

HIV-1 Entry Inhibitors

Ursula Dietrich

Georg-Speyer-Haus, Frankfurt, Germany

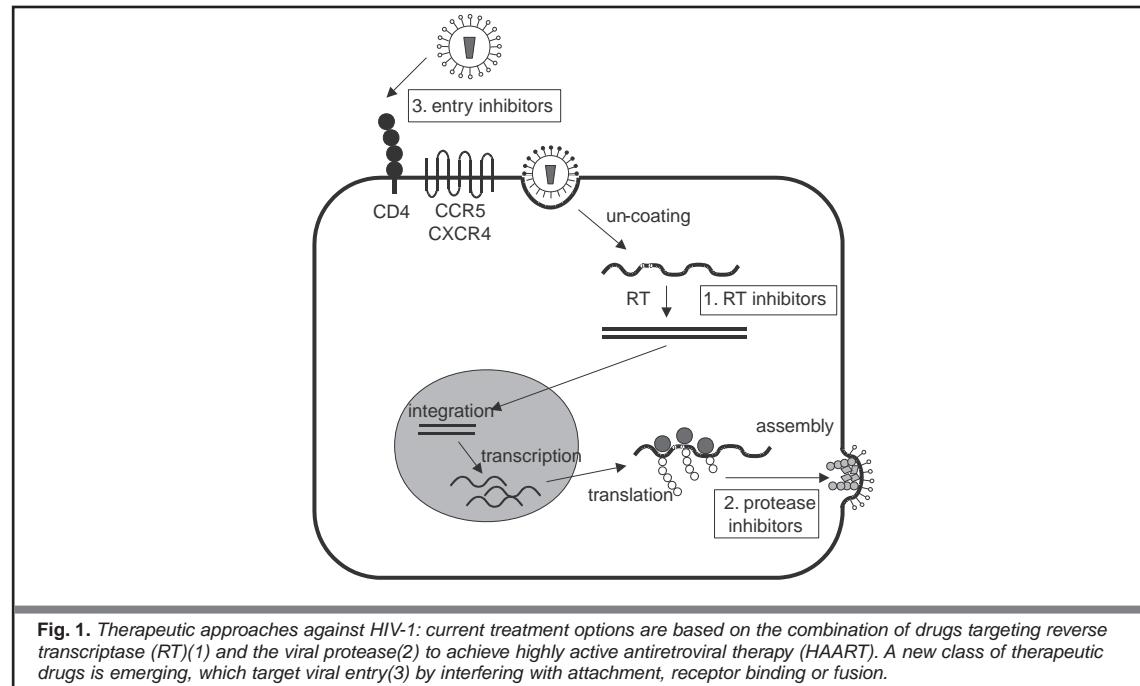
Abstract

The discovery of chemokine receptors as essential cofactors for HIV-1 entry into target cells, as well as the publication of crystal structures of viral molecules involved in the entry process, has stimulated the development of a broad spectrum of novel antiviral substances targeting this initial step in the virus replication cycle. The aim of this article is to review the antiviral compounds targeting different steps during HIV-1 entry: 1) attachment inhibitors, which block the initial binding of the virus to the cell, 2) compounds interfering with subsequent coreceptor binding, and 3) fusion inhibitors, which prevent the fusion process between viral and cellular membranes. Some of these compounds have already entered clinical phase I/II trials and are promising drugs due to their mode of action, i.e. inhibition of *de novo* infection of cells and their potent antiviral activity. Thus, new therapeutic options will be available to be used in combination with highly active antiretroviral therapy (HAART) to treat drug-naïve, but also drug-experienced, HIV-positive persons. Furthermore, insights into the process of HIV-1 entry also stimulate new approaches for vaccine development.

Key words

HIV-1. Entry inhibitors. Attachment. CD4. Chemokine receptors. Fusion.

Introduction

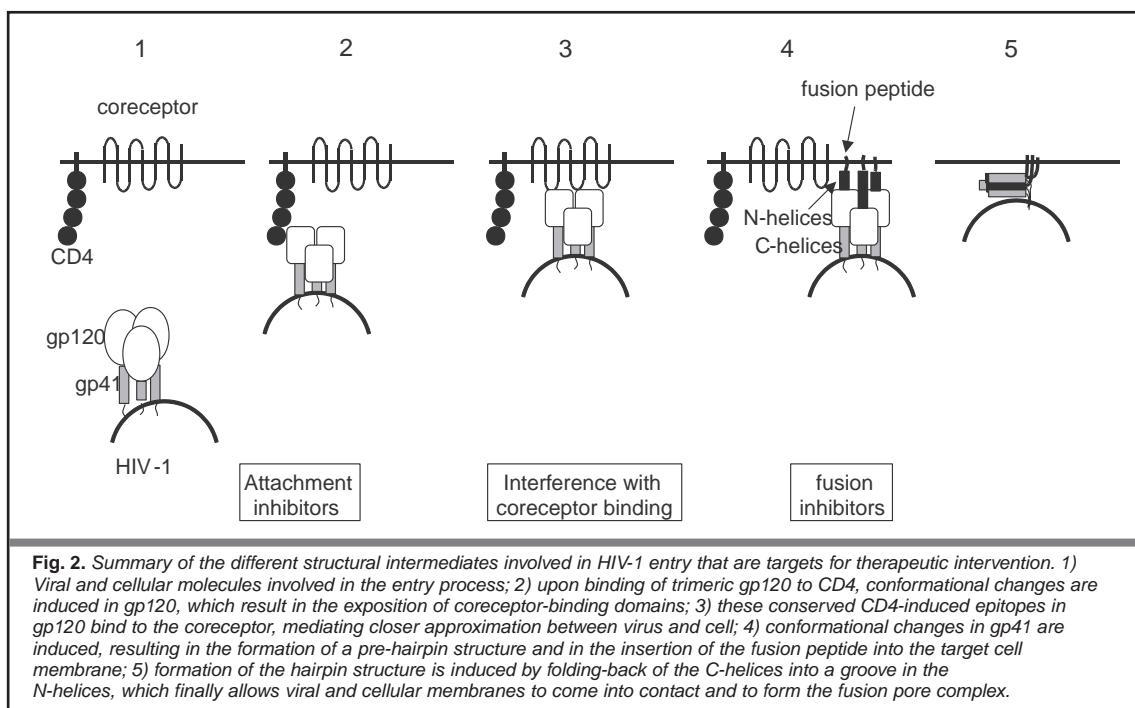

Drugs currently approved for the treatment of infections with the human immunodeficiency virus type I (HIV-1) target two key viral enzymes, reverse transcriptase (RT) and protease^{1,2} (Fig. 1). Today, 16 such antiviral drugs are available, and generally 2-3 RT inhibitors are combined with 1-2 protease inhibitors to achieve highly active antiretroviral treatment (HAART). Despite the success of HAART in terms of successful reduction of the viral load in patients and a remarkable decline in morbidity and mortality, HAART is not able to completely suppress viral replication in the patients^{3,4}. Besides insuffi-

cient drug potency and the presence of sanctuaries in the body that are not accessible for certain drugs, severe adverse effects frequently result in non-adherence of the patients to the strict drug regimens. This scenario favours the emergence of drug-resistant virus variants, which is an increasing problem in today's HIV-1 therapy (reviewed in⁵).

