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Drug resistance testing is becoming increasing-
ly accepted as a valuable tool in the management
of antiretroviral therapy in HIV-1 infected patients.
A number of retrospective and prospective stud-
ies1-7 have shown a beneficial effect if antiretrovi-
ral treatment was changed according to the re-
sults of drug resistance testing. Consequently,
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Abstract

The technical quality of genotypic and phenotypic drug resistance testing has
considerably improved, and therefore the major challenge now lies in the
interpretation of drug resistance. This is due to several facts: (i) in times of
combination therapy, the effect of drug resistance-associated mutations cannot
be considered independently, (ii) many additive and subtractive interactions
between mutations exist, and resistant strains may exhibit varying degrees of
cross-resistance, (iii) the phenotype cannot adequately determine slight, but
clinically relevant, differences for those drugs with a narrow range of resistance,
and (iv) pharmacokinetic interactions may shift relevant levels of drug
resistance. Genotypic drug resistance interpretation systems are designed to
solve these problems. Rule-based systems incorporate current knowledge about
correlations between genotype, phenotype and clinical response. Database-
driven systems use the information provided by paired geno- and phenotypic
data, applying database matching search or bioinformatic approaches. For
detailed comparison, 11 interpretation systems were selected which present a
comprehensive system for most of the available drugs, can easily be accessed
via the Internet and are regularly updated. The systems were characterized for
the source data, access, input, output, and availability of clinical studies. For
further comparison, existing clinical databases should be merged into one large
database to allow competition between the systems. This may also solve the
burning problem of clinically relevant cut-offs. Head-to-head comparisons of
interpretation systems require large prospective randomized trials in which only
the interpretation system is different between groups, before a consensus can
be achieved for the best antiretroviral therapy of the individual patient.
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drug resistance testing was implemented into US
and European guidelines. Performing a resistance
test is recommended in cases of first or multiple
regimen failure, for HIV-1 infected pregnant wom-
en and newborns. Furthermore, drug resistance
testing may be considered for cases of primary
and recent HIV infection without previous antire-
troviral therapy8,9. The story could end here if all
technical demands were solved and all experts
agreed on a consensus interpretation of drug
resistance tests. Indeed, the technical quality of
geno- and phenotypic drug-resistance testing has
considerably improved, which has been shown in
national and international quality control trials10-12.
Still, issues such as reliable detection of minority
species remain to be solved. The major chal-
lenge, however, lies in the interpretation of drug
resistance, which varies largely between different
laboratories.

If drug resistance-associated mutations as well
as phenotypic drug resistance can be determined
reliably, why is interpretation a problem?

(i) An unequivocal correlation of a single mu-
tation to drug resistance like for M184V and
resistance to lamivudine is the exception
rather than the rule. And in times of combi-
nation therapy, the correlation with clinical
failure or success is difficult to assess even
in those cases.

(ii) Additionally, different types of interactions
must be considered, such as resensitiza-
tion of zidovudine resistance by M184V13,
L74V and Y181C14, induction of hypersus-
ceptibility to amprenavir by N88S15, and
hypersusceptibility towards NNRTIs after
multiple NRTI failure16. To further compli-
cate the situation, combination therapy may
result in the development of other mutations
that counteract these reversions and re-
store resistance (e.g. R211K, E333D)17,18.
Concomitantly, cross-resistance has been
ascribed to many antiretroviral compounds
in clinical development19.

(iii) Not to forget that the phenotypic assays
may not be able to adequately determine
slight, but clinically relevant, differences for
those drugs with a narrow range of resis-
tance, e.g. dideoxynucleoside analogues20.
This was one of the reasons why genotypic
but not phenotypic resistance testing
proved to be superior to standard-of-care in
certain subpopulations of the NARVAL
study21.

(iv) Finally, the increasing use of boosted pro-
tease inhibitors may require a different in-
terpretation of drug resistance results com-
pared to un-boosted protease inhibitors22.

Genotypic drug resistance interpretation sys-
tems try to solve these problems. Since one to two
new drugs are annually approved, the systems
have to be updated continuously. Regular up-
dates are facilitated by web-based presentations,
which can be altered easily and avoid the ongo-
ing use of older versions. Thus, this review can

only be a snapshot of current drug resistance
interpretation systems, and the reader is encour-
aged to contact the websites personally.

