated the impact of co-
receptor usage on the cytopathicity of HIV-2 and
found that HIV-2 co-receptor specificity for CCR5 or
CXCR4 determined the target cell population for T-
cell depletion in lymphoid tissues. CXCR4-using
HIV-2 variants were found to be more cytopathic
and comparable to that of HIV-1. These findings
indicate that the direct cytopathic capacity by itself
does not explain the lower pathogenicity and trans-
missibility of HIV-2 than HIV-11%7_ Van der Ende et al.
reported from an in vivo human-to-mouse chimeric
model, data indicating that broadening of the HIV-2
co-receptor usage and, thus, the potential cellular
host-range does not necessarily lead to a higher
pathogenicity!?. Circumstantial evidence for that is
already provided by the fact that HIV-2 co-receptor
usage is more promiscuous than HIV-1 and yet the
latter is significantly more pathogenic.

Kaneko and Akimoto et al. demonstrated that the
HIV-2 env glycoprotein, in contrast to HIV-1 env,
could bind to the a-chain of CD8 molecules on T
cells™1%0_ This binding was shown to induce phos-
phorylation of protein tyrosine kinase p56' in CD8*
cells. They also demonstrated a higher b-chemokine
production after HIV-2 env stimulation as compared
to HIV-1 env'3%. The main source of b-chemokines
was the CD8* cells. Despite the binding of HIV-2
env to CD8, the cells did not become infected by
the virus™'. The authors postulate that the binding
of HIV-2 env leads to a signal transduction into
CD8* cells and the following b-chemokine produc-
tion. This could be one mechanism by which HIV-2

is rendered less prone ’E%replioate than HIV-1. In a
brlil(frawu@ﬁj wesholed that HIV-2 exposed,
but uninfected, individuals as well as HIV-2 infected
b-chemokine and INF-y pro-
ulated CD8* T-cell-enriched
cultures as compared to two healthy control groups

Several chemokine\yqqq s FEn’[Ib?euti' ( \/\gonsg@r[rg W@gm@qmﬂ Bissau and Swedish
HIV for cell entry, usually ﬂ combination ﬁfh@g bloo donif')s . The study was unfortunately inter-

rb%ted by the recent war in Guinea-Bissau.
It knbwledge, no investigation of f-chemokines
in relation to various clinical stages of HIV-2 infec-

jon in,numans has been presented, Studigs in non-
irate-moale ide er' support for a

W q:ﬁh pr on dgainst HIV-2
below). Hence, it seems likely that p-chemokines
play a role in the defence against HIV-2, but formal




proofs in well-controlled human studies are still
insufficient. Several issues need further experimen-
tal verification, including the role of co-receptor
usage in relation to pathogenicity and immunity, as
reviewed by Edinger et al.%2.

Animal models

Monkey models have been useful for studies of
immune responses to HIV-2. HIV-2 can replicate in
macaques, although only some strains cause sympto-
matic disease. In contrast, an optimal animal model for
HIV-1 has been difficult to establish. However, SIV and
some chimeric SIV/HIV viruses (SHIVs, which are
made up of an SIV genetic backbone expressing the
HIV-1 env gene) are pathogenic for macaques, also
allowing studies of disease progression',

Protective immunity against HIV-2 and SIV infec-
tions in monkeys has been induced by different
immunogens ™13 but it has been difficult to estab-
lish clear correlations between HIV/SIV specific
immune responses and protection against infec-
tious-challenge virus. However, accumulating evi-
dence clearly indicate that both cytotoxic T-cell
(CTL) and neutralising antibodies (NA) play a role,
backed up by a strong T-helper response*9"137.138,
As mentioned above, these data have also found
support in studies on humans, particularly regard-
ing HIV-1 but in few studies for HIV-2.

In one of the few pathogenic HIV-2 monkey vac-
cine models it was demonstrated that Macaca
nemestrina monkeys, immunised with an apatho-
genic HIV-2 molecular clone (HIV-2KR), were pro-
tected from CD4+ cell decline and disease upon
challenge with a pathogenic HIV-2 variant (HIV-
2287). Protection was dose-dependent and protect-
ed animals displayed substantial reductions in
PBMC proviral burden (1-3 logs), viral titres (1-2
logs), and plasma viral RNA (2-4 logs) compared to
unprotected or naive animals. No neutralising
responses could be demonstrated, but CTL activity
was detected early and at higher levels after chal-
lenge in protected macaques'.

