

HIV-2 and the Immune Response

Sören Andersson

Department of Immunology, Swedish Institute for Infectious Disease Control, Stockholm, Sweden
The Department of Immunology and Clinical Microbiology, Örebro Medical Center Hospital, Örebro, Sweden

Abstract

HIV-1 and HIV-2 infections have important differences in epidemiology, clinical progression and transmission. Studies of the less transmissible and pathogenic HIV-2 have revealed some intriguing facts, indicating that it is less prone to replicate and perhaps can evoke a more efficient or long-lasting immune response than HIV-1 in the human host. Several crucial aspects of HIV-2 infection are still insufficiently characterised. However, there is now convincing evidence that plasma viral load is considerably lower for HIV-2 than for HIV-1, despite similar proviral (DNA) loads for the two viruses. There are reports on lower levels of apoptosis for HIV-2, possibly indicating a lower level of harmful immune activation. Several studies have also shown that vigorous HIV-2 specific immune responses can be detected, especially during the asymptomatic phase of HIV-2 infection. This includes humoral as well as cell-mediated immunity (CMI). The neutralising antibody response appears to be broader and the CMI may be more efficient for HIV-2 as compared to HIV-1. However, comparative studies in the same population groups on HIV-1 and HIV-2 immunity are scarce and difficult to perform. Nevertheless, by increasing our knowledge about how HIV-2 is contained to a higher degree than HIV-1, clinically as well as epidemiologically, we may gain knowledge that is useful in a wider perspective in our struggle to curb the devastating HIV/AIDS epidemic.

Keywords

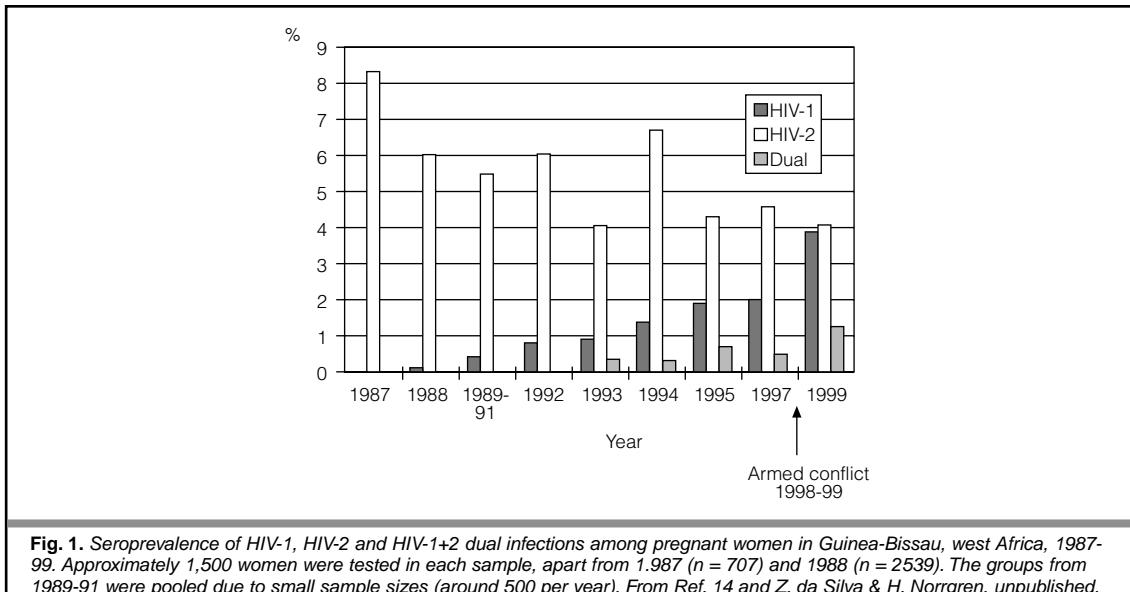
HIV-2. Immunology. Pathogenesis.

Introduction

While the human immunodeficiency virus type 1 (HIV-1) is on a devastating global trail causing immense suffering and death, the other human immunodeficiency virus, HIV-2, describes a much more limited path¹. Although sharing significant properties, the two viruses exhibit some important differences in their biology and epidemiology^{2,3} (Table 1).

Correspondence to:

Sören Andersson
Department of Immunology
Swedish Institute for Infectious Disease Control
SE-17182 Solna
SWEDEN


The reasons for these differences are largely unexplained and while the amount of knowledge about HIV-1 has grown at a tremendous pace, we still lack data on several crucial aspects of HIV-2. Learning more about HIV-2 may provide clues about how to cope with HIV-1. This review will focus on some new data relating to the interplay between HIV-2 and the host defence system, also including data from experimental non-human primate models. Other aspects including the epidemiology and biology of HIV-2 have been covered by previous reviews^{2,4}.

While HIV-1 has a global spread, HIV-2 is confined mainly to west Africa where the highest prevalence rates have been reported from Guinea-Bissau. Fairly high numbers of cases have also

Table 1. Comparison between HIV-1 and HIV-2.

	HIV-1	HIV-2
Routes of transmission	No difference	
Geographical distribution	Global	West Africa (Portugal, India)
Age specific prevalence	Peak at 20-40 years	Increases with age
Vertical transmission*	15-40 %	< 5%
Heterosexual transmission	Significantly lower for HIV-2 than for HIV-1	
Time to AIDS*	±10 years	Significantly longer than for HIV-1
Proviral load (DNA)	No difference	
Plasma RNA level	Significantly lower for HIV-2 than for HIV-1	
Genetic comparison	40-60% homology	

* Without antiretroviral treatment.

Fig. 1. Seroprevalence of HIV-1, HIV-2 and HIV-1+2 dual infections among pregnant women in Guinea-Bissau, west Africa, 1987-99. Approximately 1,500 women were tested in each sample, apart from 1987 ($n = 707$) and 1988 ($n = 2539$). The groups from 1989-91 were pooled due to small sample sizes (around 500 per year). From Ref. 14 and Z. da Silva & H. Norrgren, unpublished.

appeared in Portugal and, more recently, in India. Occasional cases have been reported from many other parts of the world^{2,5}. Several studies have shown that HIV-2 is associated with a lower transmission rate, vertical as well as sexual, and a reduced disease development rate compared to HIV-1^{2,9}.

The HIV-2 prevalence increases with age both among women and men^{2,10,11}. Population based studies in Guinea-Bissau have shown peak prevalence rates around 60 years of age and it has been suggested that a cohort effect as a result of high transmission during the war of liberation in Guinea-Bissau some 30 years ago may be a reason for the higher prevalence rates in the older age groups^{12,13}. More recent data indicate, though, that the HIV-2 prevalence in Guinea-Bissau now is declining, as observed among men in a community study¹² and also in pregnant women in Bissau¹⁴ (Fig. 1). However, the HIV-2 prevalence appears to remain high among women in the older age groups¹². A risk-factor analysis of wives of HIV-2 infected men reported age above 45 years as the major significant predictor of HIV-2 transmission¹⁵. Some support for this finding is provided by a study of published population-based surveys of human retrovirus infections in

Africa showing increased female: male prevalence ratios in older age groups compared to younger age groups¹⁶. The reasons for the possible higher susceptibility of older women to HIV-2 transmission remain to be elucidated, but could include differences in sexual behaviour as well as immunological/hormonal factors.

HIV-1 and HIV-2 differ by 40-60% at the nucleotide level¹⁷ and HIV-2 is more closely related to some of the SIVs than to HIV-1. Up to seven subtypes of HIV-2 have been recognised but only two, subtype A and B, appear to be of any epidemiological significance¹⁸⁻²⁰. Subtype A is predominant throughout west Africa, although in Côte d'Ivoire a mixed epidemic of subtype A and B has been described²¹⁻²³. The clinical significance of HIV-2 subtypes is still unclear. However, Simon *et al.* reported a higher cross-reactivity of HIV-2 subtype B with HIV-1 in some serological assays as compared to HIV-2 subtype A, giving rise to a larger number of HIV-1 and HIV-2 dually reactive cases based on serological diagnosis²⁴.

Switzer *et al.* reported data indicating a higher degree of *nef* truncations, as screened by a coupled transcription and translation assay for *nef* open reading frame interruptions, among HIV-2-infected

Table 2. Cross-reactivity between HIV-1 and HIV-2 of serological assays with capacity to discriminate between the two viruses when testing 293 HIV-positive samples from Guinea-Bissau. Modified from ref. 31.

Assay	Frequency of dual reactivity (%)
All assays	9.9
Western blot ^a	
any two env ^b	22.5
at least gp41/gp36 ^c	14.7
Inno-LIA	25.2
Multispot	12.6
Pepti-LAV	10.9
Immunocomb Bispot	10.9
Wellcozyme HIV-1 ELISA ^d	
cut-off: absorbance ratio ≥ 1.0	23.6
cut-off: absorbance ratio ≥ 2.0	16.1

^aDiagnostic Biotechnology HIV-blot 2.2 for HIV-1 and in-house assay for HIV-2.^bRequiring any two env bands, including gp120 and gp160, without gp41 of HIV-1.^cRequiring at least HIV-1 gp41 or HIV-2 gp36 plus any other env band of each WB.^dCross-reactivity only assessed for HIV-2, 186 samples tested.

asymptomatic individuals as compared to HIV-1-infected patients at comparable clinical stages²⁵. However, the role of *nef* in HIV-2 immunity and pathogenicity is still unclear.

Laboratory diagnostics

HIV-specific antibody production constitutes an important aspect of the immune response, providing the means for a majority of the routine diagnostic tools currently in use. In the early days of HIV diagnostics, after the discovery of HIV-2, cross-reactivity between HIV-1 and HIV-2 formed the basis for laboratory assays. The assays were usually composed of HIV-1 whole viral lysate antigen. When the differences between HIV-1 and HIV-2 started to become unravelled, it also became clear that it would be important to differentiate between the two viruses in the laboratory diagnostics. Early studies showed that the cross-reactivity was higher between antigens derived from the *gag* and *pol* regions of the viruses, while *env* derived proteins were able to differentiate to a higher degree^{26,27}. The most common methodology for detection (screening) of HIV antibodies is the enzyme-linked immunosorbent assay (ELISA) and today there are excellent ELISA screening assays containing both HIV-1 and HIV-2 antigens. It is common routine to confirm antibody screening positive results with a second "confirmatory" assay. This is often a western blot (WB) assay, although some laboratories may use immunofluorescence assays (IFA) or, even less common at present, radio-immunoprecipitation assays (RIPA). Type specific WBs provide some degree of differentiation between HIV-1 and HIV-2, especially if the criteria elaborated by the World Health Organization are applied, requiring reactivity by at least two env bands²⁸. More recently developed type-specific antibody assays designed to discriminate between HIV-1 and HIV-2 have improved the diagnostic procedure (Table 2). The inclusion of these assays in alternative-confirmatory strategies has today made

it possible to screen and confirm based on a combination of ELISAs and/or rapid simple assays only²⁹⁻³², which is especially important in low-resource areas. By carefully choosing a proper combination of assays, a high degree of accuracy may be achieved including differentiation between HIV-1 and HIV-2 or confirmation of dual reactivities comparable to differentiation by PCR^{31,33-35}. Some previous seroepidemiological data may have given incorrect prevalence rates of HIV-2 due to the use of diagnostic strategies not optimised for HIV-2 detection and confirmation. This may be exemplified by a recent report confirming a relatively high number of HIV-2 infected individuals in New York City, USA, discovered after the introduction of improved laboratory diagnostics for HIV-2³⁶.