Human vs artificial intelligence

Genotypic drug resistance interpretation sys-
tems differ in their sources of information: on the
one hand, there are the rule-based systems which
incorporate different types of information such
as correlations between geno- and phenotype as
well as correlations with treatment history and
clinical response. Much of this information is al-
ready published23. However, the task to condense
the vast amount of information from different sourc-
es and of different quality into rules to predict
treatment response requires a lot of expertise,
based on long-standing clinical and laboratory
experience24. Therefore, human intelligence in the
form of expert knowledge is a major constituent of
rule-based interpretation systems. The fact that
there is a substantial overlap in the experts be-
hind different interpretation systems may be one
of the reasons why the rules and algorithms are
often quite similar. Rules are the simplest form of
presenting knowledge (“M184V causes lamivu-
dine resistance”). Algorithms are a bunch of rules
(“High resistance to lamivudine is conferred by
M184V, intermediate resistance by E44D and/or
V118I in the presence of zidovudine mutations”).
They frequently incorporate phrases such as “in
the presence of”, “in the absence of”, “more/less
than x mutations of (list of mutations)”, which
increase the complexity. Genotypic drug resis-
tance interpretation systems consist of algorithms
for currently available drugs.

In contrast to this, current database-driven sys-
tems use one specific type of information, namely
that provided by correlated pairs of geno- and
phenotypes. Information can, on the one hand, be
extracted from the database by comparing the
query sequence with all available sequences in
the database and subsequently averaging the
resistance of the matching samples (Virtual Phe-
notypeTM). This approach will only work if the
database is large enough to provide a sufficient
amount of matching samples. Similarly, the data-
base should be divergent enough to cover all
possible combinations of drug resistance-associ-
ated mutations. On the other hand, there are
computer-based systems using machine-learning
techniques for the prediction of resistance. One of
the first approaches combined cluster analysis,
recursive partitioning, and linear discriminant anal-
ysis to generate models for indinavir and
saquinavir resistance within a clinical study25.
Recursive partitioning repeatedly divides the
dataset into subsets using a defined split crite-
rion. It has also been applied for the recently
presented decision tree model by using the statis-
tical significance of each sequence position for
drug resistance, the so-called mutual information,
as split criterion26. Two other bioinformatic ap-
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proaches are the support vector machines, which
use multidimensional vector spaces to correlate
the phenotype with certain amino acids at certain
positions27, and the neuronal networks, which have
recently been applied for the prediction of resis-
tance to a number of antiretroviral drugs28-30. They
usually incorporate a substantially larger number
of amino acid positions than the decision trees. All
mathematical models have the advantage that
each sequence position can be considered equal-
ly, irrespective of published data, which helps to
identify new positions associated with drug resis-
tance. However, it may be valuable to incorporate
existing knowledge about drug resistance-associ-
ated mutations into the system, because rare
mutations may not be adequately represented in
the database and thus prediction may not be
reliable (e.g. Q151M31 in the decision tree model).

Cut-off vs continuum

An important consideration for genotypic drug
resistance interpretation systems is how to present
results to the user. The simplest way is to form just
two categories for each drug, susceptible and
resistant. However, almost all interpretation sys-
tems incorporate at least a third category (inter-
mediate) and some use four or five categories
(Table 1). The most complex output is a “virtual
resistance factor” as a continuous variable. In
the end, all systems are dependent on the infor-
mation as to which resistance factors are clinical-
ly relevant.

Information about such clinically relevant cut-
offs is still rare. Most of the available data have
been produced by pharmaceutical companies for
the FDA approval. These data are in part derived
from patients receiving one additional drug on top
of a failing regimen (“add-on studies”). These
allow one to conclude which resistance level is
associated with a reduced or abandoned therapy
response. Since the numbers in the categories
of failing patients can be very small, more data of
this kind are desirable.

For abacavir, the virological response (defined
as decrease in viral load of more than 0.5 log and/
or below 400 copies/ml) has shown to be reduced
from 71-74% to 50% and 14% for a resistance
factor of 4.5-6.5 and >6.5, respectively32. For
lopinavir, studies for the FDA approval demon-
strated a significantly reduced virological re-
sponse for a 10-fold reduced susceptibility to
lopinavir, when PI-experienced patients were treat-
ed with lopinavir/ritonavir, efavirenz and NRTI for
24 weeks. Since the patients were naïve for NNR-
TI, it cannot be excluded that the treatment re-
sponse was influenced by a second drug. For
tenofovir, antiretroviral-experienced patients hav-
ing ≥4-fold reduced susceptibility to this drug at
baseline had a significantly lower reduction of
viral load after 24 weeks of treatment with teno-
fovir in combination with other antiretroviral
drugs33. More recent data, however, suggest that

the level of clinically relevant resistance may be
lower than a 4-fold reduced susceptibility34. A
concern for all these data is that no standardized
criteria for therapy success or failure were used,
which may influence the results.