In baboons, HIV-2 infection leads to persistent
viraemia and, in some cases, AIDS-like clinical
symptoms™9, CD8+ lymphocytes from HIV-2-infect-
ed baboons were shown to develop anti-HIV-2 activ-
ity in vitro, mediated by a combination of a soluble
antiviral factor and ability to Kill virus-infeeted CD4+
lymphocytes'!. Super-inféctio &5%
2-infected baboons with heterologous HIV-2 resulted

rifdent iﬂlp
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weeks after the first infection; immune correlates
were assessed in that study'#4,

Infection of macaques with non-pathogenic HIV-2,
acting as a live attenuated vaccine has been shown
to elicit cross-protection against SIV-induced dis-
ease but not complete protection against SIV infec-
tion'5. HIV-2 exposed non-infected monkeys were
shown to harbour SIV-specific CTLs and were resis-
tant to mucosal SIV challenge ™. Moreover, a recent
study in our laboratory has shown that these protected
monkeys had increased production of f-chemokines
and CAF-like activity in mitogen-stimulated CD8* T-
cell enriched cultures, as compared to naive con-
trols'#. These data are in line with findings by sev-
eral other groups in SIV animal vaccine models 8152,
Furthermore, our group has previously shown high
production of chemokines in protected macaques
even prior to vaccination'™?. Others have also
reported that CD8* T-cell-mediated anti-viral activity
of varying magnitude can be mounted in cells from
naive animals unrelated to immunisation'®3,

Patterson et al. reported the somewhat more sur-
prising finding that recombinant HIV-1 pox virus-
immunised macaques were protected against sub-
sequent challenge with HIV-2o, .., but not against
SHIV challenge after vaccination with recombinant
HIV-2 pox virus. This HIV-1-mediated HIV-2 cross-
protection has now been achieved in two different
experiments'®41% and was accompanied by cross-
reactive CTL and secretion of CAF, but not neutralis-
ing antibodies (NA), in some animals.

In the SIV__ -macaque model, the specificity and
titre of the NA response have been found to closely
correlate with disease progression'®. Passive immu-
nisation studies in chimpanzees and macaques® %7
have shown that monoclonal antibodies, serum or
immunoglobulins from vaccinated or infected ani-
mals can protect against HIV-1, HIV-2'%8 SHIV or
SIV infection, or delay progression of SIV-induced
disease. However, in some studies no protection
against SIV was observed in passively immunised
macaques. Studies of the role of NA in protective
immunity in vaccinated primates have given contra-
dictory results®. Correlation of NA with protection
against infection in vaccinated animals has been
demonstrated in the chimpanzee/HIV-1 model and
the macaque/SHIV model (in HIV-1 vaccinated ani-
mals) but not in the HIV-2/macague model'® and

the SIV/ del.
u b [Tg@gﬂéﬁ nﬁmd%l;a E?T?erfts have allowed the

development of techmques for assessment of vari-

o Socond vius was bIoOHU IS Wbt b R COCHIESSENTE 1 ‘Group- s estabisnec

super-infection was reportedly mediated by CD8+

assays for cell-mediated immune responses as well

cells and at least part| r@T e h@/ I factor \/\ﬁsna{@ggad te Ig neutralising antibody
(CAF), the puzzling h| erto not cgmt|to etel II%iqarac- assays @omﬁetﬁgrps heqjs(ggt]eohmques have then

terised soluble factor produced by CD8+ﬁC§[h ini- u&ax
loh

tially described by Levy and colleagues@
the same lines, inoculation of pig-tailed macaques

(Macaca em ma W|th two dn‘ferent HIV-2
type Aj
dual in

first two Weeks of in ectlon the first virus. Dual
infection could not be establlshed more than four

s llshid it

dapted for human studies (see below). A
;ﬁd’blem with non-human primate studies is
the relatively limited number of animals that has

een used in eaoh experimept. D SI n of experi-
be W differ-
|n ta -ana-

lytic fashion can overcome some of these drawbacks
and allow more extensive conclusions.
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Table 3. Studies of potential protective effect of HIV-2 against subsequent HIV-1 infection.

Study site (ref.)

Dakarlt® Abidjan?62 Bissaul* Bissau?
Population group FSW Pregnant women Police officers Community study
(90% male)
No. HIV negative at study start 398 266 1511 729
No. HIV-2 positive at study start 199 127 185
Incident HIV-1 cases/total no PYO:
in previously HIV negative 4412020 5/467 35/4704 713751
in previously HIV-2 positive 71780 6/208 7/574 71388
Incidence per 100 PYO (95% ClI):
negative to HIV-1 2(1.6-2.9) 1.1(0.3-2.5) 0.74 (0.5-1.0) 0.2 (0.05-0.3)
HIV-2 to dual 0.9 (0.4-1.9) 2.9 (1.1-6.3) 1.22 1.9 (0.4-3.3)
Incidence rate ratio 0.3 (0.09-0.7) 2.7(0.7-11.2) 1.6 (0.7-3.7) 10.1 (3.5-28.9)
Method of diagnosing dual infection PCR Antibody detection Antibody detection  Antibody
and PCR® detection and
PCR®

aAdjusted for age, nationality, years of registered prostitution, gonorrhoea infection status, calendar year.

bPreliminary report in ref 2.

