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Abstract

The replicative cycle of HIV can be interrupted at several stages. The reverse
transcriptase and protease are the enzymes currently targeted by approved
antiretroviral agents. However, a number of compounds are being developed that are
targeted at earlier stages of infection, namely HIV adsorption (binding) to the host
cells and virus-cell fusion. The discovery of chemokine receptors as coreceptors for
HIV entry has also prompted the development of chemokines and chemokine
analogues as anti-HIV agents. HIV will escape the inhibitory action of entry inhibitors
by different mechanisms depending on the mode of action of the specific agent or
how the selection of resistant variants was designed. As expected, development of
resistance to entry inhibitors is followed by the emergence of mutations in the
corresponding gene. Resistance to agents that block virus attachment, virus binding
to CD4 and agents that block coreceptor interaction generate HIV strains with
mutations in the gp120 coding region. Agents that target gp41-dependent fusion
select for HIV variants with mutations in the gp41 gene. Since HIV may use more than
one coreceptor for entry, there are HIV strains that are naturally resistant to agents
that block a specific coreceptor. Under selection pressure and with an alternative
coreceptor available, HIV should switch coreceptor use. Alternatively, HIV may
develop resistance to a coreceptor antagonist in the absence of coreceptor switch.
Notably, the fact that envelope glycoproteins are key determinants of virus induced
pathogenicity, tropism, replicative capacity and viral fitness suggests that mutations
that confer resistance to entry inhibitors will modify these parameters. Thus,
therapeutic strategies that aim at blocking virus entry may also be used to alter the
natural evolution of HIV in an unprecedented way. By altering HIV envelope-dependent
pathogenicity, we could envision new ways to manage a chronic virus infection.
Results from recent clinical trials with the fusion inhibitor T-20 are encouraging. HIV
entry appears to be the next target for therapeutic intervention as new agents that
block the early steps of HIV replication are being evaluated in the clinic. New

technology for phbd@ypia ahd geridtypic assessment of drug resistance needs to be

in place for the coming of a new generation of antiretroviral agents.
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General introduction to HIV entry

The need for new classes of antiretroviral drugs
has become apparent from the increasing concern
on the long term toxicity' and the spreading of HIV-1
variants that are resistant to current treatment op-
tions?3. All available regimes consist of combinations
of inhibitors of two viral enzymes, the reverse trans-
criptase (RT) and protease (P). Nevertheless, there
are several steps of the human immunedeficiency
virus (HIV) replication cycle that may be a target for
intervention. These can be divided into entry steps,
which involve viral envelope glycoproteins and their
receptors, and the post-entry steps involving viral
accessory gene products and the cellular proteins
with which they interact®. Viral entry may be dis-
sected into four interrelated steps, namely, virus at-
tachment to the cell surface, virus binding to the
CD4 receptor®8, the interaction of the CD4-envelope
glycoprotein complex to entry coreceptors and
virus-cell fusion. Despite several indications that HIV
variants may enter cells in a CD4-independent man-
ner’® or use alternative surface antigens such as
CD8, it is well established that gp120 is essential for
all steps of HIV entry and that replication competent
viral entry is driven by protein-dependent membrane
interactions that are mediated by gp41.

The interactions of enveloped viruses with suscep-
tible cells are mediated by glycoprotein oligomers
that provide both binding to cellular receptors and
post-binding events in virus entry, including mem-
brane fusion. HIV possesses two glycoproteins that
are associated with one another and derived by en-
doproteolysis from a single precursor (gp160)™.
The larger of these (gp120) is derived from the
amino-terminal portion of the precursor, lies entirely
outside of the envelope lipid bilayer, mediates re-
ceptor binding and drives the fusion process. The
smaller, derived from the carboxyl-terminal portion

of gp160, is the transmembrane protein (gp41)
and mediates both oligomerization of the complex
into multimers as well as membrane fusion'"'2. A
model for gp120, demonstrating five variable do-
mains interspersed with conserved regions is
shown in figure 1. The predicted sequence of
gp120 shows 18 cysteine residues which are
highly conserved in diverse HIV-1 strains, disulfide
bonds are presumed to play a critical role in the struc-
ture and function of these viral proteins: the disul-
fide bonding pattern of gp120 delineates the pro-
tein into several functional regions, which include
a conformational-dependent domain for recogni-
tion of the CD4 receptor's.

