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Abstract

The hallmark of HIV infection is the progressive depletion of its main cellular
target, the CD4+ T cells. Considerable evidence, however, indicate that cell types
that classically do not express CD4 may also be active sites of HIV infection.
These “non-conventional” targets for HIV infection may play a role in the
pathogenesis of HIV, especially at late stage of the disease, as the primary CD4+
cellular targets are depleted and these alternative cell types may play a more
dominant role in the propagation of the virus. Numerous cell types support HIV
entry but fail to produce virus progeny. Therefore, virus entry may not always
translate into reverse transcription, integration, and ultimately productive
replication. In this review, we will concentrate on productive HIV infection, unless
otherwise stated, of lymphoid and non-lymphoid cells that are not classically
associated with HIV. We also describe the role of CD4 protein up-regulation on the
cell surface of otherwise CD4+ cells, promoting their permissiveness to HIV
infection.
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productive infection of HIV while naive/unprimed T
cells support viral entry® but not productive infec-
tion®”. Naive cells respond poorly to recall antigens
and secrete a limited cytokine profile consisting
mainly of IL-2. They are designated as CD45RA+,
producing all three alternatively spliced exons. On
the other hand, memory cells respond to recall anti-
gens, produce an expanded cytokine profile, and
are designated as CD45R0+, expressing the small-
est isoform of CD45'87282  Although CD45RA/
CD45RO0O are extensively used to distinguish be-
tween naive (RA+) and memory/primed (RO+) T
cells, the presence of CD45RA+RO+ T cell popula-
tions®7:4481 especially during the S/G,/M stage of the
cell cycle®, reversion of RO+ memory cells to RA+
naive T cells in humans®6! and rats®, and the cellu-
lar proliferation and expansion of CD45RA+ T cells
without the acquisition of the CD45RO pheno-
type848589  collectively render the distinction be-
tween primed/memory and naive T cells on the sole
criteria of RA/RO expression inadequate.

Initial studies indicated that naive T cells harbor
replication competent HIV® but require an addi-
tional signal such as mitogenic stimulation to sup-
port HIV productive infection®”. Infected naive cell
populations have also been identified in HIV+ indi-
viduals®®® but it is unclear if such in vivo naive T
cells were once primed cells that reverted to a naive
phenotype®*®' or are truly naive T cells that are in-
fected in vivo. Recent data from ex vivo lymphoid
histocultures point to HIV productive infection of
naiveT cells®®. The infected naive T cells were in the
GO/G1A phase of the cell cycle, indicating that HIV
may not require active cell replication as previously
thought for productive infection. Cells at the G1B
cell cycle phase or greater promote higher degree
of HIV p24 production, presumably via higher level
of deoxyribonucleotides present for reverse tran-
scription’ or that actively replicating cells may ex-
press certain cellular factor(s) that may allow for the
stabilization of the HIV pre-integration complex. A
recent report has shown that cells that express
HLA-DR, an MHC-II molecule up-regulated on acti-
vated T cells, are associated with higher level of HIV
replication than parental cells lacking HLA-DR7%-71,
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pled with a previous report that IL-7 is a critical factor
produced by thymic stromal cells that mediates HIV
replication in thymocytes'® suggest that this inverse
relationship between IL-7 levels and CD4 counts may
also be due to IL-7 mediated enhanced viral load,
leading to direct or indirect CD4 loss.

HIV infection of monocyte/macrophages
and dendritic cells:

Although monocyte/macrophages support the
productive infection of HIV, they are not affected by
the cytopathic effect of HIV and hence are believed
to constitute a source of chronic HIV infection. HIV
productive or non-productive infection of dendritic
cells is regulated by whether the dendritic cells are
immature or mature, respectively®. Based on the SIV
model, dendritic cells appear to constitute an initial
target for primary sexual HIV infection%76. Although
dendritic cells are infected by HIV, these cells play
a major role in virus transmission to susceptible
cells. Recently, a dendritic cell receptor (DC-SIGN)
has been implicated in efficiently binding HIV and
transmitting the virus to T cells®3. A DC-SIGN homo-
logue (DC-SIGNR) expressed on sinusoidal en-
dothelial liver cells, endothelial lymph node cells,
and placental villi may play a role in HIV transmis-
sion to cells in lymph node as well as in vertical
transmission of HIV8275,