°Diagnostic strategy for antibody detection highly concordant with type-specific PCR3%35

FSW, Female sex workers. STD, sexually transmitted diseases. Cl, confidence interval. PYO, person years of observation. PCR,
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polymerase chain reaction.
Table updated from Ref 2 and 161.

Possible protective effect of HIV-2 against
subsequent HIV-1 infection

The possibility of HIV-2 acting as a live-attenuat-
ed vaccine against HIV-1 is an attractive concept
and a study in Senegal provided data in favour of
this idea. A group of FSWs in Dakar was followed
and it was shown that HIV-2 infection conferred a
52-74% protection against subsequent HIV-1 infec-
tion180.161 (Table 3). To some disappointment, sub-
sequent studies in other areas of west Africa have
not demonstrated the protective effect!4162-164
(Table 3). On the contrary, these studies have
shown trends towards increased incidence of HIV-1
among HIV-2-infected persons as compared to HIV-
negative, although not with statistical significance.
There may be several explanations for these dis-
crepant results but one is the obvious difference in
the study populations (FSWs in Senegal, pregnant
women in Cote d’'lvoire and police officers, 90%
male, in Guinea-Bissau).

However, as outlined above, in vitro studies have
provided some suppor f r the conﬁe&fofr terfer-
ence between the two
ing a cross-reactive response against the other.

707273 as well as cross- reactrve CTL104.105,107,108,

Another possibility ¢ rr[ch
tion induced ertherogyapn ggﬂ;? 0 PP@‘F

mmune

on CD8+ lymphocytes 2130165 |nhibitidn
regulation of HIV1 replication by HIV-2 by other

s lprdvidd

response to HIV-2 or as a direct effect by ?l\{(h%env
or don

HIV-1 and HIV-2 dual infection

Despite the possibility of HIV-2 mediating protec-
tion against HIV-1, the increasing spread of the lat-
ter in previously HIV-2 endemic areas'*%" has led to
a growing number of HIV-1 and HIV-2 dually infect-
ed individuals. Guinea-Bissau constitutes a recent
example of a country with a previously virtually
exclusive HIV-2 endemic situation, with the highest
prevalence rate of HIV-2 in the world, where HIV-1
now has entered, giving rise to a concomitant epi-
demic of the two types of HIV™ (Fig. 1).

The few reports that exist about the clinical and
immunopathological progression of dual infection
indicate a different picture than HIV-2 single infec-
tion, more resembling HIV-1 infection, as assessed
by the occurrence of AlDS-associated symptoms,
CD4+/CD8* lymphocyte levels, serum immunoglob-
ulin concentrations and levels of HLA-DR in CD4+*
and CD8* T cells'®172_ In our own study cohorts in
Guinea-Bissau there appear to be an overrepresen-
tation of dually infected cases at late clinical stages
k(ﬁ published). Howeve this anecdotal information
ubllcalir e

In a study of dually-infected individuals in Guinea-
clear correlation neither

Iwgsalgg:zgte Zﬁ/ﬁqlliru?itgtﬁammfgﬁﬁa%r @m@ﬁ@l%m@o load and CD4+ lymphooyte

levels nor between the HIV-1 and HIV-2 plasma
\/\FW 1 RNA load was sig-
nrfrc?etn e@égrml %@?gﬂ,r than in singly infect-
ndrvrduals45 Nkengasong et al. compared plas-

L%[ l—ﬂhEFHNA concentrations in HIV-1 singly and
HIV-1 and HIV-2 dually-infected FSWS at similar

mechanisms he Cellular level has also b linigal stages and found no diffe 5172 Possi-
suggested's® 16 nt fi se two
populatienspas aﬂ @Tsat rau f@ l’# latrons
immunisation by 2 against HIV. l are highly ~ limited stu Y group™ an unknovvn hrs ory of infec-
desired. tions, i.e. which virus infected the person first and
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HIV-2 transmission to humans

Virus - cell contact
(HIV-2 higher co-receptor promiscuity than
HIV-1; (ref 118-122)

HIV-2 specific immune response:
TH - more efficient than HIV-1, similar

Lower general immune
activation and apoptosis
compared with HIV-1

(by HIV-2 gp105?
Other mechanisms?)
(ref 54-56)

B-chemokine release CTL - more frequent cross-reactivities
(higher than HIV-1?