Regions of HIV-1 gp120 interacting with the CD4
receptor have been deduced from site-specific mu-
tations in the env gene which demonstrate that a
limited number of conserved amino acids in different
regions of gp120 are required for efficient bind-
ing to CD4™. Both primary sequence and confor-
mational features of the envelope (Env) glycoprotein
gp120 produce a configuration that recognizes the
CD4 receptor in a selective fashion and with high
affinity. Many of the points of contact between
gp120 and CD4 are made using the peptide back-
bone of gp120 amino acids. This allows HIV-1 to al-
ter the residues that form the CD4 binding domain
and changing the antigenic structure of the site
(that normally involves the amino acid side chains)
while retaining the capacity to bind CD4.

The region of gp120 that binds the coreceptor
has been revealed by the crystal structure of
gp120'%18 The residues involved are located within
the highly conserved stem of the V1/V2 structure,
near the base of the V3 loop, and in other regions
folded into proximity.

The V3 sequence, one of the five variable domains
in the gp120 subunit of HIV-1, usually contains 34 to
36 amino acids arranged in a disulfide loop involving
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Cys 296 and Cys 331 (Fig. 2)'°. This domain plays an
important role in governing several biological proper-
ties of the virus (i.e. cell tropism, cytopathicity, fuso-
genicity and coreceptor use)'® 2, Deletions in the V3
loop abrogate viral infectivity?' and deletion of the
two bordering cysteines of the V3 region forming
the disulfide bridge giving it a loop structure ap-
peared to be detrimental in the processing of gp160
into gp120 and gp41?2. Although the actual se-
quence between the two cysteines seems not to be
of importance for processing and binding to CD4, itis
important for the syncytium-inducing property of
some virus strains (see legend of figure 2)2224,

The V3 loop has been identified as the principal de-
terminant of the cell tropism of different HIV strains®*.
The first report demonstrating that only changes in the
V3 loop determines the tropism for macrophages
came from Hwang, et al.’®. They showed that the
exchange of a V3 fragment containing 20 amino
acids of the non-macrophage tropic strain HIV-1111B
for that of the strain Bal lost its ability to replicate in
the T-cell lines H9 and CEM. In contrast to these re-
sults, Cheng-Mayer, et al.?® and Groenik, et al.?®
showed that differences in T-cell tropism and
macrophage tropism could also be ascribed to re-
gions outside of the V3 in the C-terminus of gp120.

Recent experiments with viruses containing
chimeric V3 loops of gp120, highlight the functional
importance of V3 in the use of chemokine receptors
as cofactor for HIV-cell fusion. Sequences in the V3
determine the fusogenic activity of Env with cells ex-
pressing different chemokine receptors?” and the
V3 loop appears to be required in assays measuring
physical interaction between gp120 and CCR5%%°,
It is therefore likely that the V3 loop contains deter-
minants involved in coreceptor (chemokine recep-
tor) binding.

The simplest model of coreceptor use suggests
that CCR5 and CXCR4 are the main coreceptors
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used by HIV. In general terms, HIV strains that use
CCR5 (R5 strains) are macrophage-tropic and do
not infect stable T-cell lines. CXCR4-using HIV
strains (X4 strains) are able to infect both primary
cells and lymphoid cells that express CXCR4%°. In-
teraction of Env with the chemokine receptors ap-
pears to follow the interaction of gp120 with the CD4
receptor that mediates binding. Probably, confor-
mational changes in both CD4 and gp120 lead to
folding, bringing the effector and target membranes
in close apposition and exposure of the epitopes re-
quired for chemokine receptor-gp120 interaction
(Fig. 3). Soluble forms of gp120 have been shown to
inhibit chemokine binding to cells expressing their
receptors®2?, This in turn, appears to be enhanced
by soluble CD4 providing evidence for the confor-
mational change induced by CD4 to promote
gp120 interaction with chemokine receptors. The
recent reports on the crystal structure of gp120,
complexed with CD4 and a monoclonal antibody
that binds to the chemokine receptor interaction
support the idea that conformational changes fol-
lowing CD4-gp120 interaction are required to un-
cover the chemokine receptor-binding region in
gp120.