PCR has also become a fairly common tool when antibody assays do not suffice, e.g. for diagnostics of early infections and in cases of indeterminate antibody test results.

Studies of viral load

The recent developments of various assays for determination of HIV-2 plasma RNA levels have led to a number of reports confirming the hypothesis and previous indirect data indicating that the differences in biology and epidemiology of HIV-1 and HIV-2 may be associated with differences in viral load^{37,38}. Early studies of proviral DNA levels (in PBMCs) showed no difference between HIV-1 and HIV-2 infected individuals^{21,39-41}. More recently, Berry *et al.* reported from a cross-sectional study of patients, stratified according to percentage CD4⁺ T-lymphocytes (CD4%), that HIV-2-infected individuals had lower plasma RNA levels than HIV-1-infected persons at high CD4% levels, while at low CD4% levels the plasma RNA levels were similar⁴². No persons with known seroconversion dates were included in that study and the HIV-2 viral load measurements were performed by an in-house RT-PCR based on LTR primer sequences.

In a study among female sex workers (FSWs) in Senegal using an RT-PCR that amplified a portion of the *gag* region of HIV-2, the median viral load was 30 times lower in the HIV-2-infected compared to HIV-1-infected women and the plasma RNA levels were inversely related to CD4⁺ T-lymphocyte counts. The differences between HIV-1 and HIV-2 appeared to persist, irrespective of length of time infected⁴³.

Shanmugam *et al.* used an Amp-RT assay for comparative measurements of plasma RT activity as a marker for viral expression in a cross-sectional sample of HIV-1 and HIV-2-infected persons⁴⁴. They, too, found a markedly lower level of plasma RT activity in HIV-2 as compared to HIV-1 infected individuals. In persons with CD4⁺ cell counts > 500 x 10⁶/L, all HIV-2 carriers studied had undetectable RT-based plasma virus loads, as compared to 48% of the HIV-1 carriers. The differences were also evident among tuberculosis patients⁴⁴.

Through the development of a methodology for detection of plasma RNA levels for HIV-2, similar to a well-established plasma viral load assay for HIV-1 (by Roche), we could make direct comparisons of plasma viral load among known seroconverters (less than two years after seroconversion) and patients with symptoms, as well as in subjects with HIV-1 and HIV-2 dual infection. The results showed that HIV-2-infected persons appear to reach a significantly lower setpoint than HIV-1-infected individuals after seroconversion (28 times lower than HIV-1 in this study)⁴⁵. There was a clear inverse correlation between the HIV-2 viral load and the CD4⁺ lymphocyte levels; the HIV-2 plasma viral load was approximately 1 log lower than HIV-1 throughout the comparable spectrum of CD4⁺ lymphocyte levels.

Moreover, it has been reported that the low rate of mother-to-child transmission of HIV-2 was associated with low maternal HIV-2 RNA levels (more than 30-fold less than HIV-1)⁴⁶.

Thus, reports are now accumulating from different study groups, using different methodologies, concordantly showing that HIV-2 plasma RNA levels are significantly lower than HIV-1, from early stages of the infection. The median plasma HIV-2 RNA levels detected in the various studies are comparable with those of many HIV-1-infected long-term non-progressors^{47,48}. As demonstrated by Mellors *et al.*, the lower the viral load early after primary HIV-1 infection, the slower the rate of progression to AIDS⁴⁹. If the data now obtained for HIV-2, including our group of seroconverters⁴⁵, are applied for the model presented by Mellors *et al.*, HIV-2 infection clearly resembles a slow or "non"-progressing HIV-1 infection^{3,50}. It may thus be tempting to conclude that HIV-2 infection progresses more slowly than HIV-1 infection and is less transmissible, simply because plasma viral load is lower. However, the interplay between the virus and the host is complicated and further studies are clearly warranted in order to improve our understanding of these mechanisms. For instance, it has been shown that sooty mangabey monkeys may harbour high plasma concentrations of SIV, despite the lack of disease⁵¹. It appears that the lack of pathogenicity of SIVsm for its natural host cannot be explained by limited viral repli-

cation or by tight containment of viral production. The mechanisms through which HIV-2 infection in humans is contained to a higher degree than HIV-1 remain to be identified. Differences in the interaction between the human immune system and the two HIV types are a tempting explanation. Inherent differences in the viral biology is yet another possibility.

CD4⁺ lymphocyte decline and apoptosis

The rate of decline of CD4⁺ lymphocytes is considerably slower in HIV-2-infected persons compared to HIV-1 carriers. Yet, some individuals infected with HIV-2 may suffer a rapid progression to AIDS⁴⁰. When reaching the later stages of HIV-2 infection, there is an impairment of CD4⁺ lymphocyte function similar to what is seen in HIV-1-infected patients^{2,4,5,52,53}.

Michel and co-workers recently reported that immune activation measured as expression of the activation marker HLA-DR on T lymphocytes was lower in HIV-2 than in HIV-1-infected persons. Possibly as a consequence, the *ex vivo* apoptosis was lower in HIV-2 than in HIV-1 infection and there was a high correlation between the level of CD4⁺ T-cell apoptosis and serum β 2-microglobulin concentration and disease progression⁵⁴. These findings are in line with the only previously published study on lymphocyte cell death and apoptosis in HIV-2 infection, where a significantly lower level of *in vitro* T-cell apoptosis was found among asymptomatic HIV-2 carriers compared to HIV-1-infected individuals at comparable disease stages. The HIV-2 group was similar to healthy HIV-negative controls⁵⁵. Moreover, Cavaleiro *et al.* showed that gp105 of HIV-2_{ROD} had an inhibitory effect on T cell proliferation and the up-regulation of CD40L and OX40, which are co-stimulatory molecules important in the activation and differentiation of the T-cell response (as well as dendritic cell maturation). This immunosuppressive effect was accompanied by a reduced level of apoptosis⁵⁶.

Taken together, it may be speculated that a weaker long-term activation of the immune system in HIV-2 infection compared to HIV-1 contributes to the slower T-cell depletion and disease evolution. The importance of a general, non-HIV-specific, immune activation for viral replication and disease progression in HIV infection has previously been pointed out⁵⁷⁻⁶⁰. However, the possible mechanisms behind the different levels of immune activation for HIV-1 and HIV-2 are poorly understood.

Antibody neutralization of HIV-2

IgM and IgG antibodies against the structural proteins of HIV develop early after primary infection and the latter usually remain throughout the course of infection^{61,62}. The antibody response against the *gag* protein is often undetectable during the late stages of the disease, while the antibodies to the envelope proteins usually are maintained. Antibodies with a neutralising effect on live virus particles (neutralising antibodies; NA) seem to constitute a

much smaller fraction of the total anti-HIV antibodies developed during HIV infection than the "diagnostic" antibodies^{61,62}.

Data from several studies indicate that NA play a role in preventing or modulating infection with HIV, SIV or SHIV⁶²⁻⁶⁴. Broader and higher frequencies of autologous NA have been demonstrated in HIV-1-infected long-term non-progressors (LTNP) and slow progressors, compared with other HIV-1-infected individuals. Sera from mothers who did not transmit virus to their children had a capacity to cross-neutralise several HIV-1 isolates, whereas sera from HIV-transmitting mothers did not have this capacity⁶⁵. Hence, it is logical that autologous neutralising antibodies have been found more frequently in HIV-2-infected than in HIV-1-infected individuals⁶⁶ and it has been suggested that this difference in virus-neutralising activity may contribute to the slower disease progression in HIV-2 infection.

Cross-neutralisation between HIV-1 and HIV-2 have been shown in several studies, albeit with some conflicting results. Weiss *et al.* showed that human HIV-2 antisera could cross-neutralise HIV-1, whereas HIV-1 sera were type-specific⁶⁷. Böttiger *et al.* showed bi-directional cross-neutralisation^{68,69} while Robert-Guroff *et al.* demonstrated weak cross-neutralisation between HIV-1 and HIV-2⁷⁰. While all these studies used continuous cell-lines in their assays, a study by Nyambi *et al.* on human PBMCs showed weak cross-neutralisation between HIV-1 and HIV-2; being more extensive between HIV-1 and SIVcpz⁷¹. It was reported from immunisation experiments in rabbits that peptide antisera directed against HIV-2 reverse transcriptase and integrase also cross-reacted with corresponding HIV-1 proteins, although HIV-1 sera were type specific⁷². HIV-2 infected women had a more pronounced cross-reactivity of cervicovaginal anti-HIV-2 IgG and IgA antibodies to HIV-1 epitopes than conversely⁷³.

Antibody patterns have also, similar to what can be observed in the course of HIV-1 infection, been suggested to have an association with disease development; the absence of anti-p26 based on immunoblot in early asymptomatic stages was in one study a predictor of more rapid disease progression, especially in combination with the occurrence of anti-vpx⁷⁴.

It is well established that the third variable region V3 of the envelope glycoprotein contains neutralising sites for both HIV-1 and HIV-2. More specifically, Björling *et al.* showed, by the use of synthetic peptides blocking NAs, that two linear sites of the HIV-2 V3 region, amino acids 312-315 and 329-331, were important for binding⁷⁵. Two other groups have shown that monoclonal antibodies directed to the same region could exert an effective strain or isolate specific neutralising activity^{76,77}. More recently, Skott and Mörner and co-workers have characterised in guinea-pig experiments three antigenic determinants located in the V2 and V4 regions of the HIV-2 env gp125, and one region of gp36, which appear to be of importance for antibody binding and as targets for neutralisation^{78,79}.

The study of antibody responses in HIV-2 exposed non-infected individuals (FSWs in The Gambia) could not demonstrate HIV-specific vaginal IgA or IgG, nor did the vaginal secretions display any HIV-neutralising activity⁸⁰.