For the PIs indinavir, saquinavir, ritonavir and
nelfinavir, a resistance factor above inter-assay
variability has been shown to be clinically relevant
in several retrospective studies35-39. A resistance
factor below two has shown to be predictive for
resistance to D4T40. For NNRTI, hypersusceptibil-
ity has been detected in the presence of NRTI
resistance, which improved clinical response to
NNRTI treatment in this group of patients16. The
virological response to a certain drug may thus
be functionally related to the IC50 of the virus:
the lower the IC50 is, the higher the drug pressure.
Vice versa, an increased drug pressure may over-
come moderate resistance (e.g. by boosting pro-
tease inhibitors with a baby dose of ritonavir). This
has been described for boosted lopinavir, but
may equally be valid for other PI41-44. Therefore, it
has to be discussed whether we should rather talk
about a resistance continuum than defined cut-
offs. The idea that pharmacodynamics may influ-
ence viral drug resistance is reflected by the
concept of the so-called “virtual inhibitory quo-
tient”, which divides the trough level of a certain
drug through the predicted phenotype and the
serum-adjusted EC50 for wild-type HIV45.

Genotypic drug resistance
interpretation systems

Meanwhile, more than 25 interpretation systems
have been developed, which vary greatly in scien-
tific basis, clinical validation, required input and
output to the user46. Some of these are lists of
drug resistance-associated mutations that are
available as look-up tables8,11 or public websites
such as the page of the International AIDS Soci-
ety-USA (http://www.iasusa.org/), the Stanford HIV
RT and protease sequence database (http://
hivdb.stanford.edu/), and the Los Alamos HIV
database (http://hiv-web.lanl.gov/content/index).
Furthermore, the number of algorithms for one or
several drugs is increasing22,30,47-52. One of the
first algorithms to be used in a prospective clinical
study was the Viradapt algorithm2.

For the following detailed description and com-
parison, only such genotypic drug resistance in-
terpretation systems were selected which present
comprehensive systems for most of the available
antiretroviral drugs, can be easily accessed via
the Internet, and are regularly updated. In this
rapidly evolving field, most of the information has
not yet been published, but is at best accessible
as conference abstracts. Therefore, the following
list of interpretation systems does not claim to be
complete nor does it imply that interpretation sys-
tems not included here are inferior to those pre-
sented. In the text as well as in the table, the
interpretation systems are listed according to their
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accessibility, which does neither imply restraints
of quality nor frequency of use. The table contains
items which can be answered for all interpretation
systems, whereas special features of each inter-
pretation system are presented in the text.

– Stanford ß-test version
The rules for the ß-test version of the Stanford

University are based on published literature about
correlations between genotype and treatment his-
tory, genotype and phenotype, and genotype and
clinical outcome. The sequence information can
be entered as plain nucleic acid code or via a
mutation list. The output lists those mutations as
“resistance mutations” that have been shown to
contribute to drug resistance, and “other muta-
tions”. Each resistance mutation receives a score
for each drug according to the degree of resis-
tance which is attributed to this mutation. Muta-
tions associated with hypersusceptibility, or rever-
sion of resistance to a certain drug, receive a
negative score (e.g. M184V for resistance to zi-
dovudine and stavudine). The sum of the scores
for each drug predicts five categories of resis-
tance (Table 1). All information about the mutation
scoring for the respective sample is evident from
the drug resistance output. The scoring is irre-
spective of whether a mutation is present in pure
form or as a mixture. Comments on each resis-
tance mutation are provided as well as information
about the HIV-1 subtype.

– Geno2pheno
This is one of the bioinformatic approaches

which was designed to predict phenotypic resis-
tance from genotypic data. The current version
2.1 is based on more than 600 correlated pairs,
which were analyzed by decision trees and sup-
port vector machines. Most of the positions and
mutations identified in the decision trees have
been described before. The decision trees offer
the advantage that the knowledge can be extract-
ed as rules by tracing out a path from the root of
a tree to a leaf. The data processing is not evident
for the support vector machines, however the
performance is slightly better. Furthermore, sup-
port vector machines can deal with quantitative
data, which allows a prediction as fold changes in
IC50. Geno- and phenotypic source data can be
freely accessed via the Stanford website (http://
hivdb.stanford.edu/). Although the system was
originally designed to predict phenotypic from
genotypic data, the performance for the predic-
tion of clinical success or failure has also been
recently demonstrated53.