The role of the chemokine receptor after its ini-
tial contact with gp120 is far from clear. The nor-
mal physiological activity of these receptors is to
signal through G-proteins®'®2. However, pertussis
toxin, a known inhibitor of intracellular signaling
by G-protein coupled receptors (GPCR) had no
effect on the ability of RANTES to inhibit fusion
and entry of HIV2433, Furthermore, fusion media-
ted by a signaling deficient truncated CCR5 or
CXCR4 is still sensitive to chemokine inhibition of
HIV replication, supporting the idea that intracel-
lular signaling through the chemokine receptors is
not required for HIV entry or is it needed for anti-
HIV activity3?34,

positions: 11, 24, 25, 32 Non SI viruses hav elther an acidic amino actd or alanlne at posmons 25
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to membrane fusion.

Figure 3. Early steps of HIV life cycle. (A) The viral particles binds to the target cells though interaction with components of the
cell surface (not shown). Binding of gp120 to the CD4 receptor induces a conformational change in the gp120/CD4 complex that
leads to (B) the interaction of gp120, with involvement of the V3 loop, with the appropriate coreceptor (usually chemokine
receptors CCR5 or CXCR4). (C) Further conformational changes lead to the exposure of the fusion peptide and the formation of a
pre-hairpin intermediate in which the fusion peptide is inserted into the cell membrane. The pre-hairpin resolves to the fusion-
active hairpin structure when the C region binds the N region of gp41 bringing the viral and cell membranes together and leading

After coreceptor interaction, membrane fusion is
driven by gp41. The gp41 molecule is a transmem-
brane protein in which the amino terminus contains a
hydrophobic, glycine-rich fusion peptide that is es-
sential for membrane fusion®. There are two regions
(N-terminal and C-terminal) with a heptad repeat
each that is characteristic of coiled coils®. Gp41 exists
in a nonfusogenic conformation on the surface of free
virions. However, upon gp120 binding to target re-
ceptors, gp41 undergoes a conformational change to
a fusion-active state by the formation of a pre-hairpin
intermediate that leads to insertion of the fusion pep-
tide (The N-terminal region) into the target membrane.
The C region associates to the N region to form a hair-
pin structure that brings the viral and cellular mem-
branes to contact and fuse (Fig. 3c).

Inhibition of viral entry

A potentially powerful alternative to reverse trans-
criptase and protease inhibitors would be to stop

HIV replication before it actually infects the CD4
positive cells. A large number of compounds that in-
hibit early stages of virus replication have already
been studied. Recent discoveries have prompted
the development of new therapeutic strategies tar-
geted at early stages of the HIV replicative cycle®:
i) chemokine receptors act as coreceptors for HIV
infection; ii) some chemokines have HIV suppres-
sive activity; iii) natural mutations in the genes that
encode chemokine receptors that serve as core-
ceptor for R5 strains of HIV protect from HIV infec-
tion, and iv) synthetic peptides to the C region of
gp41 inhibit HIV infection and syncytium formation
at nanomolar concentrations38%,