In order to augment the potency of currently available antiretroviral drug combinations and to achieve the inhibition of drug-resistant virus variants, more effective drugs, which target additional steps in the viral replication cycle, are urgently needed. Very promising candidates are emerging in the class of HIV-1 entry inhibitors (Fig. 1). New insights into the molecular details of HIV-1 entry into target cells, as well as the knowledge of the crystal structures of viral molecules involved in this process⁶⁻¹², have led to the development of antiviral molecules targeting different steps during HIV-1 entry. As these drugs interfere with the *de novo* infec-

Correspondence to:

Ursula Dietrich
Georg-Speyer-Haus
Institute of Biomedical Research
Paul-Ehrlich-Str. 42-44
60596 Frankfurt
Germany


tion of cells, they should limit the spread of the virus in the body very efficiently and be active against drug-naïve viruses as well as against variants resistant for RT and protease inhibitors.

HIV-1 entry into target cells

Entry of HIV-1 into target cells is a multi-step process involving the timely and locally ordered exposure of previously occluded entry domains within the viral glycoproteins gp120 and gp41 (reviewed in^{13,14}, Fig. 2). HIV-1 has probably evolved this complex mechanism of entry to protect the functionally important and necessarily conserved entry do-

mains from the attack of the immune system. The gradual exposure of entry domains results from conformational changes within the viral glycoproteins, which are triggered by multiple receptor interactions. By this mechanism, the crucial entry epitopes are only exposed when the virus is already close enough to the cell membrane to initiate entry, thus minimising exposure of these domains to antibodies.

Infection of cells by HIV-1 begins with the interaction of the viral surface glycoprotein gp120 with specific receptors on the target cells, thereby limiting the host range of the virus to the cells bearing these receptors. The main receptor for HIV-1,

and the first recognized as such, is the CD4 receptor present on T4-lymphocytes and monocytes/macrophages^{15,16}. The interaction between gp120 and CD4 is necessary to trigger conformational changes within gp120, resulting in the exposure of previously occluded, conserved epitopes, which then bind to a second receptor belonging to the large family of chemokine receptors, a subclass of G-protein coupled receptors (reviewed in^{17,18}). Although many chemokine receptors are known, and a substantial amount of those are known to bind HIV or the simian immunodeficiency virus SIV *in vitro*, mainly two chemokine receptors, CCR5 and CXCR4, are relevant for infection *in vivo*¹⁹⁻²¹. CCR5 is the main receptor for non-syncytium inducing (NSI) HIV-1 variants (today referred to as R5) in the early phase of the infection and, therefore, is the essential receptor during primary HIV-1 infection. Syncytium inducing (SI) virus variants appearing later during the course of the disease use CXCR4 (R4)²². After coreceptor binding, additional conformational changes within gp120 lead to exposure of the fusion peptide of the viral transmembrane protein gp41 and to the activation of gp41 from a pre-fusogenic into a fusogenic conformation, which ultimately mediates fusion between the viral and cellular membranes.

The sequential exposure of highly conserved *env* domains critical for the HIV-1 entry process offers multiple opportunities for therapeutic intervention, as all structural intermediates represent potential targets for antiviral drugs aiming at interfering with HIV-1 entry (Fig. 2, table 1).

1. Attachment inhibitors

Polyanionic substances

The interaction of the viral glycoprotein gp120 with the CD4 receptor can be inhibited by polyanionic substances such as polysulphates, polysulphonates or polycarboxylates²³⁻²⁵. On the other hand, polyanionic cell surface heparans are known to be involved in the attachment process between virus and cell before the specific interaction with the receptors^{26,27}. Polyanionic molecules probably exert their antiviral activity by neutralizing positively charged amino acids within gp120, which are necessary for receptor binding. Consequently, resistance development to one such compound, dextran sulphate, is associated with single amino acid substitutions within gp120²⁸. The inhibitory effect of polyanionic molecules increases with molecular weight and the degree of sulphation. Sulphated polysac-

Table 1. Antiviral substances targeting HIV-1 entry

Compounds	Characteristics	Clinical status	References
1. Attachment inhibitors			
polysulfates	interaction with viral envelope;	under consideration as vaginal microbicides	23, 24, 25, 29
polysulfonates	mainly against R4 HIV-1		34, 35
polycarboxylates			
PRO 2000	napthalene sulfonate polymergel formulation in 11 kDa protein from Cyanovirin-N	phase I	36, 37, 38
Cyanovirin-N	Cyanobacterium, interacts with sugars in Env	pre-clinical	51-54
PRO 542	soluble CD4-IgG	phase I	47-50
2. Coreceptor interference			
Met-RANTES	RANTES derivatives	mostly pre-clinical	61
L-RANTES	blocking interaction of gp120 with CCR5		60
AOP-RANTES			62
NNY-RANTES			63
3-68 RANTES			64
9-68 RANTES			65
C1.C5-RANTES			63
TAK-779	0.5 Da small molecule inhibitor, targets pocket between in TM of CCR5	pre-clinical	66, 67
Schering-C	small molecule CCR5 antagonist	pre-clinical	68
AMD3100	bicyclam, CXCR4 antagonist	phase 2	78, 79
T22, T134, T140	peptide antagonists of CXCR4	pre-clinical	81-83
ALX40-4C	selected as Tat/TAR	pre-clinical	86
CGP64222	inhibitors, inhibit CXCR4		85, 87
3. Fusion inhibitors			
T20 = DP178	C-peptide binding to N-helices of gp41	phase 2	96-98
C34	C-peptide extending into the pocket of N-helic	pre-clinical	90-94
N36	N-peptide	pre-clinical	90-94
Cyclic D-AA-peptides	target pocket in N-helices	pre-clinical	99

charides are able to block HIV-1 replication *in vitro* at concentrations as low as 0.1 to 0.01 µg/mL²⁹. However, the inhibitory effect is mainly restricted to CXCR4 using HIV-1 isolates due to their increased basic charge in the V3 loop. In contrast, infection of macrophages by CCR5 using HIV-1 isolates can even be enhanced by high molecular weight dextran sulphate³⁰.