– RetroGramTM

This software uses rules which are based on
published correlations between genotype, pheno-
type and clinical response. As input, all discrep-
ancies from the NL4-3 reference sequence have
to be entered for protease and reverse trans-
criptase by giving the position of the mutation
followed by the amino acid code. For mixed popu-

lations, more than one substitution at each posi-
tion can be introduced. The drug resistance re-
port categorizes the amino acid substitutions as
relevant (appears in a drug resistance rule), nat-
ural (has been detected more than once in un-
treated patients), and unreported. The drugs
are ranked in five categories (Table 1), which are
different from other systems, as they do not pre-
dict susceptibility or resistance, but a drug’s suit-
ability for use. This decision support is particularly
interesting for the situation of multidrug resis-
tance. Version 1.4 contains rules for the use of
boosted protease inhibitors (indinavir, saquinavir,
amprenavir, lopinavir). The resensitizing effect of
M184V on zidovudine resistance is indicated in a
way that the continuous use of lamivudine is
recommended to retain this mutation for synergy.
HIV-1 genotyping interpreted by an earlier version
of the RetrogramTM software has been shown to
improve the virological outcome in a prospective
trial, when it was added to the clinical information
as a basis for decisions on changing antiretroviral
therapy6. Although the RetroGramTM software is
placed on the website of a commercial company,
free access is possible after registration.

– The HIV ViroScorerTM

The Rega algorithm as well as four other geno-
typic drug resistance interpretation systems (Cen-
tre Hospitalier Luxembourg v.3.2, Luxembourg;
Agence Nationale de Recherche sur le SIDA v.
2000, France; Detroit Medical Center, USA; Grupo
de Aconselhamento Virológico, Brazil) are avail-
able via the website of a commercial company. All
algorithms can be accessed freely for academic
use after registration. The rules of the interpreta-
tion systems are not evident from the resistance
report; however, the French consensus algorithm
is published in the national guidelines for the
antiretroviral treatment of HIV-1 infected patients
(http://www.sante.gouv.fr/htm/actu/36_vih_2.htm).
The Luxembourg algorithm is continuously updat-
ed with the background of an open clinical data-
base, containing genotypic, phenotypic and clin-
ical data of more than 500 patients. The amino
acid differences from the reference sequence
NL4-3 as well as reported resistance mutations
appear on the data report. “Not defined” is used
as output for drugs whose resistance is not suffi-
ciently validated by the respective algorithm or for
samples without sufficient sequence information.
An HIV-1 subtype determination is also provided.

The Rega algorithm was one of the first to use
algorithms for the interpretation of genotypic drug
resistance. From the beginning, the rules were
designed to predict clinical response. Recently, it
was shown that the number of active drugs de-
termined with this interpretation system was a
significant independent predictor of therapy re-
sponse at three months in a cohort of patients on
salvage therapy54. The algorithm differentiates
between primary and secondary/accessory mu-
tations: one primary mutation is usually sufficient
to define resistance to a respective drug, whereas

– –
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combinations of several secondary or accessory
mutations are necessary to achieve this criterion.
The resensitizing effect of M184V on zidovudine
resistance is included in several rules with differ-
ent combinations of zidovudine mutations. The
Rega algorithm predicts three categories of re-
sistance (Table 1). It is advised not to use drugs
with intermediate resistance when other options
are still available, but it is pointed out that pa-
tients carrying viruses with intermediate resis-
tance to some drugs may temporarily respond
to these drugs in a HAART combination. The
Rega algorithm is now available as version 5.5;
a sixth version is currently designed which will
contain rules for boosted protease inhibitors.
The rules of the version 5.5 algorithm are pub-
lished54.

– TruGeneTM kit interpretation system
The TruGeneTM HIV-1 GuidelinesTM Rules, which

were approved by the FDA in 2001, are based on
in vitro phenotypic data and in vivo virological
response. They were developed and are semian-
nually updated by an independent international
expert panel. The software is available in conjunc-
tion with the TruGeneTM genotyping kit. The resis-
tance report contains a list of all mutations, which
are classified as “resistance mutations”, “silent
mutations at all positions”, “polymorphisms: cod-
ing changes not at resistant sites”, and “unex-
pected mutations of resistant sites”. The relevant
mutations in the protease and reverse tran-
scriptase are incorporated into rules which are
evident from the resistance report. These rules are
ranked according to the evidence for the individ-
ual mutation or combination of mutations to confer
drug resistance. The final report discriminates
between three definitions of the resistance effect
(Table 1) and insufficient evidence to determine
drug resistance or susceptibility.