Historically, inhibitors of virus-cell attachment
were described as potent inhibitors of HIV-1 replica-
tion. The use of soluble CD4 (sCD4) was one of the
first attempts to block infection“®4!. However, sCD4
proved inactive against primary isolates. Polyanio-
nic compounds of widely diverging structure and
size can block the replication of HIV in cell culture
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Table Il. Mutations found in the gp120 gene of HIV-1 strains that were made resistant to different HIV-1 entry inhibitors
Amino acid position gp120 region Amino acid position gp120 region
Dextran sulfate S144N \al Zintevir K178E V2
(DS) S164N V2 Q310aH V3
Ref. [67] K302E V3 Ref. [68] K322Q V3
Q310aH V3 F423| CD4 binding
N325D V3 domain
N355S C3 396-400d V4
R419I CD4 binding (FNSTW)
domain
396-400d V4
(FNSTW)
Siamycin | N186K V2 Suc-HSA S142] Al
G321E V3 1165T V2
Ref. [70] N340D C3 Ref. [69] D279N c2
S306R V3
Other mutations A316S V3
in gp41 1329M C4
396-400d V4
(FNSTW)
Other mutations
in gp41
AMD2763 S306R V3 Aco-HSA S164G V2
Q310aH V3 D279N Cc2
Ref. [71] 1320V V3 Ref. [69] T409A V4
A329T V3
P417L V4 Other mutations
396-400d V4 in gp41
(FNSTW)
AMD3100 F175L V2 SDF-1a N136K Al
N303S V3 S164N V2
Ref. [71] R304T V3 Ref. [72] F175L V2
S306R V3 F2771 c2
Q310aH V3 N302E V3
1320V V3 Q310aH V3
N325H V3 1320V V3
A329T V3 N325D V3
P417L V4 396-400d V4
Q442E C4 (FNSTW)
S465P V5
V489l C5
396-400d V4
(FNSTW)
AOP-RANTES A316T V3 MIP-1a V170M V2
Ref. [74] Ref. [73] S303G* V3
For consistency, the numbering of amino acids shown have been modified according to the HIV gene and protein numbering scheme
described in the Los Alamosﬁﬁsgﬁﬂs grﬁ/mglipmrlmr@ﬁ1 F‘?’.]Tm?urtgﬁng shown here may not coin-
cide with the numbering shown'intheloriginal publications. “a”and ™ esl nSertion or delefion e HXB2 amino acid se-
quence respectively.
*This mutation was reported to app?e@b;md/{i'lfe@ d‘uﬁwrt v@ﬁa@wd@cﬂvmﬂa
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ponding chemokine receptor, either by direct block-
ade or by downregulation of the receptor. These in-
clude the ligands for CCR5%445 and CXCR4324647 or
minor coreceptors: CCR3?74, CCR4*° and CCR8®.
Alternatively, chemokine-based synthetic peptides
such as Aminooxypentane (AOP)-RANTES and N-
nonanoyl (NNY)-RANTES have also been deve-
loped*®51, Similarly, small molecule inhibitors of
chemokine receptors have already been identi-
fied. Agents that block CXCR4 include small pep-
tides (Allelix-40-4C, T22 and its analogues)>%%,
peptoids (CGP64222 and arginine conjugates
such as R3G and NeoR)>*% and the bicyclams®7-0,
A number of compounds, Tak-779%", the new spiro-
diketopiperazine derivative E913%2, the monoclonal
antibodies 2D7%7 and Pro140% and the small mole-
cular weight compounds SCH-C and SCH-D have
been shown to block CCR5 function and HIV
replication®®. The good oral bioavailability and
pharmacokinetic profile of SCH-C and SCH-D
has prompted their evaluation in phasel/Il clinical
trials.

Several peptides from gp41 have been reported
to inhibit the replication of HIV3®. Two of these
agents C34 and DP178 (T-20) are derived from the
C region of gp41, bind to the N region during pre-
harpin intermediate formation and block gp41 hair-
pin formation that is necessary for HIV fusion®. T-20
blocks HIV replication at nanomolar concentrations,
has been shown effective in vivo® and is currently
in phase Il clinical trials for the treatment of ad-
vance HIV-infected patients.

HIV resistance to inhibitors of viral entry

The driving force behind the numerous HIV vari-
ants is the combination of an error-prone reverse
transcriptase, the viral enzyme transcribing the viral
RNA genome into DNA on the one hand and the hu-
man immune system on the other hand. This puts a
constant selection pressure on the HIV population
leading to the emergence of escape mutants. Deve-
lopment of resistance to antiretroviral agents poses
an additional challenge on the discovery and deve-
lopment of HIV inhibitors. However, the in vitro selec-
tion of drug-resistant strains may help in identifying
the genes responsible for resistance and may shed
light on the mechanism of action of the compound(s)
being studied.
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its sensitivity to the drug at low moi is re-tested.
Table | shows the number of passages or days that
it took for the development of resistance to different
anti-HIV compounds targeted at virus-cell binding
or virus-cell fusion.

As it can be seen, resistance to the bicyclam
AMD3100 took considerably longer time to evolve
than resistance to the bicyclam AMD2763, to the
polyanions or to the chemokine SDF-17? This is re-
flected in the number of mutations required to gene-
rate a resistant phenotype for each of these com-
pounds.

Table Il shows the mutations found in the gp120
of HIV-1 strains that have been made resistant to the
sulfated polysaccharide dextran sulfate (DS);
the G-quartet forming oligonucleotide zintevirt8, the
negatively charged albumins suc-HSA and aco-
HSA®, the binding inhibitor siamycin 10, the bicy-
clams AMD3100 and AMD27637, the chemokines
SDF-1a? and MIP-1a73, and the modified chemo-
kine AOP-RANTES™.