Clinical trials of polyanionic compounds did not result in remarkable antiviral effects, probably due to low bioavailability and the fact that *in vivo* CCR5 using HIV-1 isolates predominate, which can hardly be inhibited³¹⁻³³. However, some substances are under consideration as vaginal microbicides, especially since their antiviral effect is not limited to HIV-1, but also includes other viruses like herpes viruses CMV or HSV^{34,35}.

PRO 2000, a naphthalene sulphonate polymer, is a promising candidate for antiviral vaginal microbicides³⁶. This substance was able to completely block proviral formation *in vitro*³⁶ and in ectocervical explants exposed to HIV-1BAL and three other primary HIV-1 strains at a concentration of 100 µg/mL³⁷. A gel formulation of PRO 2000 was tested in a clinical phase I trial in healthy women, showing good tolerance³⁸.

Soluble CD4 and derivatives

Another possibility to interfere with the binding of gp120 to cell-bound CD4 is the use of soluble CD4 receptor preparations (sCD4). The obligatory interaction of primary HIV-1 isolates with CD4 has made this molecule an attractive antiviral target since the late eighties. Recombinant sCD4 was shown to inhibit infection of T-cell lines with laboratory HIV-1 strains at concentrations of 2-10 µg/mL^{39,40}. However, primary HIV-1 strains require a much higher dose of sCD4 than laboratory HIV-1 strains in order to be neutralized, the 90% inhibitory dose (ID₉₀) being 200- to 2700-fold higher for the patients' isolates⁴¹. Clinical trials showed sCD4 to be pharmacologically safe; however, the plasma half-life of sCD4 was only 45 minutes and peak plasma levels of only 300 ng/mL were achieved at the highest dose (30 mg per day)⁴²⁻⁴⁴. This was too low by far to neutralize patients HIV-1 isolates.

Thus, the pharmacokinetic properties of sCD4 had to be modified in order to achieve a more stable and prolonged production of the molecule. Genetic engineering of cells *in vitro* for the continuous production of sCD4 after retroviral transfection resulted in a maximum of 15 ng/mL sCD4^{45,46}. Although the number of infected cells could be reduced, complete protection was never achieved and the number of transfected cells was low, especially for primary cells.

Another option to increase the stability of sCD4 is through multimerisation. PRO 542 is a recombinant, tetravalent, antibody-like fusion protein, where the Fv portions of the immunoglobulin (Ig) heavy and light chains have been replaced by the two N-terminal Ig-like domains of CD4⁴⁷. Compared to monomeric sCD4, PRO 542 has demonstrated 100-

fold greater activity against primary HIV-1 isolates^{48,49}. The concentration required to achieve 90% reduction in viral infectivity *in vitro* (IC₉₀) was 20 µg/ml. *in vivo*, serum concentrations of > 500 µg/mL were obtained after administration of a single dose (10 mg/kg) of PRO 542 and concentrations remained above the *in vitro* IC₉₀ for longer than one week⁵⁰. One subject showed >2-log reduction in plasma viral load 1 to 2 weeks after a single-dose intravenous administration of PRO 542. Further antiviral activities of this promising compound have to be tested in phase 2 clinical trials.

Other substances

Cyanovirin-N is an 11-kDa protein isolated from the cyanobacterium *Nostoc ellipsosporum* with broad neutralizing activity against HIV-1 and HIV-2, and also other enveloped viruses like the feline immunodeficiency virus FIV, human herpesvirus HHV6 and measles virus⁵¹. The inhibiting mechanism of Cyanovirin-N is not very clear. The molecule is known to bind to a conserved region of gp120, inhibiting binding to CD4⁵². However, Cyanovirin-N also seems to act at later stages during coreceptor binding and membrane fusion⁵³. The broad antiviral effect may be due to interactions of Cyanovirin-N with high-mannose oligosaccharides present on Env proteins⁵⁴.

2. Compounds interfering with coreceptor binding of HIV-1

The family of chemokine receptors, which are G-protein coupled 7-transmembrane receptors, and their ligands (chemokines), are involved in the trafficking of leukocytes in immune surveillance and inflammation (for review see^{17,18}). As such, chemokine receptors play an important role in the pathophysiology of inflammatory and allergic diseases, but also in hematopoiesis, angiogenesis, differentiation and development and become an attractive therapeutic target in a variety of diseases like asthma, autoimmune diseases, etc.⁵⁵. Some chemokine receptors are used by intracellular pathogens like *Plasmodium vivax*⁵⁶ or HIV-1¹⁸ for entry and transmission and, thus, represent novel anti-parasitic and antiviral targets.

Chemokine receptors CCR5 and CXCR4 are the essential coreceptors for HIV-1 *in vivo*, although nine additional coreceptors are able to mediate infection with HIV-1, HIV-2 or SIV *in vitro*¹⁷. The discovery of CCR5 as coreceptor for HIV-1 was based on the knowledge that β-chemokines RANTES, MIP-1α and MIP-1β, the natural ligands of CCR5, have antiviral activity against primary HIV-1⁵⁷, the antiviral activity being mediated either by steric hindrance or by chemokine-induced receptor internalisation. Therefore, the development of receptor antagonists, which are still able to bind the receptors but do not activate them, was an obvious aim in the development of antivirals interfering with HIV-1 entry at the level of coreceptor binding. Furthermore, the fact

that individuals with a 32-basepair deletion in the CCR5 gene, which results in premature termination of the protein and the lack of expression at the cell surface, are highly resistant to infection with HIV-1 (however these people are infectable by rare virus variants able to use CXCR4 during primary infection), proves an essential role of CCR5 for primary HIV-1 infection^{58,59}.

As the absence of CCR5 from the cell surface in these individuals does not impair their health, blocking of CCR5 by receptor antagonists should also signify the absence of drastic side effects upon therapeutic treatment. For this reason, CCR5 is particularly interesting as an antiviral target.

Agents targeting CCR5

Chemokine derivatives

The easiest way to produce CCR5 antagonists is by modification of the natural chemokine ligands for CCR5. For RANTES, the chemokine with the highest affinity for CCR5, it was shown that antiviral activities could be uncoupled from signalling functions. This opens new perspectives for the development of chemokine-based therapeutic approaches against HIV-1 in the absence of inflammatory side effects⁶⁰. A number of amino-terminal RANTES modifications, which show antiviral activity against HIV-1, have been developed. Met-RANTES⁶¹ and L-RANTES⁶⁰ differ from natural RANTES by the addition of an extra methionine or leucine at the N-terminus of the protein. AOP-RANTES was produced by chemical coupling of an alkyl chain (aminoxyptenyl) to the amino terminal serine of RANTES⁶². NNY-RANTES (N-nonanoyl) is a nonanoic acid derivative of RANTES⁶³. Other variants resulted from deletions of 2 (3-68 RANTES⁶⁴) and 8 amino acids (9-68 RANTES⁶⁵) at the N-terminus of RANTES. In C1.C5-RANTES, serine 1 and 5 of RANTES were substituted with cysteines. Although AOP-RANTES showed the best antiviral activity *in vitro*, with an IC₅₀ about 10-fold lower than natural RANTES, this molecule behaved as a CCR5 agonist; i.e. it also activated the receptor in terms of intracellular calcium mobilization⁶⁰. C1.C5-RANTES was the best receptor antagonist, mediating good antiviral activity (IC₅₀ 5-fold lower than RANTES) without activating CCR5 and thus may represent a good lead-compound for HIV-specific intervention.