Antibodies can also be active in antibody-dependent cellular cytotoxicity (ADCC). The role of ADCC in protection against HIV infection or AIDS development is not completely clear⁸¹⁻⁸³. In chimpanzees, which do not usually develop disease after HIV-1 infection, a delayed ADCC or lack thereof has been reported, while in humans a strong ADCC response is often demonstrable⁶³. There have been speculations that ADCC may be harmful, e.g. eliminating non-infected cells that have adsorbed viral envelope components to their surface⁶³. However, Connick *et al.* have shown that ADCC may be important for the control of viral replication in acute HIV-1 infection⁸⁴. In addition, Baum *et al.* described high levels of ADCC-mediating antibodies in LTNP, while rapid progressors had significantly lower titres⁸⁵. HIV-2 induces ADCC in a majority of infected individuals. The response appears to be of broader specificity and higher frequency than what has been shown for HIV-1^{83,86-88}. ADCC has also been demonstrated in HIV-2-immunised as well as infected monkeys. In the immunized, non-infected monkeys, the ADCC response diminished over time and required booster immunisations to persist⁸⁹.

Data on NA and ADCC in relation to clinical progression or non-progression and to exposure to HIV-2 are incomplete. While it is generally easier to demonstrate neutralising activity that is strain or isolate-specific, it is now important to identify epitopes against which NAs can mediate broad cross-clade neutralising activity involving wild-type viruses. The general picture of broader specificities and cross-reactivities of anti-HIV-2 sera could provide clues to vaccine-design experiments.

Cell-mediated immune responses

There is mounting evidence that cell-mediated immune responses are important for protection against and control of HIV/AIDS^{90,91}. Several groups have provided evidence for HIV-1-specific CTL and T-helper cell responses in individuals who are able to cope with exposure to HIV without becoming infected, as well as in HIV-1-infected LTNP⁹²⁻⁹⁵. Rosenberg *et al.* showed that HIV-1-infected LTNP and persons with primary HIV-1 infection who had received early antiviral therapy had high T-helper cell responses to *gag* and *env* antigens. They also showed an inverse relationship between plasma HIV-1 viral load and the magnitude of the T-helper responses⁹⁶. These findings contrast with previous reports of low-grade T-helper responses in individuals with chronic HIV-1 infection⁹⁷⁻⁹⁹. Taken together, these observations could indicate that a chronic, progressive HIV infection will develop if the HIV-specific cell-mediated immune response is not sufficient enough to contain the infection¹⁰⁰.

Data on specific cell-mediated immune responses to HIV-2 are scarcer. Pinto *et al.* demonstrated the

occurrence of T-helper cell responses to synthetic SIV and recombinant HIV-2 antigens in HIV-2-infected individuals^{101,102}. CTL activity has been demonstrated in a majority (7 of 9 studied) of asymptomatic HIV-2 carriers, directly from peripheral blood¹⁰³ and in re-stimulated effector cells from PBMCs (15 of 18 studied)¹⁰⁴. Two of six highly exposed FSWs in Gambia were shown to have both HIV-1 and HIV-2-specific CTL¹⁰⁵. Ariyoshi *et al.* reported an inverse correlation between HIV-2-specific CTL activity and HIV-2 proviral load in 20 HIV-2-infected individuals studied¹⁰⁶. HIV-2 *gag*-specific CTL were shown to frequently (9 of 11 studied) cross-react with HIV-1 *gag* expressed in vaccinia virus recombinant infected target cells¹⁰⁴. Some CTL epitopes mediate cross-reactivity between HIV-1 and HIV-2 while others do not, despite close relationship^{105,107,108}. In Guinea-Bissau we have demonstrated the occurrence of an anti-HIV-2 specific T-helper response in nearly half of the HIV-2 - infected individuals tested. Furthermore, increased anti-HIV-2 specific T-cell proliferative responses were also found in HIV-2-exposed, but non-infected persons as compared to HIV-seronegative presumed non-exposed controls¹⁰⁹.

The non-cytolytic soluble CD8⁺ T-cell antiviral factor (CAF)¹¹⁰, has not been studied in human HIV-2 infection as yet; only in macaque and baboon HIV-2 experiments (below). Little is also known about cytokine profiles in HIV-2 infection. However, Sekigawa and co-workers reported that recombinant HIV-2 *env* glycoprotein could stimulate a higher production of INF- γ and IL-16 than HIV-1 *env* could¹¹¹. Both INF- γ and IL-16 can inhibit viral replication.

In summary, HIV-2 specific cell-mediated immune responses seem to prevail in a larger proportion of HIV-2 carriers than among HIV-1-infected persons. This resembles the situation in HIV-1-exposed non-infected or LTNP groups and suggests that a more vigorous and effective immunity is mounted in response to HIV-2 which might lead to a lower rate of virus replication. However, the number of HIV-2-infected individuals studied is still limited and further studies are required to reach more convincing conclusions.

Chemokines and coreceptors

Chemokines are small cytokine-like soluble proteins, which act in the process of chemotaxis of leukocytes. Chemokines appear early in the immune response and one of their main duties is to recruit immune-competent cells to the action site. In any virus infection, presumably also HIV, a rapid chemokine response may occur early in infection while a specific immune response is being built up^{112,113}.

Several chemokine receptors can be utilised by HIV for cell entry, usually in combination with the CD4 molecule. CCR5 and CXCR4 are the two main co-receptors for HIV-1, corresponding to the two main groups of chemokines, the α - and the β -chemokines, also named CC- and CXC-chemokines, respectively¹¹⁴. The chemokines may achieve their antiviral effect through direct blocking of the receptors, but it has also been shown that high chemokine concentrations may lead to down-regulation of the

receptors expressed on the cell surface^{115,116}. Recently the β -chemokines MIP-1a, MIP-1b, and RANTES were also shown to exert an anti-apoptotic effect on lymphocytes from HIV-infected as well as healthy non-infected individuals¹¹⁷.

Data on chemokines in relation to HIV-2 infection are scarce. HIV-2 can use CCR5 and CXCR4 as co-receptor, but unlike HIV-1, also uses a whole range of other co-receptors for entry of target cells¹¹⁸⁻¹²². Certain laboratory-adapted HIV-2 strains have been shown to infect CD4-negative cells primarily through the CXCR4 receptor^{123,124}. More recently, primary HIV-2 isolates were shown to infect CD4-negative cells via CXCR4 as well as CCR5¹²⁵. Furthermore, the second extra-cellular loop of human CXCR4 was shown to be critical for this CD4-independent entry into target cells¹²⁶.

Schramm *et al.* investigated the impact of co-receptor usage on the cytopathicity of HIV-2 and found that HIV-2 co-receptor specificity for CCR5 or CXCR4 determined the target cell population for T-cell depletion in lymphoid tissues. CXCR4-using HIV-2 variants were found to be more cytopathic and comparable to that of HIV-1. These findings indicate that the direct cytopathic capacity by itself does not explain the lower pathogenicity and transmissibility of HIV-2 than HIV-1¹²⁷. Van der Ende *et al.* reported from an *in vivo* human-to-mouse chimeric model, data indicating that broadening of the HIV-2 co-receptor usage and, thus, the potential cellular host-range does not necessarily lead to a higher pathogenicity¹²⁸. Circumstantial evidence for that is already provided by the fact that HIV-2 co-receptor usage is more promiscuous than HIV-1 and yet the latter is significantly more pathogenic.

Kaneko and Akimoto *et al.* demonstrated that the HIV-2 *env* glycoprotein, in contrast to HIV-1 *env*, could bind to the α -chain of CD8 molecules on T cells^{129,130}. This binding was shown to induce phosphorylation of protein tyrosine kinase p56^{lck} in CD8⁺ cells. They also demonstrated a higher β -chemokine production after HIV-2 *env* stimulation as compared to HIV-1 *env*¹³⁰. The main source of β -chemokines was the CD8⁺ cells. Despite the binding of HIV-2 *env* to CD8, the cells did not become infected by the virus¹³¹. The authors postulate that the binding of HIV-2 *env* leads to a signal transduction into CD8⁺ cells and the following β -chemokine production. This could be one mechanism by which HIV-2 is rendered less prone to replicate than HIV-1. In a preliminary study we showed that HIV-2 exposed, but uninfected, individuals as well as HIV-2 infected patients had increased β -chemokine and INF- γ production by mitogen-stimulated CD8⁺ T-cell-enriched cultures as compared to two healthy control groups consisting of adolescents from Bissau and Swedish blood donors¹⁰⁹. The study was unfortunately interrupted by the recent war in Guinea-Bissau.

To our knowledge, no investigation of β -chemokines in relation to various clinical stages of HIV-2 infection in humans has been presented. Studies in non-human primate models provide further support for a role of β -chemokines in the protection against HIV-2 (below). Hence, it seems likely that β -chemokines play a role in the defence against HIV-2, but formal

proofs in well-controlled human studies are still insufficient. Several issues need further experimental verification, including the role of co-receptor usage in relation to pathogenicity and immunity, as reviewed by Edinger *et al.*¹³².

Animal models

Monkey models have been useful for studies of immune responses to HIV-2. HIV-2 can replicate in macaques, although only some strains cause symptomatic disease. In contrast, an optimal animal model for HIV-1 has been difficult to establish. However, SIV and some chimeric SIV/HIV viruses (SHIVs, which are made up of an SIV genetic backbone expressing the HIV-1 *env* gene) are pathogenic for macaques, also allowing studies of disease progression¹³³.

Protective immunity against HIV-2 and SIV infections in monkeys has been induced by different immunogens¹³⁴⁻¹³⁶, but it has been difficult to establish clear correlations between HIV/SIV specific immune responses and protection against infectious-challenge virus. However, accumulating evidence clearly indicate that both cytotoxic T-cell (CTL) and neutralising antibodies (NA) play a role, backed up by a strong T-helper response^{4,91,137,138}. As mentioned above, these data have also found support in studies on humans, particularly regarding HIV-1 but in few studies for HIV-2.

In one of the few pathogenic HIV-2 monkey vaccine models it was demonstrated that *Macaca nemestrina* monkeys, immunised with an apathogenic HIV-2 molecular clone (HIV-2KR), were protected from CD4+ cell decline and disease upon challenge with a pathogenic HIV-2 variant (HIV-2287). Protection was dose-dependent and protected animals displayed substantial reductions in PBMC proviral burden (1-3 logs), viral titres (1-2 logs), and plasma viral RNA (2-4 logs) compared to unprotected or naïve animals. No neutralising responses could be demonstrated, but CTL activity was detected early and at higher levels after challenge in protected macaques¹³⁹.