Development of resistance to CXCR4
antagonists

An AMD3100-resistant strain derived from HIV-1
NL4-3 was obtained after long-term passaging (63
passages or 315 days) in MT-4 cells in the presence
of progressively increasing concentrations of com-
pound”'. The NL4-3 AMD3100-resistant strain proved
300-fold resistant to AMD3100 and cross-resistant to
other bicyclam analogues with similar or lower anti-
HIV activity’” suggesting that all bicyclam ana-
logues share a common mode of action. However,
the AMD3100-resistant strain also proved cross-re-
sistant to compounds that inhibit virus binding or
the gp120-CD4 interaction, such as heparin and
DS7>76, While, at first glance, these results may sug-
gest that sulfated polyssacharides could intervene in a
post binding effect similarly to the bicyclams, the
cross-resistance could most likely be explained by
modifications in the gp120 three-dimensional structure
that not only alter gp120-chemokine receptor interac-
tion but also gp120-CD4 binding.

The EC,, of SDF-1a for the AMD3100-resistant
strain was at least 10-fold higher (EC,, > 1 pg/ml) than
for the-parental NE4-3-strain (EC, - 0. Tpg/ml). Further-
more, SDF-1a did not inhibit virus binding and has
IIy inhibit HIV entry by

fie cross-resistance ob-
served to SDF-1a with the AMD3100-resistant virus
the mode of anti-HIV activity
h selective antagonism of
CXCRA4.

.77 have found that
CR4 antagonist T22,

L%ilsn active against an AMD3100-resistant strain.

AMBI100-resistant strain that was selected
from the HIV-1 NL4-3 virus is cross-resistant to
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cross-resistant to AMD3100 has been recently re-
ported’®. Thus, it is unclear how T134 could remain
active, without any loss of potency against a virus
that is resistant to multiple CXCR4 antagonists.

The AMD3100-resistant phenotype was rescued
by transferring the envelope gp120 gene of the
AMD3100-resistant virus into the NL4-3 parental ge-
netic background. Several mutations in the gp120
were identified leading to amino acid substitutions
in the C4, V5, C5 regions and at least 7 mutations in
the V3 region”" (Table 2). The mutations found in the
V3 loop of the AMD3100-resistant NL4-3, could be
responsible for the resistant phenotype against
AMD3100 and SDF-1a. since the V3 loop appears to
be part of the putative gp120 binding site with the
chemokine receptor’®.

If AMD3100 can effectively block CXCR4 for use
as HIV coreceptor, then HIV resistance may emerge
only by two possible alternatives: HIV-1 may
change coreceptor use or continue to use CXCR4 in
a manner that is not blocked by AMD3100. In the
first case, we envision that quasispecies that con-
tain mutations in the gp120 or V3 loop, that confer
the CCR5 or other receptor phenotype, would
emerge in the presence of AMD3100%. However,
the selection of the NL4-3, AMD3100-resistant
strain was done in the lymphoid cell MT-4. This cell
line can be easily infected by X4, laboratory
adapted strains of HIV and express CXCR4; but,
MT-4 cells cannot be effectively infected with R5
strains such as HIV-1 BalL and do not express
CCRS5. Therefore, unless an unidentified coreceptor
is expressed in MT-4 cells that could be used by
AMD3100-resistant NL4-3, the second hypothesis
appears more plausible. That is, HIV-1 NL4-3 in the
absence of coreceptors other than CXCR4 and un-
der selective pressure by AMD3100 will develop
into a strain that continues to use CXCR4 differently,
and retains the X4 phenotype. Alterations in the in-
teraction with the coreceptor may have important
implications in the pathogenesis of HIV. Changes in
envelope glycoprotein have been associated with
the replication capacity and the pathogenicity of the
resulting virus®'83. For example, The CXCR4-using
HIV-1 1lIB-envelope glycoproteins may induce
apoptosis®* that can be inhibited by AMD31008.
Then,. it could be expected that virus that are resis-
tant to CXCR4 antagonists may have altered viral fit-
ness and rephcatlon capamty when ¢ red to
their parental virus (Arm @Up@réﬁ @ﬁ;

in preparation®).

Resistance to SDF-1o.
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ported that the HIV phenotype switch from R5, to X4
phenotype was associated with disease progression.
Thus, the phenotypic changes related to chemokine
receptor use could have profound implications in the
outcome of HIV infection.