By stimulation of CD8+ cells
infection with HIV-2 gp105? NA - broader specificities than HIV-1
Other mechanisms?)

(ref 109,129-131,147-152,165)

to HIV-1 LTNP

than HIV-1, inverse correlation with
proviral load

(ref 4,26,67-73,83,86-89,91,101-109,137-
141,146,159)

.

HIV-2 infection established
(similar proviral DNA levels as HIV-1;
ref 21,39-41)

— ] ?

/

HIV-2 protective
immunity

|

HIV-2 infection abolished

Longer asymptomatic period ("clinical latency”) with stable CD4+ lymphocyte levels
and low/unmeasurable HIV-2 plasma RNA concentrations
(ref 2-5,8,9,42-49,52-53)

Fig. 2. Model of possible mechanisms involved in the reduced pathogenicity of HIV-2 as compared to HIV-1

length of time since seroconversion for each virus.

Dieng Sarr and co-workers reported the somewhat
counter-intuitive observation that low HIV-2 proviral
(DNA) load in dually-infected individuals correlated
with low CD4* T-lymphocyte counts. For HIV-2 singly
infected there was an inverse relationship of proviral
load and CD4* T-cell values'”. Possible explanations
given by the authors for this finding include overgrowth
of highly replicative HIV-1 strains at the expense of
HIV-2, hiding of HIV-2 in other tissue reservoirs than
PBMCs and, again, the possible influence of the order
of infection. The study did not include determinations
of plasma RNA or HIV-1.proviral load.

One study of super-infection with HIV-1 of HIV-2
infected cells resulted in phenotypically mixed,virus
particles with an expanM@c fh o@?
ing the possibility of a more rapid disease progre
sion in vivo'’4

i I&i?U

recently described virus infection, nature is providing
an important experiment for us'®. The two known
human lentiviruses HIV-1 and HIV-2 perform markedly
differently in relation to their host, causing a pattern of
transmission and clinical progression which is so diver-
gent that comparative studies are likely to hold impor-
tant clues as to how we should deal with these viruses
in order to curb the HIV/AIDS epidemic. While we know
a fair amount about the biological properties of HIV-1
and its interactions with the host, our knowledge of the
inner secrets of HIV-2 is much more limited.

The recent new data on virological and biological
properties.of HIV-2 has lent support to the clinical.and
epidemiological picture of a much less pathogenic

and transmissible virus. It appears that a lower level of

néra) fimmine ackat Cpossibly in combination

with an efficient HIV-2 specific immune response,

. o a | production in HIV-2 infection,
Thus, once dual infection m&@e@%@@@c@fr éf@@t évﬁweﬁ f DNA template as for HIV-1

rmay not be of any advantage as compared to car-
rying just one of the VI
provides a tool for
between two distinct, albe|t related, retroyiruses in
the same host. The mechanisms involv@%ar F@

plex and further studies clearly warranted.

@ Pormanyer PUBHETIRAM

unprecedented magnitude caused by a relatively

omD) )

(Fig. 2). These mechanisms, specific as well as non-

ISR A V\Ff’@iﬁf e TGS IRV v of wmost mpor-

nce and several issues regarding the interplay
t%qwgéfq@rv 2 and the host defence system need to
be addressed in future studies; these include stud-
ies of Iarger patient or animal groups, especially in

diff ettings,
gs of HIV-2, e.g.
vomen, the role of

chemokmes and the possibility of a broader and
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al Development Cooperation Agency (Sida), Depart-
ment of Research Cooperation (SAREC), and the

stronger immune response as compared to HIV-1. 18. Gao F, Yue L, Robertson D et al. Genetic diversity of human
When possible HIV-1 and HIV-2 should be com- immunodeficiency virus type 2: evidence for distinct sequence sub-
pared in the same study populations, recognising
that parallel studies of the effectiveness of the

types with differences in virus biology. J Virology 1994; 68: 7433-47.
19. Chen Z, Luckay A, Sodora D et al. Human immunodeficiency
virus type 2 (HIV-2) seroprevalence and characterization of a

immun? response againstlHIV-2 compared Wit_h HIV- distinct HIV-2 genetic subtype from the natural range of simian
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immune system has not been studied in HIV-2 infec- 71: 3953-60.
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