In baboons, HIV-2 infection leads to persistent viraemia and, in some cases, AIDS-like clinical symptoms¹⁴⁰. CD8+ lymphocytes from HIV-2-infected baboons were shown to develop anti-HIV-2 activity *in vitro*, mediated by a combination of a soluble antiviral factor and ability to kill virus-infected CD4+ lymphocytes¹⁴¹. Super-infection experiments of HIV-2-infected baboons with heterologous HIV-2 resulted in reactivation of the originally inoculated HIV-2 while the second virus was blocked. This resistance to super-infection was reportedly mediated by CD8+ cells and at least partially by the T-cell antiviral factor (CAF), the puzzling hitherto not completely characterised soluble factor produced by CD8+ cells, initially described by Levy and colleagues^{142,143}. Along the same lines, inoculation of pig-tailed macaques (*Macaca nemestrina*) with two different HIV-2 subtype A isolates (GB122 and CDC77618) showed that dual infection could be established mainly during the first two weeks of infection with the first virus. Dual infection could not be established more than four

weeks after the first infection; immune correlates were assessed in that study¹⁴⁴.

Infection of macaques with non-pathogenic HIV-2, acting as a live attenuated vaccine has been shown to elicit cross-protection against SIV-induced disease but not complete protection against SIV infection¹⁴⁵. HIV-2 exposed non-infected monkeys were shown to harbour SIV-specific CTLs and were resistant to mucosal SIV challenge¹⁴⁶. Moreover, a recent study in our laboratory has shown that these protected monkeys had increased production of β -chemokines and CAF-like activity in mitogen-stimulated CD8+ T-cell enriched cultures, as compared to naïve controls¹⁴⁷. These data are in line with findings by several other groups in SIV animal vaccine models¹⁴⁸⁻¹⁵². Furthermore, our group has previously shown high production of chemokines in protected macaques even prior to vaccination¹⁵². Others have also reported that CD8+ T-cell-mediated anti-viral activity of varying magnitude can be mounted in cells from naïve animals unrelated to immunisation¹⁵³.

Patterson *et al.* reported the somewhat more surprising finding that recombinant HIV-1 pox virus-immunised macaques were protected against subsequent challenge with HIV-2_{SBL-6669}, but not against SHIV challenge after vaccination with recombinant HIV-2 pox virus. This HIV-1-mediated HIV-2 cross-protection has now been achieved in two different experiments^{154,155} and was accompanied by cross-reactive CTL and secretion of CAF, but not neutralising antibodies (NA), in some animals.

In the SIV_{sm}-macaque model, the specificity and titre of the NA response have been found to closely correlate with disease progression¹⁵⁶. Passive immunisation studies in chimpanzees and macaques^{64,157} have shown that monoclonal antibodies, serum or immunoglobulins from vaccinated or infected animals can protect against HIV-1, HIV-2¹⁵⁸, SHIV or SIV infection, or delay progression of SIV-induced disease. However, in some studies no protection against SIV was observed in passively immunised macaques. Studies of the role of NA in protective immunity in vaccinated primates have given contradictory results⁶⁴. Correlation of NA with protection against infection in vaccinated animals has been demonstrated in the chimpanzee/HIV-1 model and the macaque/SHIV model (in HIV-1 vaccinated animals) but not in the HIV-2/macaque model¹⁵⁸ and rarely in the SIV/macaque model.

The animal model experiments have allowed the development of techniques for assessment of various immune responses in the process of immunisation and infection. Our group has established assays for cell-mediated immune responses as well as antibody tests including neutralising antibody assays¹⁵⁹. Some of these techniques have then been adapted for human studies (see below). A general problem with non-human primate studies is the relatively limited number of animals that has been used in each experiment. Design of experiments so that they are comparable between different groups and/or pooling of results in a meta-analytic fashion can overcome some of these drawbacks and allow more extensive conclusions.

Table 3. Studies of potential protective effect of HIV-2 against subsequent HIV-1 infection.

	Study site (ref.)			
	Dakar ¹⁶⁰	Abidjan ¹⁶²	Bissau ¹⁴	Bissau ²
Population group	FSW	Pregnant women	Police officers (90% male)	Community study
No. HIV negative at study start	398	266	1511	729
No. HIV-2 positive at study start	199	127	185	
Incident HIV-1 cases/total no PYO:				
in previously HIV negative	44/2020	5/467	35/4704	7/3751
in previously HIV-2 positive	7/780	6/208	7/574	7/388
Incidence per 100 PYO (95% CI):				
negative to HIV-1	2.2 (1.6-2.9)	1.1 (0.3-2.5)	0.74 (0.5-1.0)	0.2 (0.05-0.3)
HIV-2 to dual	0.9 (0.4-1.9)	2.9 (1.1-6.3)	1.22	1.9 (0.4-3.3)
Incidence rate ratio	0.3 (0.09-0.7)	2.7 (0.7-11.2)	1.6 (0.7-3.7)	10.1 (3.5-28.9)
Method of diagnosing dual infection	PCR	Antibody detection	Antibody detection and PCR ^c	Antibody detection and PCR ^c

^aAdjusted for age, nationality, years of registered prostitution, gonorrhoea infection status, calendar year.
^bPreliminary report in ref 2.
^cDiagnostic strategy for antibody detection highly concordant with type-specific PCR^{31,35}
FSW, Female sex workers. STD, sexually transmitted diseases. CI, confidence interval. PYO, person years of observation. PCR, polymerase chain reaction.
Table updated from Ref 2 and 161.

Possible protective effect of HIV-2 against subsequent HIV-1 infection

The possibility of HIV-2 acting as a live-attenuated vaccine against HIV-1 is an attractive concept and a study in Senegal provided data in favour of this idea. A group of FSWs in Dakar was followed and it was shown that HIV-2 infection conferred a 52-74% protection against subsequent HIV-1 infection^{160,161} (Table 3). To some disappointment, subsequent studies in other areas of west Africa have not demonstrated the protective effect^{14,162-164} (Table 3). On the contrary, these studies have shown trends towards increased incidence of HIV-1 among HIV-2-infected persons as compared to HIV-negative, although not with statistical significance. There may be several explanations for these discrepant results but one is the obvious difference in the study populations (FSWs in Senegal, pregnant women in Côte d'Ivoire and police officers, 90% male, in Guinea-Bissau).

However, as outlined above, in vitro studies have provided some support for the concept of interference between the two viruses, or one virus providing a cross-reactive response against the other. This includes earlier data of HIV-2 NA cross-reacting against HIV-1 but not the other way around^{67-70,72,73} as well as cross-reactive CTL^{104,105,107,108}. Another possibility could be b-chemokine production induced either as an effect of an immune response to HIV-2 or as a direct effect by HIV-2 env on CD8+ lymphocytes^{129,130,165}. Inhibition or down-regulation of HIV-1 replication by HIV-2 by other mechanisms at the cellular level has also been suggested¹⁶⁶⁻¹⁶⁹. In any case, further proofs from population-based studies of the concept of natural immunisation by HIV-2 against HIV-1 are highly desired.

HIV-1 and HIV-2 dual infection

Despite the possibility of HIV-2 mediating protection against HIV-1, the increasing spread of the latter in previously HIV-2 endemic areas^{14,37} has led to a growing number of HIV-1 and HIV-2 dually infected individuals. Guinea-Bissau constitutes a recent example of a country with a previously virtually exclusive HIV-2 endemic situation, with the highest prevalence rate of HIV-2 in the world, where HIV-1 now has entered, giving rise to a concomitant epidemic of the two types of HIV¹⁴ (Fig. 1).

The few reports that exist about the clinical and immunopathological progression of dual infection indicate a different picture than HIV-2 single infection, more resembling HIV-1 infection, as assessed by the occurrence of AIDS-associated symptoms, CD4+/CD8+ lymphocyte levels, serum immunoglobulin concentrations and levels of HLA-DR in CD4+ and CD8+ T cells¹⁷⁰⁻¹⁷². In our own study cohorts in Guinea-Bissau there appear to be an overrepresentation of dually infected cases at late clinical stages (unpublished). However, this anecdotal information is in need of formal proofs.

In a study of dually-infected individuals in Guinea-Bissau there was no clear correlation neither between plasma viral load and CD4+ lymphocyte levels nor between the HIV-1 and HIV-2 plasma RNA concentrations. The HIV-1 RNA load was significantly lower in dually rather than in singly infected individuals⁴⁵. Nkengasong *et al.* compared plasma HIV-1 RNA concentrations in HIV-1 singly and HIV-1 and HIV-2 dually-infected FSWs at similar clinical stages and found no differences¹⁷². Possible reasons for the divergent findings in these two studies include differences in study populations, limited study group⁴⁵ and unknown history of infections, i.e. which virus infected the person first and

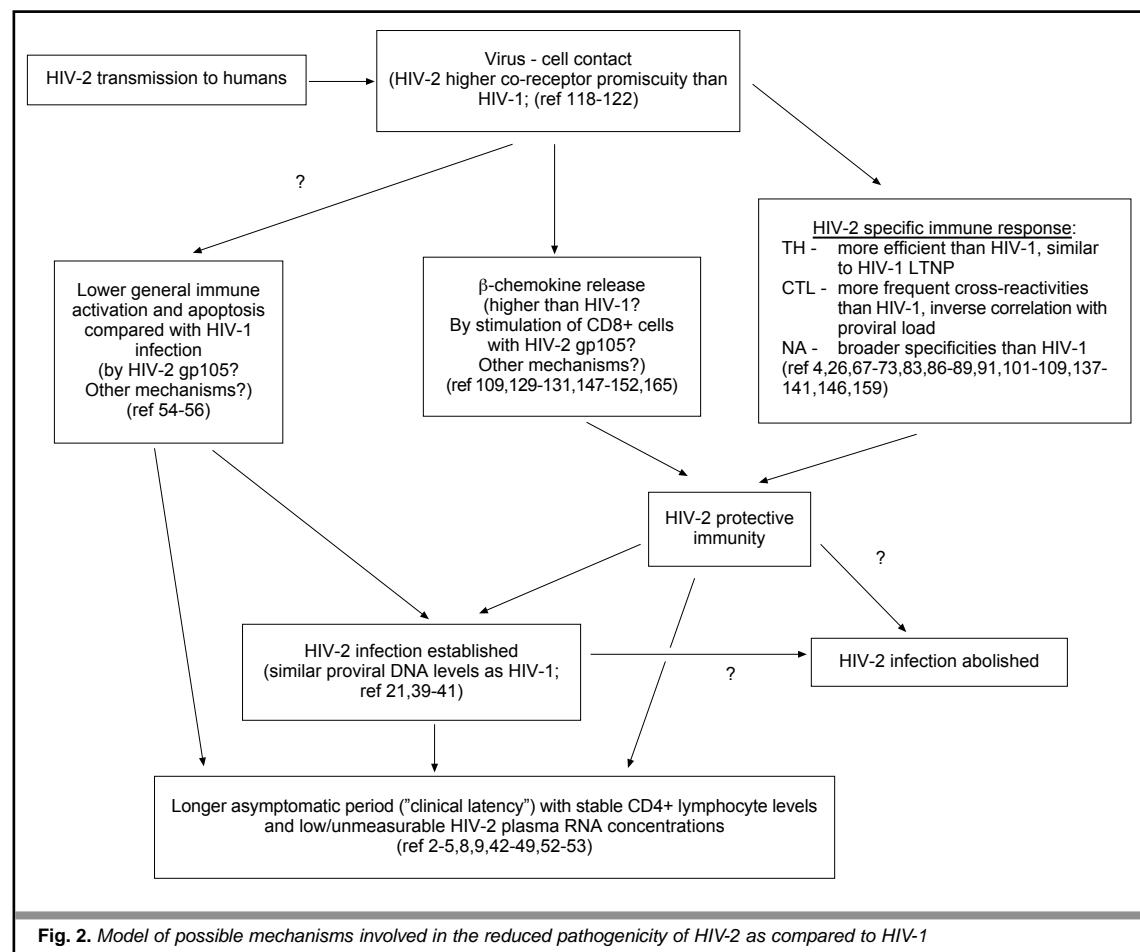


Fig. 2. Model of possible mechanisms involved in the reduced pathogenicity of HIV-2 as compared to HIV-1

length of time since seroconversion for each virus.