An SDF-1a-resistant NL4-3 strain showed muta-
tions in the gp120 that were also present in the
AMD3100-resistant virus and this strain also showed
10-fold resistance to AMD310072. It remains to be
resolved which of the mutations found in the
AMD3100- and SDF-1a-resistant virus are relevant
for the resistant phenotype and which are coinci-
dental.

Similarly to the AMD3100-resistant virus, the SDF-
1a-resistant strain did not change coreceptor use
and was dependent on CXCR4 to enter the cells.
These results might be interpreted to suggest that
blockade of CXCR4, as a treatment strategy, would
not drive HIV strains with the X4 phenotype into R5
phenotype. Nevertheless, primary isolates are he-
terogeneous in nature, that is, they are composed of
quasispecies of both CCR5-using and CXCR4-using
phenotypes®. In PBMC, blockade of CXCR4 se-
lects for those quasispecies that use CCR5 (or an-
other receptor distinct from CXCR4) and generate a
switch in phenotype towards R5 strains of HIVEC,

SDF-1a-dependent internalization of the chemo-
kine receptor CXCR4 contributes to the inhibition of
HIV replication®?. That is, its anti-HIV activity is com-
posed of two modes of action: blockade of the re-
ceptor and downregulation. Therefore, it is also puz-
zling that the SDF-1a-resistant virus could use a
receptor that is downregulated by the chemokine. A
virus strain regardless of phenotype cannot use a
coreceptor that is not expressed on the cell surface
or that has been downregulated. Therefore, the
SDF-1a resistant virus must be resistant to the block-
ing component of SDF-1a but not to the downregu-
lating component. It is expected that the concentra-
tion of SDF-1 < that is required to inhibit HIV
replication by solely blocking the receptor would be
higher than that required to inhibit virus replication
by both blocking and downregulating. This hypothe-
sis could explain why the resistant virus is still sen-
sitive to the effect of SDF-1a, albeit at a higher con-
centration than the wild type strain.

Resistance to agents that block

AOP-RANTES efficiently and specifically blocks
R5 HIV-1

increased intracellular retention of the CCR5 core-
Vity toROP RANTES has been observed dependmg

tHel Vitis isolate use. This difference in the in-
h|b|tory potency of AOP-RANTES was ||nked to a
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virus was up to 6-fold less sensitive to MIP-1a, had
a least two mutations; one in the V2 loop (V170M)
and one in the V3 loop (S303G) that was also pre-
sent in the wild type virus passaged without MIP-1a,
and resistance did not induce coreceptor switch to
CXCR473. A resistant virus to the CCR5-specific en-
try inhibitor SCH-C was recently reported without
loss of CCR5 or gain in CXCR4 use (Moore, et al.
Data presented at the 15! International Congress on
HIV Pathogenesis. Buenos Aires, 2001).

These results contrast the report of Mosier, et al.®".
They showed that in the human peripheral blood lym-
phocyte-SCID mouse model, NNY-RANTES rapidly
selected for resistant virus with mutations in the V3
loop that altered coreceptor usage although the X4
viruses reverted to the R5 phenotype in the ab-
sence of the inhibitor.

It is difficult to understand the lack of coreceptor
switch in the development of resistance to CCR5 in-
hibitors above mentioned. Cultivation of a heteroge-
neous population of HIV, composed of laboratory
adapted, CXCR4-using (NL4-3) strain and a CCR5-
using (Bal) strain, in the presence of AMD3100,
leads to the selection of the CCR5-using strain,
even when the initial virus population consisted of
only 1% BalL®. If the minor population that uses a
different coreceptor is present (ej. CXCR4), then
blocking the alternative coreceptor (i.e. CCR5) will
allow the minor population to expand. Therefore, the
results on the development of resistance to CCR5
inhibitors without coreceptor switch suggests that
insufficient time has been given for the emergence
of the CXCR4-using variant to appear or that phar-
macological blockade of CCR5 is altering the ca-
pacity of HIV to mutate into a CXCR4-using virus to
the point that mutations required for drug-resistance
without coreceptor use emerge faster that those re-
quired for coreceptor switch. The later hypothesis
seems unlikely because the emergence of muta-
tions is a stochastic event, minimal changes are re-
quired for a virus to gain CXCR4 use and this nor-
mally confers higher replication capacity and
expanded tropism to HIV.

