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Abstract

HIV and Mycobacterium tuberculosis not only co-circulate throughout the
developing world but each has contributed to prevalence and mortality caused
by the other. Several reports have described how HIV-1 increases the incidence
of new M. tuberculosis infections, exacerbates the severity of tuberculosis (TB),
and re-activates latent M. tuberculosis. However, the converse relationship is
more difficult to understand considering TB can emerge in asymptomatic
individuals and as an opportunistic infection during AIDS. Development of TB in
HIV infected individuals with higher CD4 cell counts (>200/mm?) appears to
increase the rate of disease progression and mortality. Higher viral loads,
increased HIV-1 diversity, and changes in cytokine/chemokine levels in HIV-
infected individuals with TB appear to be related to a localized immune
stimulation. Specifically, increased levels of TNFo. and MCP-1, induced by TB,
may activate HIV replication in lymphocytes, monocytes, and macrophages that
are resident or have migrated to M. tuberculosis infected organs (e.g. pleura or
lung). The HIV-1 found in blood following this TB-mediated burst in load and
diversity appear to be phylogenetically-related to HIV-1 clones that have evolved
independently in the lung or pleural compartments, now infected by M.
tuberculosis.
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diseases are not mutually exclusive, but tend to
exacerbate the severity of each other. Incidence
of TB increased between 1985 and 1992 in the
United States as a result of several factors, but
approximately 64% of these cases are attribut-
able to HIV-1 infection®. Since 1993, TB control
efforts have led to a steady decline in TB case
rates®. In contrast to the United States, world-
wide TB cases increased to 8.4 million in 1999,
an increase of 5% from 19984 HIV-1 associated
increase in TB incidence is likely the result of the
immunosuppression caused by HIV-1. Recent
evidence suggests active TB may have adverse
effects on HIV-1 disease by increasing HIV-1
replication both systemically®® and at sites of
infection'®'3, These TB mediated affects may in
turn lead to increased systemic heterogeneity
and viral fitness.

This review will focus on the effects of TB on
HIV-1 disease in co-infected individuals. We will
compare HIV-1 dynamics, evolution, and fitness
with immune regulation during HIV disease as well
as discuss how TB affects these viral and host
parameters leading to more rapid progression to
AIDS. To place these themes into context, a gen-
eral review of HIV-1 replication and disease is
outlined below.

HIV-1 replication: an overview

HIV-1 belongs to the Retroviridae family of vi-
ruses, which carry two single stranded RNA mol-
ecules as the genetic material in the virion but
require the synthesis of genomic DNA as an inter-
mediate during the life cycle. Of the seven genus-
es in this family, HIV belongs to the lentivirus
genus, which includes viruses that infect primates,
sheep, goats, horses, cats, and cattle. Interesting-
ly, many of the mammals that can contract a
lentiviral-induced immunodeficiency can also be
co-infected with the Mycobacterium (M.) genus.
However, M. avium or M. genavense in cattle or
cats co-infected with an onco- or lentiretrovirus
(e.g. bovine leukemia virus or feline immunode-
ficiency virus) are only detected following immu-
nodeficiency and as opportunistic infection1°,
In~contrast, active M. tuberculosis infection is
commonly diagnosed as a secondary infection

clude PR, reverse transcriptase-RNaseH (RT), and
integrase (IN). Lentiviral genomes such as that of
HIV-1 also encode several regulatory and acces-
sory proteins that are translated from multispliced
or alternatively spliced mRNA transcripts'®.

HIV-1 entry into the host cell is mediated by the
viral envelope glycoproteins (gp120/gp41). Extra-
cellular subunit, gp120 interacts with the CD4 cell
receptor, causing a conformational change nec-
essary for interaction with a seven-transmembrane
G protein-coupled protein chemokine receptor
(CCR5 or CXCR4)'"'8. Following this interaction
the gp41 forms a prehairpin intermediate, which
inserts into the cellular membrane'®. This structure
causes membrane apposition leading to fusion of
the membranes, and release of the HIV-1 core into
the cell. Surprisingly, these interactions remain
conserved functions in all HIV-1 even though the
env gene of many HN-1 isolate share less than
70% amino acid sequence identity. The primary
coreceptors for HIV-1 are CCR5 and CXCR4, oth-
er chemokine receptors such as CCR3, CCR2,
CCR7, and CCR8 can be utilized at lower efficien-
cy'. HIV-1 isolates that utilize CCR5 for entry do
not induce syncitia formation (NSI), are transmit-
ted between donor and recipient and persist
throughout asymptomatic disease. NSI HIV-1 iso-
lates typically replicate slower than syncytium in-
ducing (SI) CXCR4-tropic isolates, i.e. found late
in HIV-1 disease.