Dieng Sarr and co-workers reported the somewhat counter-intuitive observation that low HIV-2 proviral (DNA) load in dually-infected individuals correlated with low CD4⁺ T-lymphocyte counts. For HIV-2 singly infected there was an inverse relationship of proviral load and CD4⁺ T-cell values¹⁷³. Possible explanations given by the authors for this finding include overgrowth of highly replicative HIV-1 strains at the expense of HIV-2, hiding of HIV-2 in other tissue reservoirs than PBMCs and, again, the possible influence of the order of infection. The study did not include determinations of plasma RNA or HIV-1 proviral load.

One study of super-infection with HIV-1 of HIV-2 infected cells resulted in phenotypically mixed virus particles with an expanded cellular host range, raising the possibility of a more rapid disease progression *in vivo*¹⁷⁴.

Thus, once dual infection has been established it may not be of any advantage as compared to carrying just one of the viruses. However, dual infection provides a tool for studies of the interactions between two distinct, albeit related, retroviruses in the same host. The mechanisms involved are complex and further studies clearly warranted.

Conclusions

Amid this catastrophic situation with an epidemic of unprecedented magnitude caused by a relatively

recently described virus infection, nature is providing an important experiment for us¹⁷⁵. The two known human lentiviruses HIV-1 and HIV-2 perform markedly differently in relation to their host, causing a pattern of transmission and clinical progression which is so divergent that comparative studies are likely to hold important clues as to how we should deal with these viruses in order to curb the HIV/AIDS epidemic. While we know a fair amount about the biological properties of HIV-1 and its interactions with the host, our knowledge of the inner secrets of HIV-2 is much more limited.

The recent new data on virological and biological properties of HIV-2 has lent support to the clinical and epidemiological picture of a much less pathogenic and transmissible virus. It appears that a lower level of general immune activation, possibly in combination with an efficient HIV-2 specific immune response, leads to a lower virus production in HIV-2 infection, despite similar levels of DNA template as for HIV-1 (Fig. 2). These mechanisms, specific as well as non-specific, need to be characterised in more detail.

Thus, further studies of HIV-2 are of utmost importance and several issues regarding the interplay between HIV-2 and the host defence system need to be addressed in future studies; these include studies of larger patient or animal groups, especially in experimental laboratory work, in different settings, focusing on some of the particularities of HIV-2, e.g. the higher incidence among older women, the role of chemokines and the possibility of a broader and

stronger immune response as compared to HIV-1. When possible, HIV-1 and HIV-2 should be compared in the same study populations, recognising that parallel studies of the effectiveness of the immune response against HIV-2 compared with HIV-1 are difficult to perform. Finally, the role of the innate immune system has not been studied in HIV-2 infection and should be a focus of future investigations.

Acknowledgements

The author wishes to thank Gunnar Biberfeld and Rigmor Thorstensson for constructive review of earlier versions of this manuscript. Thanks are also due to Zacarias da Silva and Hans Norrgren for sharing unpublished data and to Charlotta Nilsson and Raija Ahmed for fact-finding assistance. Our own studies were supported by the Swedish International Development Cooperation Agency (Sida), Department of Research Cooperation (SAREC), and the Swedish Medical Research Council.

References

1. UNAIDS, WHO: Report on the global HIV/AIDS epidemic. Geneva: UNAIDS/WHO, December 2000.
2. Schim van der Loeff, Aaby P. Towards a better understanding of the epidemiology of HIV-2. *AIDS* 1999; 13: 69-84.
3. Kanki P. Human immunodeficiency virus type 2 (HIV-2). *AIDS Rev* 1999; 1: 101-8.
4. Whittle H, Ariyoshi K, Rowland-Jones S. HIV-2 and T cell recognition. *Current Opinion Immunol* 1998; 10: 382-7.
5. Marlink R. Lessons from the second AIDS virus, HIV-2. *AIDS* 1996; 10: 689-99.
6. Poulsen A, Kvinesdal B, Aaby P et al. Lack of evidence of vertical transmission of human immunodeficiency virus type 2 in a sample of the general population in Bissau. *J Acquir Immune Defic Syndr* 1992; 5: 25-30.
7. Andreasson P, Dias F, Naucré A, Andersson S, Biberfeld G. A prospective study of vertical transmission of HIV-2 in Bissau, Guinea-Bissau. *AIDS* 1993; 7: 989-93.
8. Marlink R, Kanki P, Thior I et al. Reduced rate of disease development after HIV-2 infection as compared to HIV-1. *Science* 1994; 265: 1587-90.
9. Kanki P, Travers K, MBoup S et al. Slower heterosexual spread of HIV-2 than HIV-1. *Lancet* 1994; 343: 943-46.
10. Naucré A, Albino P, Da Silva A et al. HIV-2 infection in hospitalised patients in Bissau, Guinea-Bissau. *AIDS* 1991; 5: 301-4.
11. Naucré A, Andersson S, Albino P et al. Association between HTLV-I and HIV-2 infections in Bissau, Guinea-Bissau. *AIDS* 1992; 6: 510-11.
12. Larsen O, da Silva Z, Sandström A et al. Declining HIV-2 prevalence and incidence among men in a community study from Guinea-Bissau. *AIDS* 1998; 12: 1707-14.
13. Poulsen A, Aaby P, Jensen H, Dias F. Risk factors for HIV-2 seropositivity among older people in Guinea-Bissau. A search for the early history of HIV-2 infection. *Scand J Infect Dis* 2000; 32: 169-75.
14. Norrgren H, Andersson S, Biague A et al. Trends and interaction of HIV-1 and HIV-2 in Guinea-Bissau, West Africa: no protection of HIV-2 against HIV-1 infection. *AIDS* 1999; 13: 701-7.
15. Aaby P, Ariyoshi K, Buckner M et al. Age of wife as a major determinant of male-to-female transmission of HIV-2 infection: a community study from rural West Africa. *AIDS* 1996; 10: 1585-90.
16. Holmgren B, Aaby P, Jensen H et al. Increased prevalence of retrovirus infections among older women in Africa. *Scand J Infect Dis* 1999; 31: 459-66.
17. Hu D, Dondero T, Rayfield M et al. The emerging diversity of HIV. The importance of global surveillance for diagnostics, research and prevention. *JAMA* 1996; 275: 210-6.
18. Gao F, Yue L, Robertson D et al. Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology. *J Virology* 1994; 68: 7433-47.
19. Chen Z, Luckay A, Sodora D et al. Human immunodeficiency virus type 2 (HIV-2) seroprevalence and characterization of a distinct HIV-2 genetic subtype from the natural range of simian immunodeficiency virus-infected sooty mangabeys. *J Virol* 1997; 71: 3953-60.
20. Yamaguchi J, Devare S, Brennan C. Identification of a new HIV-2 subtype based on phylogenetic analysis of full-length genomic sequence. *AIDS Res Hum Retroviruses* 2000; 16: 925-30.
21. Norrgren H, Marquina S, Leitner T et al. HIV-2 genetic variation and viral load in asymptomatic carriers and AIDS cases in Guinea-Bissau. *J Acquir Immune Def Syndr Human Retrovir* 1997; 16: 31-8.
22. Pieniazek D, Ellnerger D, Janini L et al. Predominance of human immunodeficiency virus type 2 subtype B in Abidjan, Ivory Coast. *AIDS Res Hum Retrovir* 1999; 15: 603-8.
23. Andersson S, Norrgren H, Dias F, Biberfeld G, Albert J. Molecular characterization of human immunodeficiency virus (HIV)-1 and -2 in individuals from Guinea-Bissau with single or dual infections: predominance of a distinct HIV-1 subtype A/G recombinant in West Africa. *Virology* 1999; 262: 312-20.
24. Simon F, Damond F, Loussert-Ajaka I et al. Variability of HIV-2 from patients living in France. In: Programme and abstracts of the 12th World AIDS Conference, Geneva 1998. Abstract 11205: 23.
25. Switzer W, Wiktor S, Soriano V et al. Evidence of nef truncations in human immunodeficiency virus type 2 infection. *J Infect Dis* 1998; 177: 65-71.
26. Albert J, Bredberg U, Chiodi F et al. A new human retrovirus isolate of west Africa origin (SBL-6669) and its relationship to HTLV-IV, LAV-II and HTLV-IIIB. *AIDS Res Human Retrovir* 1987; 3: 3-10.
27. Tedder R, O'Connor T, Hughes A et al. Envelope cross-reactivity in Western blot for HIV-1 and HIV-2 may not indicate dual infection. *Lancet* 1988; ii: 927-30.
28. WHO Global Programme on AIDS. Proposed WHO criteria for interpretation of results from Western blot assay for HIV-1, HIV-2 and HTLV-I/HTLV-II. *Wkly Epidemiol Rec* 1990; 37: 281-3.
29. Tamashiro H, Maskill W, Emmanuel J et al. Reducing the cost of HIV antibody testing. *Lancet* 1993; 342: 87-90.
30. Sato P, Maskill W, Tamashiro H, Heymann D. Strategies for laboratory HIV-testing: an examination of alternative approaches not requiring western blot. *Bull WHO* 1994; 72: 129-34.
31. Andersson S, da Silva Z, Norrgren H, Dias F, Biberfeld G. Field evaluation of alternative testing strategies for diagnosis and differentiation of HIV-1 and HIV-2 infections in an HIV-1 and HIV-2 prevalent area. *AIDS* 1997; 11: 1815-22.
32. Nkengasong J, Maurice C, Koblavi S et al. Evaluation of HIV serial and parallel serologic testing algorithms in Abidjan, Côte d'Ivoire. *AIDS* 1999; 13: 109-17.
33. Dieng-Sarr A, Hamel D, Thior I et al. HIV-1 and HIV-2 dual infection: lack of HIV-2 provirus with low CD4+ lymphocyte counts. *AIDS* 1998; 12: 131-7.
34. Ishikawa K, Fransen K, Ariyoshi K et al. Improved detection of HIV-2 proviral DNA in dually seroreactive individuals by PCR. *AIDS* 1998; 12: 1419-25.
35. Walther-Jallow L, Andersson S, da Silva Z, Biberfeld G. High concordance between polymerase chain reaction and antibody testing of specimens from HIV-1 and HIV-2 dually-infected individuals in Guinea-Bissau, west Africa. *AIDS Res Human Retroviruses*, 1999; 15: 957-62.
36. Beatrice S, Oleszko W, Punsalang A, El-Fishawy M. Increased detection of HIV-2 in specimens submitted for HIV-1 testing in New York City from 1998 to present. In: Programme and abstracts of the XIIIth International AIDS Conference, Durban, South Africa, July 2000. Abstract A7009.
37. De Kock K, Adjourlo G, Ekpini E et al. Epidemiology and transmission of HIV-2 - why there is no HIV-2 pandemic. *JAMA* 1993; 270: 2083-6.
38. Simon F, Matheron S, Tamalet C et al. Cellular and plasma viral load in patients infected with HIV-2. *AIDS* 1993; 7: 1411-17.
39. Berry N, Ariyoshi K, Jobe O et al. HIV type 2 proviral load measured by quantitative polymerase chain reaction correlates with CD4+ lymphopenia in HIV type-2-infected individuals. *AIDS Res Human Retroviruses* 1994; 10: 1031-7.