CD4 expression on CD4 negative cells:
A mechanism of promoting susceptibility
to HIV infection

Lessons learned from efforts to develop the
mouse model to study HIV pathogenesis indicated
that CD4 expression alone is not sufficient to induce
HIV entry. Chemokine co-receptors, belonging to
the family of G protein-coupled seven-transmem-
brane-domain proteins (CXCR4, CCR1, CCR2a/b,
CCR3 and CCR5), are essential for HIV fusion. The
cellular tropism of HIV is dictated by the expression
of CD4 and chemokine co-receptors. Given that HIV
utilizes CD4 as a receptor to gain entry to target
cells, expression of CD4 along with one of the
chemokine co-receptors (CCR3, CCR5, CXCR4) on
target cells is critical for HIV infection. CD4 is ex-
pressed on Thelper cells and a subset of mono-
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cells, respectively. However, in the periphery, 3-5%
of normal T cells express both CD4 and CD8 on
their surface. During thymic T cell development, a
double positive (CD4+CD8+) T cell stage exits. How-
ever, it is unlikely that these peripheral CD4+CD8+
T cells are prematurely released from the thymus
given their lack of CD1a expression, which is a
marker of premature thymic T cells®. To date, a
number of studies have shown that under the ap-
propriate conditions CD4 can be up-regulated on
the surface of CD8+ T cells. Specifically, CD3/CD28
co-stimulation*38,  superantigen (Staphylococcal
enterotoxin B, SEB)?4&0 stimulation, or allogeneic
dendritic cell interaction® induces the de novo ex-
pression of CD4 as demonstrated by elevation in
CD4 mRNA43 and protein expression on CD8+ T
cells?44380.94 Both naive and memory CD8+ T cells
can express CD4 upon stimulation. However, the
purified naive CD8+ population is more responsive
to CD4 induction*®. In all of these studies, while the
percent induction of CD4 expression on CD8+ T
cells was substantial, the intensity of CD4 expres-
sion as evaluated by flow cytometry, was not as in-
tense as that observed on single positive CD4+ T
cells, reflecting a “dim” expression of CD4 on CD8+
T cells (Figure 1). We will refer to these cells as
CD4dmCD8P9 cells in this review.
CD49mCD8 9" T cells appear to be phenotypi-
cally distinct from CD8+ T cells that do not up-regu-
late CD4 expression®. These cells express signifi-
cantly higher levels of CD95 (Fas receptor and a
marker for primed cells), CD25 (IL-2 receptor a
chain), CD38 (activation marker), CD69 (an early
marker of T cell activation), CD28 (receptor for co-
stimulatory signal), and CD45RO (marker of
primed/memory T cells) than their CD8+CD4- counter-
parts®. CD49mCD8 e T cells are also predominately
TCR ap cells?*8, The finding that CD49mCD8Prigt T
cells are an activated phenotype of CD8+ T cells
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suggests that CD4 up-regulation on CD8+ T cells
may function as an additional marker to identify acti-
vated CD8+ T cells, however, currently no data ex-
ists regarding the role that CD49mCD8Pr e T cells
may play in normal T cell biology and in HIV disease.
In recent years, a model has emerged of CD4+ T
cell help for effective CD8+ T cell immune re-
sponse. According to this model, CD4 and CD8 T
cells must recognize the same antigen presented
on the same antigen presenting cell (APC). In this
manner, CD4 cells must secret short-range cy-
tokines to activate CD8+ T cells™#2. Having CD4
and CD8 expression on the same cell may allow for
CD4 and CD8 co-recognition of the antigen being
presented on the same APC. Additionally, the find-
ing that the induced CD4 protein on activated CD8+
T cells is linked to the Src family protein tyrosine ki-
nase p56'° (Lck)?, a kinase that is required for the
CD4-mediated signal transduction cascade, indi-
cates that CD4 may be functional and may provide
the necessary T-helper function without a require-
ment for an adjacent CD4+ T cells. Recently, CD8+
T cells, with HIV specificity, were genetically engi-
neered to express CD4¢ molecule®. The rationale
for this approach was to generate HIV-specific
CD8+ T cells that provide their own helper function
via the expression of the CD4 molecule. These engi-
neered CD4+CD8+ cells homed preferentially to
rectal tissue where enhanced reduction in rectal viral
load was detected among CD4+CD8+ transfused
HIV+ patients®. This recent finding points to a func-
tional role for the CD4 molecule on CD8+ T cells.
We have shown that CD49mCDgP et T cells ex-
press both CXCR4 and CCR5 (unpublished data)
and others have reported that CD49mCDgPriot T
cells are susceptible to infection by both CCR5-de-
pendent® and CXCR4-dependant HIV strains*®. We
have examined approximately 200 HIV+ patients for
the presence of CD49mCD8 " T cells and found
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Fig. 2. Generation of CD49mCD8id" and CD4rig"CD8Y™ T cells: These cells were generated by purifying CD4 and CD8 T cells
and co-culturing the cells together in the presence of PHA (b) or by PHA-stimulating PBMCs (d). Unstimulated cultures are shown
in (a) and (c), respectively. Gating is shown as indicated in the figure.