Resistance to soluble CD4 (sCD4)

sCD4 was one of the first agents tested as anti-
HIV agent in vivo. Despite its potent activity

sCD4, presumably because the escape variants
ants have been obtained that are 100-fod resistant
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Resistance to polyanions
dextran sulfate

The notion that DS may give rise to resistance
came as a consequence of the results obtained with
the AMD3100-resistant NL4-3. The later contained
12 different mutations that were not present in the
wild type NL4-3 and showed cross-resistance to
DS, heparin and other polyanions. This observation
indicated that if interaction with DS with its molecu-
lar target was specific, the virus should be able to
overcome the inhibitory effect of DS on infectivity
through mutations of the specific amino acids. Fur-
thermore, the development of a DS-resistant strain
could elucidate which amino acids in the AMD3100-
resistant strain were responsible for DS resistance
and, in turn, which amino acids could be involved in
virus-cell binding and which were involved in the
post-binding step. Indeed, the DS-resistant strain
showed mutations that also appeared in the
AMD3100-resistant strain®. However, the DS-resis-
tant virus was still as sensitive to AMD3100 as the
parental wild-type strain. The DS-resistant virus was
able to bind to MT-4 cells even in the presence of
125 pg/ml of DS, whereas the binding of the wild type
strain was inhibited by DS at an EC, of 1-5 ug/ml,
suggesting that the mutated amino acids found in
the DS-resistant strain confer specific resistance
at the level of virus-cell binding rather than virus-cell
fusion (i.e. CXCR4 use).

Zintevir

AR177 (zintevir) was developed as an inhibitor of
integrase. It was first suggested that its antiviral ac-
tivity was due to its capacity to inhibit the integrase
in vitro. Zintevir was the subject of a clinical phase
I/l trial, however, its mechanism of action had not
been unequivocally identified. To precisely charac-
terize the site of intervention by zintevir, we selected
an HIV-1 strain resistant to this compound®. Such
strain could not be inhibited by zintevir at concen-
trations up to 125 pg/ml, and, as in the case of the
DS-resistant strain, the binding of the zintevir-resis-
tant virus to MT-4 cells could no longer be inhibited
by zintevir or DS. Furthermore, zintevir inhibited the
binding of recombinant gp120 to soluble CD4, and
no mutations were found in the integrase gene of
the. resistant virus®, addling further proof to the no-

0 (@t the tofiba j[)rﬁ?jibited an early step of

HIV replication rather'than the HIV integrase.
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changes could be required for the correct folding
of mutant gp120 without a direct involvement in the
resistant phenotype. Such dramatic changes in
the genotype as a five amino acid deletion could
be the base of molecular marker diagnostic tests
for resistance to compounds directed to virus bind-
ing or virus-cell fusion.

Negatively charged albumins (NCA)

Following 24 passages (126 days) HIV-1 strains
that were resistant to NCA were isolated. These
virus strains were resistant to succinilated human
serum albumin (suc-HSA) (EC,, > 125 pg/ml) and
accotinilated-HSA (aco-HAS) (EC,; 56 ug/ml) whilst
the wild type strain remained sensitive to both com-
pounds (suc-HSA, EC,: 4.7 ug/ml; aco-HSA, EC,
1.5 pg/ml). The greater potency of aco-HSA as an
anti-HIV agent could explain the slower emergence
of resistance to this compound than to suc-HSA®,

DNA sequence analysis showed the emergence
of mutations in the gp120 molecule in the resistant
strains but not in the wild-type strain. Despite the
close similarities between these two proteins (they
only differ from one another in that suc-HSA con-
tains one, and aco-HSA two carboxylic acid groups
per lysine residue), the pattern of mutations for the
suc-HSA-resistant virus was different from that for
the aco-HSA-resistant strain, that is, the suc-HSA-
resistant virus had mutations that were not present
in the aco-HSA-resistant virus and vice versa. The
suc-HSA-resistant virus was 100-fold cross-resis-
tant to the G-quartet containing oligonuclectide zin-
tevir but was not resistant to DS, the bicyclam
AMD3100 and the chemokine SDF-1a. However,
the strains that were resistant to NCAs clearly dif-
fered in the mutation patterns from the DS-, zintevir-
and AMD3100-resistant strains (Table 2), suggesting
that resistance to polyanions, inhibitors of virus-cell
binding and virus-cell fusion may be governed pri-
marily by the overall change in the conformation of
the gp120 molecule, following substitution of one or
more amino acid in this molecule.