40. Ariyoshi K, Berry N, Wilkins A et al. A community-based study of human immunodeficiency virus type 2 provirus load in a rural village in west Africa. *J Inf Dis* 1996; 173: 245-8.

41. Popper S, Dieng Sarr A, Guéye-Ndiaye A et al. Low plasma human immunodeficiency virus type 2 viral load is independent of proviral load: low virus production *in vivo*. *J Virol* 2000; 74: 1554-7.

42. Berry N, Ariyoshi K, Jaffar S et al. Low peripheral blood viral HIV-2 RNA in individuals with high CD4 percentage differentiates HIV-2 from HIV-1 infection. *J Hum Virology* 1998; 1: 457-68.

43. Popper S, Dieng Sarr A, Travers K et al. Lower human immunodeficiency virus (HIV) type 2 viral load reflects the difference in pathogenicity of HIV-1 and HIV-2. *J Inf Dis* 1999; 180: 1116-21.

44. Shanmugam V, Switzer W, Nkengasong J et al. Lower HIV-2 plasma viral loads may explain differences between the natural histories of HIV-1 and HIV-2 infections. *J Acquir Immune Defic Syndr* 2000; 24: 257-63.

45. Andersson S, Norrgren H, da Silva Z et al. Plasma viral load in HIV-1 and HIV-2 singly and dually infected individuals in Guinea-Bissau, West Africa: significantly lower plasma virus set point in HIV-2 infection than in HIV-1 infection. *Arch Int Med* 2000; 160: 3286-93.

46. O'Donovan D, Ariyoshi K, Milligan P et al. Maternal plasma viral RNA levels determine marked differences in mother-to-child transmission rates of HIV-1 and HIV-2 in The Gambia. MRC/Gambia Government/University College London Medical School working group on mother-child transmission of HIV. *AIDS* 2000; 14: 441-8.

47. Cao Y, Qin L, Zhang L, Safran J, Ho D. Virologic and immunologic characterization of long-term survivors of human immunodeficiency virus type 1 infection. *N Engl J Med* 1995; 332: 201-8.

48. Vicenzi E, Bagnarelli P, Santagostini E et al. Haemophilia and non-progressing human immunodeficiency virus type 1 infection. *Blood* 1997; 89: 191-200.

49. Mellors J, Munoz A, Giorgi J et al. Plasma viral load and CD4+ lymphocytes as prognostic markers of HIV-1 infection. *Ann Intern Med* 1997; 126: 946-54.

50. Traoré I, Marlink R, Thior I et al. HIV-2 as a model for long term non-progression. In: Program and abstracts of the XIth International Conference on AIDS. Vancouver, Canada, 1996.

51. Rey-Cuillé M, Berthier J, Bomsel-Demontoy M et al. Simian immunodeficiency virus replicates to high levels in sooty mangabeys without inducing disease. *J Virol* 1998; 72: 3872-86.

52. Jaffar S, Wilkins A, Ngom P et al. Rate of decline of percentage CD4+ cells is faster in HIV-1 than in HIV-2 infection. *J Acquir Immune Defic Syndr Hum Retrovir* 1997; 16: 327-32.

53. Norrgren H, da Silva Z, Andersson S et al. Clinical features, immunological changes and mortality in a cohort of HIV-2-infected individuals in Bissau, Guinea-Bissau. *Scand J Infect Dis* 1998; 30: 323-9.

54. Michel P, Balde M, Roussilhon C et al. Reduced immune activation and T cell apoptosis in human immunodeficiency virus type 2 compared with type 1: correlation of T cell apoptosis with beta2 microglobulin concentration and disease evolution. *J Infect Dis* 2000; 181: 64-75.

55. Jaleco A, Covas M, Victorino R. Analysis of lymphocyte cell death and apoptosis in HIV-2-infected patients. *Clin Exp Immunol* 1994; 98: 185-9.

56. Cavaleiro R, Sousa A, Loureiro A, Victorino R. Marked immunosuppressive effects of the HIV-2 envelope protein in spite of the lower HIV-2 pathogenicity. *AIDS* 2000; 14: 2679-86.

57. Bentwich Z, Kalinovich A, Weisman Z. Immune activation is a dominant factor in the pathogenesis of African AIDS. *Immunol Today* 1995; 16: 187-91.

58. Rizzardini G, Trabattoni D, Saresella M et al. Immune activation in HIV-infected African individuals. Italian-Ugandan AIDS cooperation program. *AIDS* 1998; 12: 2387-96.

59. Clerici M, Butto S, Lukwya M et al. Immune activation in Africa is environmentally-driven and is associated with up-regulation of CCR5. Italian-Ugandan AIDS Project. *AIDS* 2000; 14: 2083-92.

60. Brinckmann J. Differential responses of T cell subsets: possible role in the immunopathogenesis of AIDS. *AIDS* 2000; 14: 1689-1700.

61. Poignard P, Klasse P, Sattentau Q. Antibody neutralization of HIV-1. *Immunol Today* 1996; 17: 239-46.

62. Burton D, Montefiori D. The antibody response in HIV-1 infection. *AIDS* 1997; 11: 87-98.

63. Fenyö E-M, Albert J, McKeating J. The role of the humoral immune response in HIV infection. *AIDS* 1996; 10: 97-106.

64. Haigwood N, Zolla-Pazner S. Humoral immunity to HIV, SIV, and SHIV. *AIDS* 1998; 12: 121-32.

65. Scarlatti G, Albert J, Rossi P et al. Mother-to-child transmission of human immunodeficiency virus type 1: correlation with neutralizing antibodies against primary isolates. *J Infect Dis* 1993; 168: 207-10.

66. Björling E, Scarlatti G, von Gegerfelt A et al. Autologous neutralizing antibodies prevail in HIV-2 but not in HIV-1 infection. *Virology* 1993; 193: 528-30.

67. Weiss R, Clapham P, Weber J et al. HIV-2 antisera cross-neutralize HIV-1. *AIDS* 1988; 2: 95-100.

68. Böttiger B, Karlsson A, Andreasson P et al. Cross-neutralizing antibodies against HIV-1 (HTLV-IIIB and HTLV-IIIRF) and HIV-2 (SBL-6669 and a new isolate SBL-K135). *AIDS Res Hum Retroviruses* 1990; 5: 525-33.

69. Böttiger B, Karlsson A, Andreasson P et al. Envelope cross-reactivity between human immunodeficiency virus types 1 and 2 detected by different serological methods: correlation between cross-neutralization and reactivity against the main neutralizing site. *J Virol* 1990; 64: 3492-9.

70. Robert-Guroff M, Aldrich K, Muldoon R et al. Cross-neutralization of human immunodeficiency virus type 1 and 2 and simian immunodeficiency virus isolates. *J Virol* 1992; 66: 3602-8.

71. Nyambi P, Willems B, Janssens W et al. The neutralization relationship of HIV type 1, HIV type 2 and SIVcpz is reflected in the genetic diversity that distinguishes them. *AIDS Res Hum Retrovir* 1997; 13: 7-17.

72. Klutck M, Woerner A, Marcus-Sekura C, Levin J. Generation of HIV-1/HIV-2 cross-reactive peptide antisera by small sequence changes in HIV-1 reverse transcriptase and integrase immunizing peptides. *J Biomed Sci* 1998; 5: 192-202.

73. Bélec L, Dupré T, Tévi-Bénissan C et al. Cervicovaginal HIV-1 and HIV-2 cross-reactivities. *Int J STD & AIDS* 1997; 8: 68-70.

74. Popper S, Sankalé J-L, Thior I et al. Antibodies to the HIV type 2 core protein p26 and vpx: association with disease progression. *AIDS Res Hum Retroviruses* 1998; 1: 1157-62.

75. Björling E, Chiodi F, Utter G, Norby E. Two neutralizing domains in the V3 region in the envelope glycoprotein gp125 of HIV type 2. *J Immunol* 1994; 152: 1952-9.

76. Matsushita S, Matsumi S, Yoshimura K et al. Neutralizing monoclonal antibodies against Human Immunodeficiency Virus type 2 gp 120. *J Virol* 1995; 69: 3333-40.

77. McKnight A, Shotton C, Cordell J et al. Location, exposure and conservation of neutralizing and non-neutralizing epitopes of human immunodeficiency virus type 2 SU glycoprotein. *J Virol* 1996; 70: 4598-606.

78. Skott P, Achour A, Norin M, Thorstensson R, Björling E. Characterization of neutralizing sites in the second variable and fourth variable region in gp125 and a conserved region in gp36 of human immunodeficiency virus type 2. *Viral Immunology* 1999; 12: 79-88.