levels of CD49mCD8P19" T cell expression greater
than the normal 3-5% range in only 5 patients.
Given that infection of these cells in vivo can lead to
the down-regulation of CD4 and that no information
exists on the stability of this phenotype in vivo, we
were not surprised by this low frequency of detec-
tion of these cells in HIV+ patients (Sullivan et al, un-
published data).

CD49mCD8M9" cells may play a role in HIV
pathogenesis. HIV infection is associated with a
progressive loss of CD4+ T cells. Induction of CD4
on CD8+ T cells may be a normal physiological re-
sponse and might play a role in maintaining
“helper” responses in HIV infection. On one hand,
CD4 induction on CD8+ T cells may compensate for
the functional loss of CD4+ T cells, especially since
some individuals with low CD4 counts do not expe-
rience opportunistic infections. On the other hand,
CD4 expression on CD8+, T cells may also be detri-
mental because CD8+ |
tible to virus replication. CD8+ T cell loss is often as-

3 Do+ T colls may be & phoUBEAMGAcA éﬁ&g‘i&dﬁ

this depletion. Additionally, as CD4 cells are pro—
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cells (CD4+CD19+) represent an activated pheno-
type. Unprimed B cells express CD4mRNA and not
CD4 protein, suggesting a post-transcriptional block
to CD4 expression in these unprimed B%. Activated
CD4+CD19+ cells are susceptible to productive in
vitro HIV infection by both T-tropic and M-tropic
strains of HIV2%6, Although in vivo, complement
and anti-HIV antibodies may enhance B cell HIV in-
fection®®; the presence of infected CD4+CD19+
cells in vivo is undetermined.

CD4 expression on non-T/ non B-
lymphocytes (NKT) and eosinophils

The CD4 molecule is also expressed on other
cells, including NKT and eosinophils. Unlike NK
cells, NKT cells are characterized by the expression
of NK-associated molecules along with an interme-
diate expression of the T cell receptor (TCR) and ei-
bgc 4 (CD44NR (CD8+NK), or neither
molecule (CD4- CD8 Human NKT TCR is lim-
repertorre In mice, the equrv-

TCR Va14Ja281Vp8.2) s
abundant in CD4+ NKT cells but CD8+ NKT cells
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munology and even in HIV disease has been ham-
pered by the low frequency of these cells in the
blood. NKT cells constitute only 0.1- 0.5% of total
peripheral blood lymphocytes (reviewed in¥). The
recent report of ex vivo expansion of NKT through
the use of alpha-galactosylceramide KRN7000
loaded monocyte-derived dendritic cells®, which
present this antigen in the context of CD1d to NKT
cells, should pave the way for studies to evaluate
the susceptibility of CD4+ NKT cells to HIV infection
in vitro and in vivo.