Reverse transcription occurs shortly after entry
(reviewed in'?) and involves the transcription of
two genomic RNA templates into double strand-
ed DNA. As described below, retroviral reverse
transcription is a error prone process due to lack
of a proof-reading or exonuclease activity. Ap-
proximately, one to ten nucleotide substitutions
are introduced into the 10,000 base pair genome
during synthesis of HIV-1 DNA from the RNA
genome. Following reverse transcription, HIV-1
proviral DNA is then stably integrated into the
host cell DNA genome. Transcription of HIV-1
mRNA from the LTR is catalyzed by the host cell
RNA polymerase Il but is initially regulated by the
5 LTR 2°. The U3 region of the LTR has several
cis-acting sites for transcriptional activation,
including two to three nuclear factor kB (NFkB)
sites®', a major activator of HIV-1 transcription.
These nuclear factors are often induced by
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Natural course of HIV infection and
HIV-specific immune response

There are several ways of transmitting HIV-1,
including IV drug use, homosexual transmission,
and heterosexual transmission. SIV models for
heterosexual transmission have indicated that HIV-1
penetrates the vaginal mucosa within an hour
after transmission. Langerhans cells have dendrit-
ic processes that penetrate the vaginal squamous
epithelium 2° and are likely to be the first suscep-
tible cell exposed to the virus. These cells may
transport the virus to the nearest lymph node from
30 minutes to 24 hours post infection®. In the
lymph nodes, the virus spreads to CD4 T lympho-
cytes®”?, Peak viremia in the blood is typically
found concurrent or following peak viremia in
lymph nodes?8%,

Primary HIV-1 infection is followed by a subclin-
ical incubation period, acute retroviral syndrome,
a clinically latent period, clinical apparent dis-
ease, AIDS, and ultimately death. After infection,
the subclinical incubation can last from 1 to 8
weeks®1% but is typically followed by acute retro-
viral syndrome, which is characterized by high
titers of the HIV virus, marked decline in CD4 cell
counts, and widespread dissemination of the vi-
rus3+3. Control of primary infection typically oc-
curs at about 3 weeks after the onset of symp-
toms, and is characterized by an absence of
neutralizing antibody, an HIV-specific cytotoxic
T-lymphocyte response (CTL), a lowering of the
viral loads, and a return of CD4 cell counts to
normal levels®. Viral loads are lowered to a steady
state level called the virologic setpoint. Higher
setpoints are indicative of more rapid disease
progression, while lower setpoints are associated
with better prognosis®.

Infected individuals depend on a robust im-
mune response to help contain HIV. The course of
HIV-1 infection is variable, with some individuals
dying as early as 1-2 years after infection, while
others have survived for over 20 years without
antiretroviral therapy. As discussed below, devel-
opment of TB is one factor that can lead to rapid
disease progression and may be due in part to
chronic immune stimulation. Of utmost importance
for all HIV-1 infected individuals is the state of the
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tients with progressive disease, HIV-1 specific
CD4 cell proliferative responses are weak or non-
detectable. In addition to dysregulating the CD4
T-cell function, gradual depletion of the CD4 pos-
itive T-cells in HIV-1-infected individuals leads to
nearly complete destruction of the adaptive im-
mune system. Direct infection and killing of CD4 T
cells partly accounts for the HIV-1 associated T
cell depletion. In addition, there is CD4 cell deple-
tion through immune activation. As the CD4 T-cell
counts decline, the patient becomes increasingly
susceptible to secondary infections. AIDS defin-
ing infections include candidiasis, cryptococco-
sis, cytomegalovirus, Kaposi's sarcoma, M. avium,
and Pneumocystis carinii pneumonia, and are of-
ten diagnosed when CD4 T-cell counts fall below
200 cells/mm. In addition to these infections, HIV-
1 disease can lead to increased susceptibility to
infection by M. tuberculosis, which will be dis-
cussed in more detail later.