79. Mörner A, Achour A, Norin M, Thorstensson R, Björling E. Fine characterization of a V3-region neutralizing epitope in human immunodeficiency virus type 2. *Virus Research* 1999; 59: 49-60.

80. Dorrell L, Hessell A, Wang M et al. Absence of specific mucosal antibody responses in HIV-exposed uninfected sex workers from the Gambia. *AIDS* 2000; 14: 1117-22.

81. Evans L, Thomson-Honnebier G, Steimer K et al. Antibody-dependent cellular cytotoxicity is directed against both the gp120 and gp41 envelope proteins of the human immunodeficiency virus. *AIDS* 1989; 3: 1357-60.

82. Ljunggren K, Broliden P-A, Morfeldt-Månsen L, Jondal M, Wahren B. IgG subclass response to HIV in relation to antibody-dependent cellular cytotoxicity at different clinical stages. *Clin Exp Immunol* 1988; 73: 343-7.

83. Ljunggren K, Biberfeld G, Jondal M, Fenyö E-M. Antibody-dependent cellular cytotoxicity detects type- and strain-specific antigens among human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus SIVmac isolates. *J Virol* 1989; 63: 3376-81.

84. Connick E, Marr D, Zhang X-Q et al. HIV-specific cellular and humoral responses to primary HIV infection. *AIDS Res Human Retrovir* 1996; 12: 1129-40.

85. Baum L, Cassutt K, Knigge K *et al.* HIV-1 gp120-specific antibody-dependent cell-mediated cytotoxicity correlates with rate of disease progression. *J Immunol* 1996; 157: 2168-73.

86. Norley S, Mikschy U, Werner A *et al.* Demonstration of cross-reactive antibodies able to elicit lysis of both HIV-1- and HIV-2-infected cells. *J Immunol* 1990; 145: 1700-5.

87. Björling E, Broliden K, Bernardi D *et al.* Hyperimmune antisera against synthetic peptides representing the glycoprotein of human immunodeficiency virus type 2 can mediate neutralization and antibody-dependent cytotoxic activity. *Proc Natl Acad Sci USA* 1991; 88: 6082-6.

88. von Gegerfelt A, Diaz-Pohl C, Fenyo EM, Broliden K. Specificity of antibody-dependent cellular cytotoxicity in sera from human immunodeficiency virus type 2-infected individuals. *AIDS Res Hum Retroviruses*. 1993; 9: 883-9.

89. von Gegerfelt A, Nilsson C, Putkonen P, Broliden K. Broadly reactive HIV-2 and SIV/mac specific antibody-dependent cellular cytotoxicity in immunized and infected cynomolgus monkeys. *Vaccine* 1994; 12: 1203-8.

90. Bollinger R, Egan M, Chun T-W, Mathieson B, Siliciano R. Cellular immune responses to HIV-1 in progressive and non-progressive infections. *AIDS* 1996; 10: 85-96.

91. Goulder P, Rowland-Jones S, McMichael A, Walker B. Anti-HIV cellular immunity: recent advances towards vaccine design. *AIDS* 1999; 13 (Suppl. A): 121-36.

92. Clerici M, Giorgi J, Chou C *et al.* Cell-mediated immune responses to human immunodeficiency virus type 1 (HIV-1) in seronegative homosexual men with recent sexual exposure to HIV-1. *J Infect Dis* 1992; 165: 1012-9.

93. Cheynier R, Langlade-Demoyen P, Marescot M *et al.* Cytotoxic T lymphocyte responses in the peripheral blood of children born to HIV-1-infected mothers. *Eur J Immunol* 1993; 22: 2211-7.

94. Langlade-Demoyen P, Ngo-Giang-Guong N, Fercha F, Oksenhendler E. Human immunodeficiency virus (HIV-1) *nef*-specific cytotoxic T-lymphocytes in non-infected heterosexual contacts of HIV-1-infected patients. *J Clin Invest* 1994; 93: 1293-7.

95. Fowke K, Dong T, Rowland-Jones S *et al.* HIV type 1 resistance in Kenyan sex workers is not associated with altered cellular susceptibility to HIV type 1 infection or enhanced b-chemokine production. *AIDS Res Hum Retroviruses* 1998; 14: 1521-30.

96. Rosenberg E, Billingsley J, Caliendo A *et al.* Vigorous HIV-1-specific CD4+ T-cell responses associated with control of viraemia. *Science* 1997; 278: 1447-50.

97. Wahren B, Morfeldt-Måansson L, Biberfeld G *et al.* Characteristics of the specific cell-mediated immune response in human immunodeficiency virus infection. *J Virology* 1987; 61: 2017-23.

98. Schrier R, Gnann Jr J, Landes R *et al.* T cell recognition of HIV synthetic peptides in a natural infection. *J Immunology* 1989; 142: 1166-76.

99. Krowka J, Stites D, Jain S *et al.* Lymphocyte proliferative responses to human immunodeficiency virus antigens in vitro. *J Clin Invest* 1989; 83: 1198-203.

100. Rosenberg E, Walker B. HIV type 1-specific helper T cells: a critical host defence. *AIDS Res Hum Retrovir* 1998; 14: 143-47.

101. Pinto L, João Covas M, Victorino R. T-helper cross-reactivity to recombinant proteins in HIV-2-infected patients. *AIDS* 1993; 7: 1389-91.

102. Pinto L, João Covas M, Victorino R. T-helper reactivity to simian immunodeficiency virus *gag* synthetic peptides in human immunodeficiency virus type 2 infected individuals. *J Med Virol* 1995; 47: 139-44.

103. Gotch F, McAdam S, Allsopp C *et al.* Cytotoxic T cells in HIV-2 seropositive Gambians. Identification of a virus-specific MHC-restricted peptide epitope. *J Immunol* 1993; 151: 3361-9.

104. Bertoletti A, Cham F, McAdam S *et al.* Cytotoxic T cells from human immunodeficiency type 2-infected patients frequently cross-react with different human immunodeficiency type 1 clades. *J Virol* 1998; 72: 2439-48.

105. Rowland-Jones S, Sutton J, Ariyoshi K *et al.* HIV-specific cytotoxic T-cells in HIV-exposed but uninfected Gambian women. *Nature Med* 1995; 1: 59-64.

106. Ariyoshi K, Cham F, Berry N *et al.* HIV-2 specific cytotoxic T-lymphocyte activity is inversely related to proviral load. *AIDS* 1995; 9: 555-9.

107. Nixon D, Huet S, Rothbard J *et al.* An HIV-1 and HIV-2 cross-reactive cytotoxic T-cell epitope. *AIDS* 1990; 4: 841-5.

108. Rowland-Jones S, Dong T, Dorrell L *et al.* Broadly cross-reactive HIV-specific cytotoxic T-lymphocytes in highly-exposed persistently seronegative donors. *Immunol Lett* 1999; 66: 9-14.

109. Andersson S, Larsen O, Dias F *et al.* Increased levels of B-chemokines and antigen specific T-cell proliferation in HIV-2 exposed non-infected individuals in Guinea-Bissau. In: Programme and abstracts of the 12th World AIDS Conference, Geneva, Switzerland, 28 June - 3 July 1998. Abstract 31133.

110. Levy J, Mackewicz C, Barker E. Controlling HIV pathogenesis: the role of noncytotoxic anti-HIV activity of CD8+ cells. *Immunol Today* 1996; 17: 217-24.

111. Sekigawa I, Kaneko L, Neoh N *et al.* Differences of HIV envelope protein between HIV-1 and HIV-2 – possible relation to the lower virulence of HIV-2. *Viral Immunol* 1998; 11: 1-8.

112. Thornhill M, Li J. Chemokines and chemokine receptors: the key to understanding AIDS. *Oral Dis* 1997; 3: 3-8.

113. Adams D, Lloyd A. Chemokines: leucocyte recruitment and activation cytokines (review article). *Lancet* 1997; 349: 490-5.

114. D'Souza P, Harden V. Chemokines and HIV-1 second receptors - confluence of two fields generates optimism in AIDS research. *Nature Med* 1996; 2: 1293-300.

115. Amara A, Gall S, Schwartz O *et al.* HIV co-receptor down-regulation as antiviral principle: SDF-1a-dependent internalisation of the chemokine receptor CXCR4 contributes to inhibition of HIV replication. *J Exp Med* 1997; 186: 139-46.

116. Aramori I, Zhang J, Ferguson S *et al.* Molecular mechanism of desensitisation of the chemokine receptor CCR-5: receptor signalling and internalisation are dissociable from its role as an HIV-1 co-receptor. *EMBO J* 1997; 16: 4606-16.

117. Pinto L, Williams M, Dolan M, Henkart P, Shearer G. B-chemokines inhibit activation-induced death of lymphocytes from HIV-infected individuals. *Eur J Immunol* 2000; 30: 2048-55.

118. Guillon C, van der Ende M, Boers P *et al.* Co-receptor usage of human immunodeficiency virus type 2 primary isolates and biological clones is broad and does not correlate with their syncytium-inducing capacities. *J Virol* 1998; 72: 6260-3.

119. Owen S, Ellenberger D, Rayfield M *et al.* Genetically divergent strains of human immunodeficiency virus type 2 use multiple co-receptors for viral entry. *J Virol* 1998; 72: 5425-32.

120. McKnight A, Dittmar M, Moniz-Pereira J *et al.* A broad range of chemokine receptors are used by primary isolates of human immunodeficiency virus type 2 as co-receptors with CD4. *J Virol* 1998; 72: 4065-71.

121. Mörner A, Björndal A, Albert J *et al.* Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in co-receptor usage. *J Virol* 1999; 73: 2343-9.

122. Kaneko K, Shimizu N, Soda Y, Takagishi K, Hoshino H. A CXC chemokine receptor, CXCR5/BLR1, is a novel and specific co-receptor for human immunodeficiency virus type 2. *Virology* 1999; 265: 264-73.

123. Endres M, Clapham P, Marsh M *et al.* CD4-independent infection by HIV-2 is mediated by Fusin/CXCR4. *Cell* 1996; 87: 745-56.

124. Reeves J, McKnight Á, Potempa S *et al.* CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3 and V28 for entry. *Virology* 1997; 231: 130-4.

125. Reeves J, Hibbitts S, Simmons G *et al.* Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism *in vivo*. *J Virol* 1999; 73: 7795-804.

126. Reeves J, Heveker N, Brelo A *et al.* The second extra-cellular loop of CXCR4 is involved in CD4-independent entry of human immunodeficiency virus type 2. *J Gen Virol* 1998; 79: 1793-9.