During the maturation process of eosinophils,
these cells express higher levels of CD4, which de-
clines as eosinophils mature®>*6. Low level of CD4
expression on mature peripheral eosinophils still
supports HIV productive infection®'. Infectivity as-
says utilizing CD4+ eosinophilic cell line
(AML14.3D10) indicate that these cells are infected
by T-tropic but not M-tropic HIV, even though this
particular cell line is positive for both CXCR4 and
CCR5%. HIV provirus in eosinophils was also de-
tected in 11% of a small cohort of HIV+ patients™®.
Given that eosinophils are abundant in the gastroin-
testinal and the urinary tract, HIV infection of
eosinophils may confer HIV access to these target
tissues, which may contribute to some of the re-
ported dysregulation associated with HIV tropism in
these sites.

CD4 antigen transfer via microvesicle
formation as a possible mechanism
promoting cellular susceptibility to HIV
infection

Thus far we have introduced the concept of de
novo CD4 expression on CD4 negative cells, allow-
ing for HIV infection. An interesting yet understud-
ied concept is concerning the role of antigen trans-
fer in HIV pathogenesis. Considerable data indicate
that microvesicle, also referred to as microparticles
or exosomes, are spontaneously released from
cells. These microvesicles are 0.1-2 ym in size and
contain cytoplasmic components packaged within
the plasma membrane of the original cell and often
express host cell surface proteins®”%7. Microvesi-
cles may also be functional. In one example, mi-
crovesicles formed from B cells were able to pre-
sent antigen and activate T cells®. Microvesicles
may also be able to transfer cell surfage
from one cell to anotherm@ e@ayrfﬁ ;@ﬁ@tl

vided functional relevance to this transfer in the

context of HIV. Mack et al*® trate I- . . ) A
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our experience, co-culturing of CD4 &n 8
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and CD4+ T cells in hyper-immune activated back-
drop in HIV+ patients may lead to the expression of
these phenotypes that will add to the complexity of
potential cellular targets for HIV infection.

CD4-independent HIV infection
Infection of lymphoid cells

We previously described the role that CD4 up-
regulation on CD8+ T cells may have in HIV patho-
genesis. Evidence of HIV infection of CD4-CD8+ T
cells are also slowly emerging?°4%%2%_ HIV clones
isolated from naturally infected CD4-CD8+ T cells in
vitro productively infected CD4-CD8+ primary and
CD4-CD8+ T cell clones, independent of CD4,
CXCR4, or CCR5 usage®. Blocking of the CD8 co-
receptor in these studies also blocked HIV infec-
tion%, demonstrating that the CD8 molecule in
some occasions can be used as a receptor for HIV,
although it is still unclear if this adaptation is com-
mon in vivo, an artifact of the cloning process to iso-
late these HIV strains, or a unique characteristic of
these HIV clones. In vivo, HIV provirus was also de-
tected in CD4-CD8+ T cells®. Three possible sce-
narios exist for in vivo detection of HIV provirus in
CD4-CD8+ T cells: 1) the initial infection could have
been in CD8+ T that up-regulated the CD4 mole-
cule (CD4+CD8+) but that HIV infection led to the
down-regulation of the CD4 molecule. 2) Infection of
lymphocyte at the double positive stage in the thy-
mus or earlier’”’, leading to harboring of the provirus
as the cells mature and exist into the periphery®.
This scenario maybe supported by the predominant
presence of HIV provirus in CD45RA+ T cells and
not CD45R0O+ T cells®'. However, it is unclear from
this study if the RA+ CD8+ T cells were also RO+
cells, which is characteristic of a primed phenotype.
3) Genuine infection of CD4-CD8+ T cells through a
CD4-independent mechanism. Further studies
need to be performed to distinguish between these
three pathways. NK cells lacking CD4 expression
can be non-productively infected by HIV73. NK cell
function is reported to be impaired in HIV disease
but normalizes after viral suppression®, which is
most probably due to HIV-mediated immune dys-
regulation rather than direct cytopathic effect of HIV
on NK cells. Recently a subpopulation of NK cells,
identified as CD3-CD4+TCR-CD56+, was reported