– ViroseqTM HIV-1 Genotyping System
The software of this interpretation system is

available in conjunction with the ViroseqTM geno-
typing kit. The output consists of “reported muta-
tions” (which are found in the Los Alamos HIV-1
resistance database) and “novel variants” (which
are discrepant from the reference sequence, but
do not appear in the Los Alamos database).
Reported mutations are categorized in single
mutations conferring resistance, single mutations
conferring possible resistance, mutations confer-
ring possible resistance in the presence of at
least one other mutation, and mutations detract-
ing from the viral resistance conferred by one or
more mutations. This ranking is evident from the
drug resistance report, which finally gives five
levels for evidences of resistance (Table 1). Two
warnings may be included, one that the detec-
tion of at least one mutation shown for this drug
has not been verified by this test, the other that
the utility of at least one mutation shown for this
drug in the resistance interpretation has not been
verified.

– Virtual phenotypeTM

It is based on a private relational database of
geno- and phenotypic results from more than
120,000 samples. The database contains about
5,000 samples without any drug resistance-asso-
ciated mutation in the protease, as well as about
8,500 and 15,000 samples without any mutation
for resistance to nucleoside and non-nucleoside
inhibitors of the reverse transcriptase, respective-
ly. Usually, several dozens to hundreds of match-
ing samples are identified. If less than 10 matches
are detected in the database, rule based interpre-
tation is used instead, which is the case for about
10% of predictions. This may happen for se-
quences containing rare mutations at positions
that are used for interpretation or unusual combi-
nations of drug resistance-associated mutations.
Here, resistance is predicted as “likely” or “unlike-
ly”. The report indicates the drug resistance-asso-
ciated mutations, the number of matches in the
database, and the fold changes in IC50, given with
respect to the cut-offs for the normal susceptible
range for each drug. This is based on phenotypic
resistance tests on 1,000 untreated HIV-positive
individuals and for several thousand samples
of genetically wild-type virus55. The percentage of
samples within normal or above susceptible range
is indicated. For tenofovir and lopinavir, but not for
abacavir, the percentage of samples is indicated
that are above normal susceptible range, but
below clinical cut-off.

– GeneSeq™ HIV
It is a proprietary consensus algorithm, which is

periodically updated to reflect newly reported and
novel drug resistance-associated mutations. The
rules are derived from public resistance data and
a private database containing more than 12,000
pairs of genotypes and phenotypes. The results
are interpreted as “susceptible” or “resistant”. If
the phenotype is additionally determined, the re-
sistance report includes a parallel interpretation of
genotype and phenotype (PhenoSense GT™),
which is based on the idea that both approaches
provide complementary information56. Up to now,
the interpretation is only available in conjunction
with genotyping at ViroLogic, but sequences may
be accepted in the future (N. Parkin, personal
communication).

Consensus vs competition

How can genotypic drug resistance interpreta-
tion systems be compared reliably? One first at-
tempt is to compare the performance of interpre-
tation systems to predict phenotypic resistance
from genotypic data57,58. However, most of the
systems are not designed to predict phenotype
but clinical response - which has to be given
priority. In this respect, some studies have recent-
ly been presented which performed retrospective
analyses in clinical trials59,60. Head-to-head com-
parisons indicate that the differences between the
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interpretation systems may not be major, ranging
from 67.2-73.6% for therapy failure and from 65.7-
82.9% for therapy success53. However, we are still
far from a final conclusion, and we will need large
prospective randomized clinical trials in which
only the interpretation system is different between
groups. First data of this kind have been present-
ed recently60-62.

It may be possible that the best predictive
results for all drugs are obtained by combining
different rules from different interpretation sys-
tems. Therefore, existing clinical databases should
be merged into one large database to allow com-
petition between the systems. This may also solve
the burning problem of clinically relevant cut-offs.
In the meantime, one recent approach may be
helpful: for nine different interpretation systems,
the cut-offs were determined which showed the
lowest error rates for the prediction of phenotypic
from genotypic data in a database63. If an algo-
rithm performs well for the prediction of virological
success or failure, the cut-off determined by this
method should be clinically relevant. If information
about clinically relevant cut-offs is available, the
algorithm that fits best to this cut-off can be
chosen by this method.

The incorporation of clinical data into the data-
bases requires further efforts for analysis and
interpretation. Most recently, two new promising
bioinformatic approaches have been presented: a
non-parametric approach in the context of the
new collaborative HIV resistance-response data-
base initiative64, and the fuzzy rules system, which
allows vagueness and/or uncertainty instead of
restriction to categories65. These systems may
result in a more adequate interpretation of clinical
data, which may finally lead to a consensus
recommendation of the best antiretroviral therapy
for the individual patient.
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