Typically in HIV infection, the majority of target
cells rapidly produce progeny virions. However,
a small subset of HIV-1 infected cells are not
activated or egress from activated to memory T
cells. This cell population does not actively pro-
duce virus, but still forms a pool of latently
infected cells that are not recognized by the
immune response*t. Latently infected cells in-
clude resting memory CD4 T cells®, resting naive
CD4 T cells*, monocytes/macrophages*’, and
the CD4 positive subset of NK cells* can all be
activated to produce HIV-1. These cells are also
distributed throughout the body resulting in vari-
ous anatomical reservoirs and a physical com-
partmentalization of HIV-1-infected cells within
these organs. These latent reservoirs such as the
lung appear to exacerbate HIV-1 disease when
activated by a localized infection/stimulus such
as TB (see below).

Etiology and clinical
features of TB

To establish infection, M. tuberculosis must be
inhaled, carried to the pulmonary alveoli*®, and
phagocytized by resident alveolar macrophages®
(Fig. 1). The initial defense by the host is charac-
terized by inflitration of polymorphonuclear leuko-
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Figure 1. Differences in the pathogenesis of tuberculosis and HIV-1 in the lung.

A schematic representation of the lung microenvironment following infection with HIV-1 and/or M. tuberculosis is described in
panels A (TB), B (TB and HIV-1) and C (HIV-1). The thickness of the line represents the relative production of chemokines/
cytokines in the lung following HIV and/or M. tuberculosis infection. The cytokines/chemokines underlined in panel B (i.e.
MCP-1 and TNFo,) have been shown to up-regulate HIV-1 replication and production.
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immunosuppression in the individuals. Patients
with better immune function tend to have caseat-
ing granulomas with mature epithelioid cells and
multinucleated giant cells®. As CD4 cell count
declines, there are more diffuse lesions with tissue
necrosis, few epithelioid cells, and many M. tuber-
culosis bacilli®3. In terminally ill patients, the lungs
are characterized by fibrous and calcified TB
lesions in addition to active lesions containing M.
tuberculosis bacillié*,

Immunological studies indicate that HIV-1 posi-
tive patients with tuberculosis have an ineffective
immune response in the lung, which is charac-
terized at the site of infection by fewer total lym-
phocytes and smaller proportions of CD4+ lympho-
cytes®. There are also decreased interferon-y
mRNA levels®, which would lead to decreased
production of interferon-y, a potent activator of
macrophages. When peripheral blood mononucle-
ar cells (PBMC) isolated from HIV-1 infected indi-
viduals with TB are exposed to M. tuberculosis in
vitro, the cells produce less interferon-y, but sim-
ilar amounts of Th2 cytokines as compared to HIV-
1 negative individuals with TB®. This indicates
that HIV-1 infected individuals are less efficient at
activating M. tuberculosis infected macrophages,
but are still able to mount a humoral response.
These immune characteristics likely provide a
weaker granulomous immune response, which al-
low for the more frequent progression to active
TB. Pathogenesis of pulmonary TB in relation to
HIV-1 is schematically illustrated in figure 1.

TB affects HIV disease progression

In addition to HIV-1 affecting the progression of
TB, TB facilitates HIV-1 disease progression. A
retrospective study indicates that concurrent TB is
associated with a more rapid progression to AIDS
and increased mortality®’. Isoniazid prophylaxis in
PPD+ individuals decreases not only TB, but also
decreases HIV-related disease®®. In a prospective
study, active TB was associated with increased
one and two year mortalities when the CD4 cell
counts were above 200 cells/ul®®. One contribu-
tion of TB to HIV-1 disease progression is the
increased viral loads, which is most significant at
higher CD4 cell counts (greater than 500 cells/ul),
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ines (e.g. TNF-o) and chemokines (e.g. MCP-1
but not RANTES or MIP-1a) during M. tuberculosis
infection and activation of host immune re-
sponse'?7375, Addition of TNF-a antibody and
mutation of NFkB binding sites in the HIV-1 LTR
inhibited the M. tuberculosis-induced activation
of HIV-1 transcription and replication. Although
B-chemokines have been associated with inhibi-
tion of HIV-1 entry, B-chemokines can also bind to
chemokine receptors or gylcosylamino glycans
and induce a cell signaling cascade that activates
HIV-1 replication. Interestingly, MCP-1, which is
increased by TB, does not bind to CCR5 or inhibit
NSI/R5 HIV-1 entry but is a potent activator of HIV-
1 replication (Fig. 1). Finally, M. tuberculosis di-
rectly increases HIV replication and virus produc-
tion in coinfected blood monocytes™ and
unpurified mononuclear cells®. This may be relat-
ed to a TB mediated increase in cell susceptibility
to HIV-1 infection. Monocytes from TB patients
tend to be more easily infected by HIV-1 as
compared to monocytes from healthy donors®.
Infection of blood monocytes with M. tuberculosis
also makes the transmission of HIV-1 to T cells
more efficient’s.