127. Schramm B, Penn M, Palacios E *et al.* Cytopathicity of human immunodeficiency virus type 2 (HIV-2) in human lymphoid tissue is co-receptor dependent and comparable to that of HIV-1. *J Virol* 2000; 74: 9594-600.

128. Van der Ende M, Guillon C, Boers P *et al.* Broadening of the co-receptor usage by human immunodeficiency virus type 2 does not correlate with increased pathogenicity in an *in vivo* model. *J Gen Virol* 2000; 81: 507-13.

129. Kaneko H, Neoh L, Takeda N *et al.* Human immunodeficiency virus type 2 envelope glycoprotein binds to CD8 as well as CD4 molecules on human T cells. *J Virol* 1997; 71: 8918-22.

130. Akimoto H, Kaneko H, Sekigawa I *et al.* Binding of HIV-2 envelope glycoprotein to CD8 molecules and related chemokine production. *Immunology* 1998; 95: 214-8.

131. Ichiyama K, Akimoto H, Neoh L *et al.* HIV type 2 can bind to CD8 molecules but does not infect CD8+ T cells. *AIDS Res Hum Retroviruses* 1999; 15: 687-8.

132. Edinger A, Clements J, Doms R. Minireview: Chemokine and orphan receptors in HIV-2 and SIV tropism and pathogenesis. *Virology* 1999; 260: 211-21.

133. Nathanson N, Hirsch V, Mathieson B. The role of non-human primates in the development of an AIDS vaccine. *AIDS* 1999; 13 (Suppl. A): 113-20.

134. Putkonen P. Live attenuated AIDS vaccines. *Immunologist* 1996; 4: 142-6.

135. Lamb-Wharton R, Joag S, Stephens E, Narayan O. Primate models for AIDS vaccine development. *AIDS* 1997; 11: 121-6.

136. Almond N, Heeney J. AIDS vaccine development in primate models. *AIDS* 1998; 12: 133-40.

137. Heeney J, Beverley P, McMichael A *et al.* Immune correlates of protection from HIV and AIDS - more answers but yet more questions. *Immunol Today* 1999; 20: 247-51.

138. Heeney J, Hahn B. Vaccines and immunology: elucidating immunity to HIV-1 and current prospects for AIDS vaccine development. *AIDS* 2000; 14 (Suppl. 3): 125-7.

139. Looney D, McClure J, Kent S *et al.* A minimally replicative HIV-2 live-virus vaccine protects *M. nemestrina* from disease after HIV-2 (287) challenge. *Virology* 1998; 242: 150-60.

140. Barnett S, Murthy K, Herndier B, Levy J. An AIDS-like condition induced in baboons by HIV-2. *Science* 1994; 266: 642-6.

141. Blackbourn D, Locher C, Ramachandran B *et al.* CD8+ cells from HIV-2-infected baboons control HIV replication. *AIDS* 1997; 11: 737-46.

142. Walker C, Moody D, Stites D, Levy J. CD8+ lymphocytes can control HIV infection in vitro by suppressing virus replication. *Science* 1986; 234: 1563-6.

143. Locher C, Blackbourn D, Barnett S *et al.* Super-infection with human immunodeficiency virus type 2 can reactivate virus production in baboons but is contained by a CD8 T cell antiviral response. *J Infect Dis* 1997; 176: 948-59.

144. Otten R, Ellenberger D, Adams D *et al.* Identification of a window period for susceptibility to dual infection with two distinct human immunodeficiency virus type 2 isolates in a *Macaca nemestrina* (Pig-tailed macaque) model. *J Infect Dis* 1999; 180: 673-84.

145. Putkonen P, Walther L, Zhang Y-J *et al.* Long-term protection against SIV-induced disease in macaques vaccines with a live attenuated HIV-2 vaccine. *Nature Med* 1995; 1: 914-8.

146. Putkonen P, Mäkitalo B, Böttiger D, Biberfeld G, Thorstensson R. Protection of human immunodeficiency virus type 2 - exposed seronegative macaques from mucosal simian immunodeficiency virus transmission. *J Virol* 1997; 71: 4981-4.

147. Ahmed R, Nilsson C, Biberfeld G, Thorstensson R. Role of CD8+ cell produced anti-viral factors in protective immunity in HIV-2 exposed but seronegative macaques resistant to intrarectal SIVsm challenge. *Scand J Imm*, (in press).

148. Lehner T, Wang Y, Cranage M *et al.* Protective mucosal immunity elicited by targeted iliac lymph node immunization with a sub-unit SIV envelope and core vaccine in macaques. *Nature Med* 1996; 2: 767-75.

149. Heeney J, Teeuwesen V, van Gils M *et al.* b-chemokines and neutralizing antibody titres correlate with sterilizing immunity generated in HIV-1 vaccinated macaques. *Proc Natl Acad Sci* 1998; 95: 10803-08.

150. Wang Y, Tao L, Mitchell E *et al.* Generation of CD8 suppressor factor and beta chemokines, induced by xenogeneic immunization, in the prevention of simian immunodeficiency virus infection in macaques. *Proc Natl Acad Sci USA* 1998; 95: 5223-8.

151. Wang Y, Tao L, Mitchell E *et al.* The effect of immunization on chemokines and CCR5 and CXCR4 co-receptor functions in SIV binding and chemotaxis. *Vaccine* 1999; 17: 1826-36.

152. Ahmed R, Nilsson C, Wang Y, Lehner T, Biberfeld G, Thorstensson R. B-Chemokine production in macaques vaccinated with live attenuated virus correlates with protection against simian immunodeficiency virus (SIVsm) challenge. *J Gen Virol* 1999; 80: 1569-74.

153. Leno M, Carter L, Venzon D *et al.* CD8+ lymphocyte antiviral activity in monkeys immunized with SIV recombinant Poxvirus vaccines: potential role in vaccine efficacy. *AIDS Res Hum Retroviruses* 1999; 15: 461-70.

154. Abimiku A, Franchini G, Tartaglia J *et al.* HIV-1 recombinant poxvirus vaccine induces cross-protection against HIV-2 challenge in rhesus macaques. *Nat Med* 1995; 1: 321-29.

155. Patterson J, Peng B, Abimiku A *et al.* Cross-protection in NYVAC-HIV-1-immunized/HIV-2-challenged but not in NYVAC-HIV-2-immunized/SHIV-challenged rhesus macaques. *AIDS* 2000; 14: 2445-55.

156. Zhang Y-J, Öhman P, Putkonen P *et al.* Neutralizing antibodies to autologous SIVsm isolates in experimentally infected cynomolgus monkeys correlate to prognosis. *Virology* 1993; 197: 609-15.

157. Mascola J, Schlesinger Frankel S, Broilinden K. HIV-1 entry at the mucosal surface: role of antibodies in protection. *AIDS* 2000; 14 (Suppl. 3): 167-74.

158. Biberfeld G, Putkonen P, Thorstensson R, Norrby E. Prevention of HIV-2 and SIVsm infection in cynomolgus monkeys by active or passive immunization. *AIDS Res Human Retroviruses* 1992; 8: 1511-3.

159. Andersson S, Mäkitalo B, Thorstensson R *et al.* Immunogenicity and protective efficacy of a human immunodeficiency virus type 2 recombinant canary-pox (ALVAC) vaccine candidate in cynomolgus monkeys. *J Infect Dis* 1996; 174: 977-85.

160. Travers K, Mboup S, Marlink R *et al.* Natural protection against HIV-1 infection provided by HIV-2. *Science* 1995; 268: 1612-15.

161. Travers K, Eisen G, Marlink R, Kanki P, Mboup S. Protection from HIV-1 infection by HIV-2. *AIDS* 1998; 12: 224-5.

162. Wiktor S, Nkengasong J, Ekpini E *et al.* Lack of protection against HIV-1 infection among women with HIV-2 infection. *AIDS* 1999; 13: 695-9.

163. Aaby P, Poulsen A, Larsen O *et al.* Does HIV-2 protect against HIV-1 infection? *AIDS* 1997; 11: 939-40.

164. Ariyoshi K, Schim van der Loeff M, Sabally S *et al.* Does HIV-2 infection provide cross-protection against HIV-1 infection? *AIDS* 1997; 11: 1053-4.

165. Kokkotou E, Sankalé J-L, Mani I *et al.* In vitro correlates of HIV-2-mediated HIV-1 protection. *PNAS* 2000; 97: 6797-802.

166. Rappaport J, Arya S, Richardson M, Baier-Bitterlich G, Klotman P. *J Mol Med* 1995; 73: 583-9.

167. Arya S, Gallo R. Human immunodeficiency virus (HIV) type 2-mediated inhibition of HIV type 1: a new approach to gene therapy of HIV-infection. *Proc Natl Acad Sci USA* 1996; 93: 4486-91.

168. Al-Harthi L, Owais M, Arya S. Molecular inhibition of HIV type 1 by HIV type 2: effectiveness in peripheral blood mononuclear cells. *AIDS Res Hum Retroviruses* 1998; 14: 59-64.

169. Browning C, Cagnon L, Good P *et al.* Potent inhibition of human immunodeficiency virus type 1 (HIV-1) gene expression and virus production by an HIV-2 tat activation-response RNA decoy. *J Virol* 1999; 73: 5191-5.

170. De Kock K, Odehouri K, Colebunders R *et al.* A comparison of HIV-1 and HIV-2 infections in hospitalised patients in Abidjan, Côte d'Ivoire. *AIDS* 1990; 4: 443-8.

171. Kestens L, Brattegaard K, Adjourlo G *et al.* Immunological comparison of HIV-1, HIV-2 and dually-reactive women delivering in Abidjan, Côte d'Ivoire. *AIDS* 1992; 6: 803-7.

172. Nkengasong J, Kestens L, Ghys P *et al.* Dual infection with human immunodeficiency virus type 1 and type 2: impact on HIV type 1 viral load and immune activation markers in HIV-seropositive female sex workers in Abidjan, Ivory Coast. *AIDS Res Hum Retrovir* 2000; 16: 1371-8.

173. Dieng-Sarr A, Popper S, Thior I *et al.* Relation between HIV-2 proviral load and CD4+ lymphocyte count differs in monotypic and dual HIV infections. *J Hum Virol* 1999; 2: 45-51.

174. Le Guern M, Levy J. Human immunodeficiency virus (HIV) type 1 can super-infect HIV-2 infected cells: Pseudotype virions produced with expanded cellular host range. *Proc Natl Acad Sci USA* 1992; 89: 363-7.

175. Shearer G, Clerici M. Protective immunity against HIV infection: has nature done the experiment for us? *Immunol Today* 1996; 17: 21-4.