However, one has to be aware that blocking of CCR5 alone may result in the selection of virus variants able to use CXCR4 or even other coreceptors. In fact, this could be nicely shown in the hu-PBL-SCID mouse model⁶³, where treatment with NNY-RANTES was shown to partially protect mice from infection with HIV-1. However, infected mice contained amino acid substitutions in the V3-region known to confer a coreceptor switch to CXCR4.

Non peptidic small molecule inhibitors

TAK-779 is a small molecule (531Da) known to specifically target CCR5⁶⁶.

The compound inhibits infection of target cells with HIV-1 isolates using CCR5 as coreceptor and also inhibits ligand-induced signalling. The IC₅₀ values in peripheral blood mononuclear cells range from 10 to 100 nM, depending on the HIV-1 isolates used. Interestingly, TAK-779 blocks the interaction between viral gp120 and CCR5 by binding to a pocket located between transmembrane helices 1, 2, 3 and 7 of CCR5⁶⁷. Probably, the molecule interacts first with the extracellular domains of CCR5 by its hydrophilic part dictating the coreceptor specificity, and then inserts its hydrophobic moiety into the transmembrane pocket. Nothing is known yet about the pharmacological properties of TAK-779.

Schering-C is another small molecule antagonist for CCR5 having sub-nM activity in HIV-1 entry assays⁶⁸. This compound and others have been isolated in high-throughput screenings for CCR5 antagonists.

In addition, a number of monoclonal antibodies against CCR5, which inhibit HIV-1 infection of target cells by CCR5-using HIV-1 isolates^{69,70}, are known. Although these antibodies are not directly useful as therapeutic agents, they are extremely valuable to identify the domains in CCR5 involved in HIV-1 binding⁷¹ and, consequently, for the development of small molecule inhibitors targeting these sites.

Agents targeting CXCR4

Chemokine derivatives

Antiviral agents targeting CXCR4 will be useful to inhibit infection of cells with the more pathogenic CXCR4 using HIV-1 strains often found at later stages of disease progression, but also to be given in combination with CCR5 blocking agents in order to avoid a coreceptor shift towards CXCR4. The natural ligand for CXCR4 is stromal cell derived factor SDF-1 α , which inhibits infection of X4 HIV-1 strains both by receptor blocking and internalization^{72,73}. As CXCR4, besides acting as coreceptor for HIV-1, plays an important role in the development of B-cell and myeloid lineages and in T-cell homing⁷⁴, it is particularly important to dissociate the signalling and the antiviral properties of SDF-1 α for specific therapeutic intervention against HIV-1. By synthesizing overlapping 13 amino acids, long peptides corresponding to SDF-1 α , an N-terminal peptide, could be identified that showed antiviral activity without interfering with signalling⁷⁵. Also, single amino acid exchanges within the N-terminus of natural SDF-1 α led to potent antagonistic molecules⁷⁶. Furthermore, a common polymorphism in the 3' untranslated region of SDF-1 α (SDF1-3'A) correlates with delayed disease progression in HIV-1 infected individuals⁷⁷.

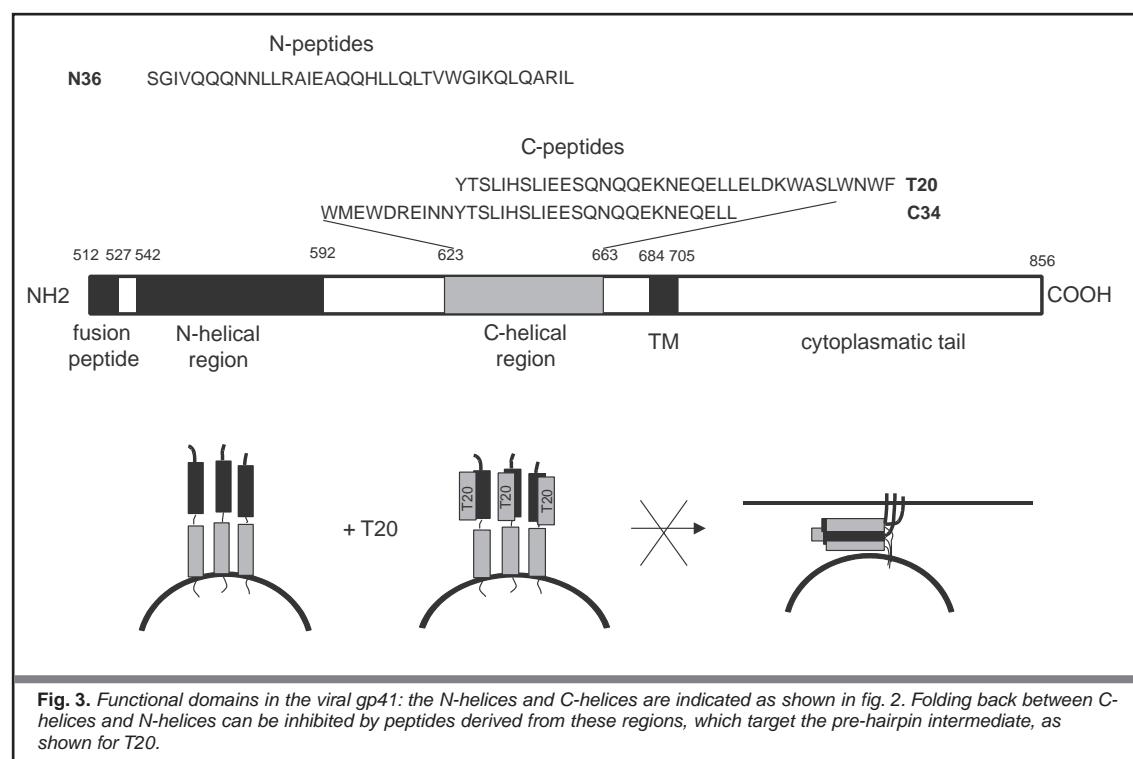
Small molecule inhibitors

AMD3100 (830 Da) is a potent CXCR4 antagonist, which inhibits X4 HIV-1 strains at nanomolar concentrations by binding to anionic residues within the extracellular loop of CXCR4⁷⁸. It belongs to the

bicyclams, which were known to inhibit HIV-1 long before the identification of CXCR4 as coreceptor for HIV-1. AMD3100 has been shown to reduce HIV-1 viral load in the SCID-hu mouse model and in phase I clinical trials⁷⁹. The substance is currently in phase II clinical trials involving intravenous administration. Bioavailability is poor and the substance also inhibits binding of SDF-1 α to CXCR4.