Resistance to gp41-dependent fusion
inhibitors

The first description of resistance to a gp41-spe-
cific inhibitor came from_Rimsk 1.9, .The
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retroviral agents, T-20 and its analogue T-1249 pro-
vided dose-related suppression of HIV viral load®.
Taken together, these results suggest that 1) T-20
targets the N-terminal heptad repeat of gp41 and Il)
the antiviral activity of T-20 is independent of resis-
tance to any of the classes of currently approved
antiretrovirals.

Interestingly, it has been suggested that virus tro-
pism and coreceptor preference, defined by V3
loop sequences, modulate virus sensitivity to T-20%.
It is unclear how coreceptor specificity would
influence susceptibility of a viral isolate to inhibition
by T-20. In theory, greater sensitivity of CXCR4-using
viruses to T-20 inhibition could be explained by
more efficient dissociation of gp120 from gp41 upon
contact with CD4/CXCR4 than with CD4/CCR5,
leading to conformational changes that promote T-
20 interaction with its target site. Nevertheless, con-
fronting evidence was recently presented. Green-
berg, et al.%” showed that I) a panel of SI and NSI
isolates displayed no differences in susceptibility to
T-20, II) CXCR4-using and CCR5-using isolates
from a T-20 clinical study exhibited similar sensitivi-
ties to T-20 and Ill) different clones from a single
HIV-1 isolate but with different coreceptor-use
showed similar sensitivities to T-20. It is now generally
believed that coreceptor preference does not affect
virus sensitivity to T-20.

Conclusions and perspectives

A helpful strategy towards the understanding of the
mechanism of action of new anti-HIV agents is the de-
velopment of drug-resistant HIV strains. Through
the study of resistant mutants the genes responsible
for resistance can be identified. Furthermore, the
molecular determinants of drug-resistance, that is,
the amino acid changes in the target molecule, that
are responsible for resistance, can be evaluated
in vitro. This strategy has been intensively exploited in
the study of RT inhibitors and protease inhibitors
and has yielded a good understanding of the deter-
minants of drug-enzyme interaction and virus sensi-
tivity to RT and protease inhibitors. Moreover, it has
open the door to the development of diagnostic as-
says to determine treatment-failure in HIV+ patients.

In order to further investigate the mechanism of ac-
tion of binding and fusion inhibitors the same strategy

s been.followed. For example, the development of
I&ll Eb@ﬂ:oﬂiﬂ) ds)étich as DS one of the first
binding/fusion |nh|b|tors that were discovered, be-
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sistance is clearly associated with the V3 loop, a pu-
tative site of interaction with the chemokine recep-
tors. Mutations in gp120 appear to modify the repli-
cation capacity, pathogenicity, and tropism of HIV
and this, in turn, may have important implications in
the use of these agents in the management of HIV
infection. As seem for the selection of AMD3100-re-
sistant virus, targeting cellular receptors instead of
a viral target may imply that the virus can over-
come the anti-HIV activity by different mechanisms
(coreceptor switch or differential use of the same core-
ceptor) and through different, and probably unre-
lated, patterns of mutations. Other groups have
shown the development of resistance to binding/fu-
sion inhibitors’®1% that have mutations in the gp120
but are distinct from the ones presented here. More-
over, at least 4 AMD3100-resistant variants have
been described’! 7780101 |n the contrary, by specifi-
cally targeting a viral component i.e. gp41, selec-
tive pressure will lead to specific mutations that con-
fer the resistant phenotype®®-%.

Diagnostic test for genotypic resistance to ap-
proved therapies have become an important tool to
assess treatment failure. As fusion inhibitors gain
prominence as therapeutic agents, both genotypic
and phenotypic assays designed to evaluate drug-
resistance need to be in place. Recombination of
gp160 derived from plasma viral RNA or cellular
proviral DNA amplification have already been des-
cribed for the evaluation of coreceptor use'?, drug
susceptibility'® or virus pathogenicity'®. Neverthe-
less, chimeric virus technology that can be applied
to the throughput screening of drug-resistance re-
quires further validation and implementing. The ad-
vent of fusion inhibitors will speed forward this new
technology. In turn, a better understanding of HIV
drug resistance to entry inhibitors will help to de-
velop novel, more effective anti-HIV agents.
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