characterized as NKT cells. Additionally, it is un-
dent.
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Infection of non-lymphoid cells
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cytokine production® as well as in transmigration
studies across an epithelial barrier®®, which accord-
ing to one study appear to normalize after highly ac-
tive antiretroviral therapy®. Basophils express
CCR8 but no data exists to date on their suscepti-
bility to HIV infection?’.

HIV infection of renal cells may explain the re-
ported HIV-associated renal failure. Transgenic
model of HIV associated nephropathy (HIVAN)
demonstrated HIV infection of glomerular and tubu-
lar epithelial cells® and HIV provirus was detected
from kidney biopsies of HIV+ patients with
HIVAN™17 Hepatic cells may also be a source of
HIV. In one study, a hepatoma cell line was produc-
tively infected by HIV in a CD4-independent mech-
anism'?,

Fifty percent of HIV infected patients not under-
going antiretroviral therapy develop HIV-associated
central nervous system dysfunction. The underlying
mechanism is still elusive. HIV predominantly repli-
cates in the macrophage/microglial lineage of brain
cells®. However, brain autopsy of HIV+ patients
provided evidence for HIV p24 and HIV DNA in as-
trocytes and brain endothelial cells®. HIV p24 was
not detected in oligodendrocytes®” but HIV DNA
was found in these cells’. Oligodendrocytes cells,
however, were positive for HIV Tat, supporting the
concept that Tat may be secreted from infected
cells to uninfected cells, where it may play a role in
brain cell cytotoxicity?®®7. in vitro HIV infection of as-
trocytes is initially productive but then persists as a
latent infection®, suggesting that brain cells pro-
vide a reservoir for HIV.

HIV infection of cells of the male and female re-
productive system can negatively impact the trans-
mission of HIV both sexually and from mother to
child. HIV integration into the genome of the germ
line may conceivably allow for HIV transmission
from one generation to the next. Studies evaluating
HIV infection of sperm cells have been discor-
dant88364 | imited in situ hybridization, electron mi-
croscopy, and PCR studies have implicated viral
particles and/or HIV DNA in sperms®4%. An alter-
native receptor (GalAAG) for HIV was even impli-
cated for HIV entry into sperms*. Other studies,
however, demonstrated that motile spermatozoa or
immature sperms do not harbor proviral DNA and
that only contaminating T cells and macrophages in
sperm cell preparatio re the sourc HlV in-
fected cells in semene“é\r@v thete® t i665h
have been conducted to evaluate the susceptlblh

and replicate in sperm cells. Oooytes on the other

hand, are negative f ﬁ[h
even GalAAC and are%s Q%(EIV mggpoi\l ?f

cording to one study*.

Concluding Remarks
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function is unknown. It is interesting to note that
CD4 is also constitutively expressed on a subset of
monocyte/macrophages. The role of this constitu-
tive CD4 expression on cells that do not require
antigen recognition in the context of MHC-II repre-
sentation is a puzzle. Does CD4 have another yet
unidentified function? This question remains to be
answered. Additionally, productive HIV replication
may not be a prerequisite for transmission to T cells.
Many cell types bind HIV and transmit the virus to
susceptible targets. While the role of dendritic
cells®78 and follicular dendritic cells?®3 is well es-
tablished in the transmission of HIV to T cells, re-
cently red blood cells, neutrophils, and even platelets
were shown to efficiently bind HIV and transmit the
virus to T cells®®. These different pathways of HIV in-
fection and even transmission to susceptible targets
indicate that HIV is far more ubiquitous than initially
thought at the beginning of the HIV epidemic.
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