In addition, several peptidic antagonists of CXCR4, which inhibit X4 HIV-1 with IC₅₀s of 2-50 nM⁸⁰, are in pre-clinical development. The most active peptides are T22 (an 18 amino acids analogue of polyhemisin II)⁸¹, T134⁸² and T140⁸³.

Unexpectedly, two additional cationic peptides have been shown to be CXCR4 antagonists, although they were originally selected as peptides binding to TAR, the Tat-responsive region in the viral m-RNA^{84,85}. ALX40-4C is a 9 amino acid peptide, which mimics the basic domain of the viral transactivator protein Tat and inhibits binding of gp120 and SDF-1 α to CXCR4⁸⁶. The same dual mechanism of action could be demonstrated for the peptoid CGP64222, which also inhibits Tat/TAR and gp120/CXCR4 interaction^{87,85}.


3. Fusion inhibitors

The viral glycoprotein gp41 is responsible for the fusion of viral and cellular membranes to finally allow the virus entry into the target cell. In free virus particles in the plasma, the highly conserved gp41 fusion domains are buried in the interior of the *env* trimers on the viral surface and are thus protected from the immune system. It is only after the sequential conformational changes in gp120 induced by the previously described receptor and coreceptor

interactions, that these functionally important domains are exposed, once the virus is close enough to the cell membrane (Fig. 2). After the conformational changes in gp120 leading to gp41 exposure, gp41 itself undergoes conformational changes, switching from a prefusogenic into an active fusogenic state. During this conformational change, the C-terminal region of gp41 (C34) contacts a hydrophobic groove in the N-terminal trimeric domain of gp41 (N36) to create a six-helix bundle (hairpin-structure). The formation of the six-helix bundle structure facilitates approximation between viral and cellular membranes and finally leads to the insertion of the fusogenic peptide at the very N-terminus of gp41 into the target cell membrane and the formation of the fusion pore in a highly cooperative manner. The interaction of the fusogenic peptide with the target cell membrane may be facilitated by specific interaction with heparan sulphate on the cell surface⁸⁸. It is during this time, from the exposure of the gp41 pre-hairpin structure to the formation of the fusogenic state, that the virus is vulnerable to antiviral molecules targeting the structural intermediates.

Peptides inhibiting HIV-1 fusion

A number of peptides are available today that are derived from the α -helical regions at the N-terminus (N-peptides) and C-terminus (C-peptides) of gp41, mediating potent antiviral activity in the nM range against HIV-1 (for review see⁸⁹, Fig. 3). C-peptides, which are more potent inhibitors than N-peptides, interact with the groove in the N-terminal heptad of gp41 and viceversa⁹⁰⁻⁹². C34 tightly packs into the grooves of the N36 coiled coil, thereby inhibiting binding of the natural gp41 C34 region from doing

so. The X-ray crystal structure of the N36-C34 complexes shows a large hydrophobic groove in the N36 trimer, which is contacted by the C34 helices^{91,93,94}. A pocket at the end of the groove accommodates three hydrophobic amino acids of C34 (I635, W631 and W628). C-peptides that extend into the pocket-like C34 have more potent antiviral activity and cause less resistance *in vitro* than peptides exclusively targeting the groove, like T20⁹⁵. T20 (also called DP178)⁹⁶ has been shown in phase I/II clinical trials to reduce viral load in HIV-1 positive individuals by about 2 log after intravenous application⁹⁷. However, large amounts of peptide are required to achieve the antiviral effect and peptides have a short half-life. Therefore, gene-therapeutic approaches are underway in order to express the inhibitory peptide in the target cells⁹⁸.

Currently, new smaller fusion inhibitors are being developed, which target the pocket in the N-terminal heptad. Cyclic D-amino acid peptides fitting into the pocket were identified in a phage display approach starting with a soluble N36 target; however, antiviral activity was less efficient than for C34⁹⁹. Screening of combinatorial chemical libraries is expected to result in non-peptidic molecules with better fitting into the pocket and consequently with better antiviral activities. Besides the pocket, amino acids in the middle and at the N-terminus of the N-terminal heptad seem to be important for binding of the C-terminal heptad, as the NEQE and the WNWF amino acid motifs in the C-peptides (middle and at the C-terminus of the C-heptad) are important for antiviral activity^{96,100}.

Outlook

The structural intermediates in the multi-step process of HIV-1 entry into target cells offer various opportunities for therapeutic interventions. The fact that different steps during entry can be targeted also allows the combination of classes of drugs interfering at different levels, like, for example, coreceptor binding and fusion. This may result in synergistic effects. The combination of the CXCR4 blocker AMD3100 and the fusion inhibitor T20 has already been shown to have synergistic effects *in vitro*¹⁰¹. Clinical trials have to show if this is reflected in clinical benefits *in vivo*.

Furthermore, the different classes of entry inhibitors offer new opportunities for combination with HAART. Due to their completely different mode of action, these drugs are active against viruses resistant for RT or protease inhibitors and, thus, offer new opportunities for the treatment of drug-experienced HIV-1 positive persons. Furthermore, as entry inhibitors prevent the *de novo* infection of target cells, viral dissemination in the body should be limited.

However, the development of resistance will also be a problem for entry inhibitors, and the appearance of resistant viruses *in vitro* has already been described for some of these drugs. On the other hand, entry epitopes are functionally conserved and the virus may not have too many options to escape from drug pressure, especially if different entry steps are targeted in combination.

There may also be an additional entry target, for which no drugs are yet available. This is the domain in the viral gp120, which interacts with coreceptors after activation by CD4. Structural information on this conserved domain is available from the crystal structure of gp120⁹ and from studies that identified contact amino acids for neutralizing antibodies known to bind to CD4-induced epitopes¹⁰². These CD4-induced epitopes are also interesting for vaccine development, as immunization with these structures is expected to induce broadly neutralizing antibodies. In fact, immunization of mice with whole cell fusion-competent vaccines representing transient Env-CD4-coreceptor fusion intermediates elicited antibodies neutralizing 23 of 24 primary HIV-1 isolates¹⁰³. This proved the principle of such immunizations and has to be proven with pure immunogens corresponding to these structures, once they are ultimately identified.

References

1. Carpenter C, Cooper D, Fischl M et al. Antiretroviral therapy in adults: updated recommendations of the International AIDS Society-USA Panel. *JAMA* 2000; 283: 381-90.
2. DHHS Panel on Clinical Practices for the Treatment of HIV Infection. Guidelines for the use of antiretroviral agents in HIV-infected adults and adolescents. April 2001. Available at: <http://www.hivatis.org>.
3. Pallela F, Delaney K, Martin D et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. *N Engl J Med* 1998; 338: 853-60.
4. Finzi D, Blankson J, Siliciano J et al. Latent infection of CD4+ T cells provides a mechanism for lifelong persistence of HIV-1, even in patients on effective combination therapy. *Nat Med* 1999; 5: 512-7.
5. Dietrich U, Immelmann A. Antivirals and Resistance; in: *Antivirals against AIDS*, edited by Unger RE, Kreuter J, Rübsamen-Waigmann H. New York:Marcel Dekker Inc. 2000: 77-105.
6. Sattentau Q, Moore J, Vignaux F, Traincard F, Poignard P. Conformational changes induced in the envelope glycoproteins of the human and simian immunodeficiency viruses by soluble receptor binding. *J Virol* 1993; 67: 7383-93.
7. Wu L, Gerard N, Wyatt R et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR5. *Nature* 1996; 384: 179-83.
8. Trkola A, Dragic T, Arthos J et al. CD4-dependent, antibody-sensitive interactions between HIV-1 and its coreceptor CCR5. *Nature* 1996; 384: 184-6.
9. Kwong P, Wyatt R, Robinson J et al. Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. *Nature* 1998; 393: 648-59.
10. Chan D, Fass D, Berger J, Kim P. Core structure of gp41 from the HIV envelope glycoprotein. *Cell* 1997; 89: 263-73.
11. Tan K, Liu J, Wang J, Shen S, Lu M. Atomic structure of a thermostable subdomain of HIV-1 gp41. *Proc Natl Acad Sci USA* 1997; 94: 12303-8.
12. Weissenhorn W, Dessen A, Harrison S, Skehel J, Wiley D. Atomic structure of the ectodomain from HIV-1 gp41. *Nature* 1997; 387: 426-30.
13. Chan D, Kim P. HIV entry and its inhibition. *Cell* 1998; 93: 681-4.
14. Wyatt R, Sodroski J. The HIV-1 envelope glycoproteins: fusogens, antigens and immunogens. *Science* 1998; 280: 1884-8.
15. Dalgleish A, Beverley P, Clapham P et al. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. *Nature* 1984; 312: 763-6.
16. Klatzmann D, Champagne E, Chamaret S et al. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. *Nature* 1984; 312: 767-8.
17. Proudfoot A, Wells T, Clapham P. Chemokine receptors – future therapeutic targets for HIV? *Biochem Pharmacol* 1999; 57: 451-63.

18. Berger E, Murohy P, Farber J. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism and disease. *Annu Rev Immunol* 1999; 17: 657-700.
19. Deng H, Liu R, Ellmeier W *et al.* Identification of a major co-receptor for primary isolates of HIV-1. *Nature* 1996; 381: 661-6.
20. Dragic T, Litwin V, Allaway G *et al.* HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. *Nature* 1996; 381: 667-73.
21. Feng Y, Broder C, Kennedy P, Berger E. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G-protein-coupled receptor. *Science* 1996; 272: 872-7.
22. Connor R, Sheridan K, Ceradini D, Choe S, Landau N. Change in coreceptor use correlates with disease progression in HIV-1 infected individuals. *J Exp Med* 1997; 185: 621-8.
23. Bagasra O, Lischner H. Activity of dextran sulfate and other polysaccharides against human immunodeficiency virus. *J Infect Dis* 1988; 158: 1084-7.
24. Ito M, Baba M, Sato A *et al.* Inhibitory effect of dextran sulfate and heparin on the replication of human immunodeficiency virus (HIV) *in vitro*. *Antivir Res* 1987; 7: 361-7.
25. Mitsuya H, Looney D, Kuno S *et al.* Dextran sulfate suppression of viruses in the HIV- family: inhibition of virion binding to CD4+ cells. *Science* 1998; 240: 646-9.
26. Mondor I, Ugolini S, Sattentau Q. Human immunodeficiency virus type 1 attachment to HeLa CD4 cells is CD4-independent and gp120 dependent and requires cell surface heparans. *J Virol* 1998; 72: 3623-34.
27. Roderiquez G, Oravecz T, Yanagishita M *et al.* Mediation of human immunodeficiency virus type 1 binding by interaction of cell surface heparan sulfate proteoglycans with the V3 region of envelope gp120-gp41. *J Virol* 1995; 69: 2233-9.
28. Este J, Schols D, De Vreese K *et al.* Development of resistance of human immunodeficiency virus type 1 to dextran sulfate associated with the emergence of specific mutations in the envelope gp120 glycoprotein. *Mol Pharmacol* 1997; 52: 98-104.
29. Witroub M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. *Gen Pharmacol* 1997; 29: 497-511.
30. Jagodzinski P, Wierzbicki A, Wustner J, Kaneko Y, Kozbor D. Enhanced human immunodeficiency virus infection in macrophages by high-molecular-weight dextran sulfate is associated with conformational changes of gp120 and expression of the CCR5 receptor. *Viral Immunol* 1999; 12: 23-33.
31. Abrams D, Kuno S, Wong R *et al.* Oral dextran sulfate (UA001) in the treatment of the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. *Ann Intern Med* 1989; 110: 183-8.
32. Flexner C, Barditch-Crovo P, Kornhauser D *et al.* Pharmacokinetics, toxicity, and activity of intravenous dextran sulfate in human immunodeficiency virus infection. *Antimicrob Agents Chemother* 1991; 35: 2544-50.
33. Lorentsen K, Hendrix C, Collins J *et al.* Dextran sulfate is poorly absorbed after oral administration. *Ann Intern Med* 1989; 111: 561-6.
34. Stafford M, Cain D, Rosenstein I *et al.* A placebo-controlled double blind prospective study in healthy female volunteers of dextrin sulfate gel: a novel potential intravaginal viricide. *J Acquir Immune Defic Syndr* 1997; 14: 213-8.
35. Piret J, Lamontagne J, Bestman-Smith J *et al.* *in vitro* and *in vivo* evaluations of sodium lauryl sulfate and dextran sulfate as microbicides against herpes simplex and human immunodeficiency viruses. *J Clin Microbiol* 2000; 38: 110-9.
36. Rusconi S, Moonis M, Merrill D *et al.* Naphthalene sulfonate polymers with CD4-blocking and anti-human immunodeficiency virus type 1 activities. *Antimicrob Agents Chemother* 1996; 40: 234-6.
37. Greenhead P, Hayes P, Watts P *et al.* Parameters of human immunodeficiency virus infection of human cervical tissue and inhibition by vaginal virucides. *J Virol* 2000; 74: 5577-86.
38. Van Damme L, Wright A, Depraetere K *et al.* A phase I study of a novel potential intravaginal microbicide, PRO 2000, in healthy sexually inactive women. *Sex Transm Infect* 2000; 76: 126-30.
39. Fisher R, Bertonis J, Meier W *et al.* HIV infection is blocked *in vitro* by recombinant soluble CD4. *Nature* 1988; 331: 76-8.
40. Hussey R, Richardson N, Kowalski M *et al.* A soluble CD4 protein selectively inhibits HIV replication and syncytium formation. *Nature* 1988; 331: 78-81.
41. Daar E, Li X, Moudgil T, Ho D. High concentrations of recombinant soluble CD4 are required to neutralize primary human immunodeficiency virus type 1 isolates. *Proc Natl Acad Sci USA* 1990; 87: 6574-8.
42. Kahn J, Allan J, Hedges T *et al.* The safety and pharmacokinetics of recombinant soluble CD4 (rCD4) in subjects with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. *Ann Intern Med* 1990; 112: 254-61.
43. Schooley R, Merigan T, Gaut P *et al.* Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome AIDS and AIDS-related complex. *Ann Intern Med* 1990; 112: 247-53.
44. Husson R, Chung Y, Mordini J *et al.* Phase I study of continuous-infusion soluble CD4 as a single agent and in combination with oral dideoxyinosine therapy in children with symptomatic human immunodeficiency virus infection. *J Pediatr* 1992; 121: 627-33.
45. Morgan R, Looney D, Muenchau D *et al.* Retroviral vectors expressing soluble CD4: a potential gene therapy for AIDS. *AIDS Res Hum Retrovir* 1990; 6: 183-91.
46. Morgan R, Baler-Bitterlich G, Ragheb J *et al.* Further evaluation of soluble CD4 as an anti-HIV type 1 gene therapy: demonstration of protection of primary human peripheral blood lymphocytes from infection by HIV type 1. *AIDS Res Hum Retrovir* 1994; 10: 1507-15.
47. Allaway G, Davis-Bruno K, Beaudry G *et al.* Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. *AIDS Res Hum Retrovir* 1995; 11: 533-9.
48. Gauduin M, Allaway G, Olson W *et al.* CD4-immunoglobulin G2 protects Hu-PBL-SCID mice against challenge by primary human immunodeficiency virus type 1 isolates. *J Virol* 1998; 72: 3475-8.
49. Trkola A, Pomales A, Yuan H *et al.* Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. *J Virol* 1995; 69: 6609-17.
50. Jacobson J, Lowy I, Fletcher C *et al.* Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. *J Infect Dis* 2000; 182: 326-9.
51. Dey B, Lerner D, Lusso P *et al.* Multiple antiviral activities of cyanovirin-N: blocking of human immunodeficiency virus type 1 gp120 interaction with CD4 and coreceptor and inhibition of diverse enveloped viruses. *J Virol* 2000; 74: 4562-9.
52. Boyd M, Gustafson K, McMahon J *et al.* Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. *Antimicrob Agents Chemother* 1997; 41: 1521-30.
53. Esser M, Mori T, Mondor I *et al.* Cyanovirin-N binds to gp120 to interfere with CD4-dependent human immunodeficiency virus type 1 virion binding, fusion, and infectivity but does not affect the CD4 binding site on gp120 or soluble CD4-induced conformational changes in gp120. *J Virol* 1999; 73: 4360-71.
54. Bolmstedt A, O'Keefe B, Shenoy S, McMahon J, Boyd M. Cyanovirin-N defines a new class of antiviral agent targeting N-linked, high-mannose glycans in an oligosaccharide-specific manner. *Mol Pharmacol* 2001; 59: 949-54.
55. Gerard C, Rollins B. Chemokines and disease. *Nature Immunol* 2001; 2:108-15.
56. Horuk R. The interleukin-8 receptor family: from chemokines to malaria. *Immunol Today* 1994; 15: 169-74.
57. Coccia F, De Vico A, Garzino-Demo A *et al.* Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. *Science* 1995; 270: 1811-5.
58. Liu R, Paxton W, Choe S *et al.* Homozygous defect in HIV-1 coreceptors accounts for resistance of some multiply exposed individuals to HIV-1 infection. *Cell* 1996; 86: 367-77.
59. Samson M, Libert F, Doranz B *et al.* Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. *Nature* 1996; 382: 722-5.
60. Polo S, Nardese V, De Santis C *et al.* Enhancement of the HIV-1 inhibitory activity of RANTES by modification of the N-terminal

region: dissociation from CCR5 activation. *Eur J Immunol* 2000; 30: 3190-8.

61. Proudfoot A, Power C, Hoogewerf A *et al.* Extension of recombinant human RANTES by the retention of the initiating methionine produces a potent antagonist. *J Biol Chem* 1996; 271: 2599-605.
62. Simmons G, Clapham P, Picard L *et al.* Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. *Science* 1997; 276: 276-9.
63. Mosier D, Picchio G, Gulizia R *et al.* Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection *in vivo* or rapidly select for CXCR4-using variants. *J Virol* 1999; 73: 3544-50.
64. Proost P, De Meester I, Schols D *et al.* Amino-terminal truncation of chemokines by CD26/dipeptidyl-peptidase IV. Conversion of RANTES into a potent inhibitor of monocyte chemotaxis and HIV-1 infection. *J Biol Chem* 1998; 273: 7222-72.
65. Arenzana-Seisdedos F, Virelizier J, Rousset D *et al.* HIV blocked by chemokine antagonist. *Nature* 1996; 383: 400.
66. Baba M, Nishimura O, Kanzaki N *et al.* A small-molecule, non-peptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. *Proc Natl Acad Sci USA* 1999; 96: 5698-703.
67. Dragic T, Trkola A, Thompson D *et al.* A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. *Proc Natl Acad Sci USA* 2000; 97: 5639-44.
68. Reyes G. Development of CCR5 antagonists as a new class of anti-HIV therapeutic. 8th Conference on Retroviruses and Opportunistic Infections, Chicago, 2001.
69. Olson W, Rabut G, Nagashima K *et al.* Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 binding, and CC-chemokine activity by monoclonal antibodies to CCR5. *J Virol* 1999; 73: 4145-55.
70. Trkola A, Ketas T, Nagashima K *et al.* Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. *J Virol* 2001; 75: 579-88.
71. Königs C, Rowley M, Thompson P *et al.* Monoclonal antibody screening of phage-displayed random peptide library reveals mimotopes of chemokine receptor CCR5: implications for the tertiary structure of the receptor and for an N-terminal binding site for HIV-1 gp120. *Eur J Immunol* 2000; 30: 1162-71.
72. Bleul C, Farzan M, Choe H *et al.* The lymphocyte chemoattractant SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line adapted HIV-1. *Nature* 1996; 382: 829-33.
73. Amara A, Le Gall S, Schwartz O *et al.* HIV coreceptor down-regulation as antiviral principle: SDF-1 α -dependent internalisation of the chemokine receptor CXCR4 contributes to inhibition of HIV replication.
74. Nagasawa T, Hirota S, Tachibana K *et al.* Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. *Nature* 1996; 382: 635-8.
75. Heveker N, Montes M, Germeroth L *et al.* Dissociation of the signalling and antiviral properties of SDF-1-derived small peptides. *Current Biology* 1998; 8: 369-76.
76. Crump M, Gong J, Loetscher P *et al.* Solution structure and basis for functional activity of stromal cell derived factor 1; dissociation of CXCR4 activation from binding and inhibition of HIV-1. *EMBO J* 1997; 16: 6996-7007.
77. Winkler C, Modi W, Smith M *et al.* Genetic restriction of AIDS pathogenesis by an SDF-1 chemokine gene variant. *Science* 1998; 279: 389-93.
78. De Clercq E. Inhibition of HIV infection by bicyclams, highly potent and specific CXCR4 antagonists. *Mol Pharmacol* 2000; 57: 833-9.
79. Hendrix C, Flexner C, MacFarland R *et al.* Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR4 chemokine receptor, in human volunteers. *Antimicrob Agents Chemother* 2000; 44: 1667-73.
80. Xu Y, Tamamura H, Arakaki R *et al.* Marked increase in anti-HIV activity, as well as inhibitory activity against HIV entry mediated by CXCR4, linked to enhancement of the binding ability of Tachyplesin analogs to CXCR4. *AIDS Res Hum Retrovir* 1999; 15: 419-27.
81. Murakami T, Zhang T, Koyanagi Y *et al.* Inhibitory mechanism of the CXCR4 antagonist T22 against human immunodeficiency virus type 1 infection. *J Virol* 1999; 73: 7489-96.
82. Arakaki R, Tamamura H, Premanathan M *et al.* T134, a small-molecule CXCR4 inhibitor, has no cross-drug resistance with AMD3100, a CXCR4 antagonist with a different structure. *J Virol* 1999; 73: 1719-23.
83. Tamamura H, Xu Y, Hattori T *et al.* A low-molecular-weight inhibitor against the chemokine receptor CXCR4: a strong anti-HIV peptide T140. *Biochem Biophys Res Commun* 1998; 253: 877-82.
84. O'Brien W, Sumner-Smith M, Mao S, Sadeghi S, Zhao J, Chen I. Anti-human immunodeficiency virus type 1 activity of an oligo-anticationic compound mediated via gp120 V3 interactions. *J Virol* 1996; 70: 2825-31.
85. Daelemans D, Schols D, Witvrouw M *et al.* A second target for the peptoid Tat/transactivation response element inhibitor CGP64222: inhibition of human immunodeficiency virus replication by blocking CXC-chemokine receptor 4-mediated virus entry. *Mol Pharmacol* 2000; 57: 116-24.
86. Doranz B, Grovit-Ferbas K, Sharron M *et al.* A small-molecule inhibitor directed against the chemokine receptor CXCR4 prevents its use as an HIV-1 coreceptor. *J Exp Med* 1997; 186: 1395-400.
87. Hamy F, Felder E, Heizmann G *et al.* An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. *Proc Natl Acad Sci USA* 1997; 94: 3548-53.
88. Cladera J, Martin I, O'Shea P. The fusion domain of HIV gp41 interacts specifically with heparan sulfate on the T-lymphocyte cell surface. *EMBO* 2001; 20: 19-26.
89. Jiang S, Debnath A. Development of HIV entry inhibitors targeted to the coiled-coil regions of gp41. *Biochem Biophys Res Commun* 2000; 269: 641-6.
90. Lu M, Blacklow S, Kim P. A trimeric structural domain of the HIV-1 transmembrane protein. *Nat Struct Biol* 1995; 2: 1075-82.
91. Chan D, Fass D, Berger J, Kim P. Core structure of gp41 from the HIV envelope glycoprotein. *Cell* 1997; 89: 263-73.
92. Furuta R, Wild C, Wenig Y, Weiss C. Capture of an early fusion-active conformation of gp41. *Nat Struct Biol* 1998; 5: 276-9.
93. Tan K, Liu J, Wang J, Shen S, Lu M. Atomic structure of a thermo-stable sub-domain of HIV-1 gp41. *Proc Natl Acad Sci USA* 1997; 94: 12303-8.
94. Weissenhorn W, Dessen A, Harrison S, Skehel J, Wiley D. Atomic structure of the ectodomain from HIV-1 gp41. *Nature* 1997; 387: 426-30.
95. Rimsky L, Shugars D, Matthews T. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. *J Virol* 1998; 72: 986-93.
96. Wild C, Shugars D, Greenwell T, McDowell C, Matthews T. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. *Proc Natl Acad Sci USA* 1994; 91: 9770-4.
97. Kilby J, Hopkins S, Venetta T *et al.* Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. *Nat Med* 1998; 4: 1302-7.
98. Hildinger M, Dittmar M, Schult-Dietrich P *et al.* Membrane-anchored peptide inhibits human immunodeficiency virus entry. *J Virol* 2001; 75: 3038-42.
99. Eckert D, Malashkevich V, Hong L, Carr P, Kim P. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. *Cell* 1999; 99: 103-15.
100. Jiang S, Lin K. Effect of amino acid replacements, additions and deletions on the antiviral activity of a peptide derived from the HIV-1 GP41 sequence. *Peptide Res* 1995; 8: 345-8.
101. Tremblay C, Kollmann C, Gigué F, Chou T, Hirsch M. Strong *in vitro* synergy between the fusion inhibitor T-20 and the CXCR4 blocker AMD-3100. *J Acquir Immune Defic Syndr* 2000; 25: 99-102.
102. Rizutto C, Wyatt R, Hernández-Ramos N *et al.* A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. *Science* 1998; 280: 1949-53.
103. LaCasse R, Follis K, Trahey M *et al.* Fusion-competent vaccines: broad neutralization of primary isolates of HIV-1. *Science* 1999; 283: 357-62.