Nonspecific antigenic stimulation of the immune
system can also affect HIV-1 replication and het-
erogeneity. For example, tetanus vaccination of
HIV-1 infected individuals leads to an increase in
viral load and a transient shift in the distribution
and composition of the viral quasispecies’’. How-
ever, TB causes chronic immune activation'®, af-
fecting both viral replication and heterogeneity for
more prolonged periods of time. TB increases
both the replication and heterogeneity of HIV-1 at
the site of M. tuberculosis infection®'. This may
lead to rapid evolution of HIV-1 quasispecies in
the lung, which could affect the systemic hetero-
geneity (Fig. 2). The remainder of this review will
focus on the changes in intrapatient HIV-1 diversi-
ty resulting from co-infection with M. tuberculosis.

Genetic diversity of HIV-1

As described earlier, HIV-1 reverse transcriptase
is an error prone polymerase leading to an in vivo
error rate of about 3.4 x 10 mutations per bp per
cycle’. In addition to mutations generated by
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Figure 2. Heterogeneity of lung-derived HIV-1 isolates and migration to the blood upon TB-mediated stimulation.
HIV-1 replication is induced in the presence of M. tuberculosis infection in the lung. Increased HIV-1 levels in the lung
appear to “spill-over” or migrate to blood or systemic circulation resulting in a burst in HIV-1 diversity and load.
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eventually stabilize as diversity decreases. The
second phase is associated with the appearance
of X4 viruses, which typically peak prior to the
third phase of intrapatient HIV-1 evolution. Finally,
viral diversity is stable or continues to decrease
during the third phase and is associated with a
drop in CD4 T cell counts to under 200 cell/ul and
reappearance of R5 HIV-1 isolates®.

The vast majority of studies investigating HIV-
1 heterogeneity within an infected individual or
the human population have focused on the env
gene. HIV-1 Env glycoproteins are involved in
host cell entry, immune evasion, and act as a
target for virus neutralization. The gp120 coding
domain of env has been divided into alternating
constant and variable regions, referred to as C1
through C5 and V1 through V5, respectively®.
The variable regions lie mostly within regions
encoding disulfide-constrained,  surface-ex-
posed loops®. Of particular interest is the env
V3 region. This region is important for both CTL
immune recognition®”, antibody mediated neu-
tralization®® as well as co-receptor usage (CCR5
or CXCR4)%,

The nature of mutations in env provides insight
into in vivo selection within the host'®. The aver-
age ratio of synonymous (ds) to nonsynonymous
(dn) substitutions is indicative of changes in pri-
mary amino acid sequence and has been used to
describe viral evolution. ds/dn ratios much greater
than one suggest negative selection, ratios less
than one indicate positive selection, and values
close to one indicate genetic drift'®". HIV-1 isolates
evolving with lower env ds/dn ratios tend to be
under greater immune selective pressure. For in-
stance, long term progressors, who have a strong
anti-HIV-1 immune response'®, have been found
to have lower ds/dn ratios as compared to typical
progressors'93:1%4 - Although the values of ds/dn
ratios are consistently lower in slower progres-
sors, studies describing the association between
disease progression and increase in heterogene-
ity have been inconsistent!?3.104,

Ability of the immune system to contain virus
may be related to an antigen diversity threshold,
as suggested by Nowak, et al.’%. When the viral
diversity exceeds a threshold, the immune system
can no longer contain the infection, and virus
replicates without immune mediated hindrance®,
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evidence that the onset of TB can lead to a burst
in HIV-1 diversity and an irreversible increase in
rate of disease progression.

Compartmentalization of HIV
in the lung and divergent
intrapatient evolution

Another important aspect of the evolution of
HIV-1 is the anatomical compartmentalization of
the virus. Phylogenetically distinct viral sub-popu-
lations have been found in the kidney, brain,
blood, genital tract, and lung in HIV-1 patients.
Explanations for the observed compartmentaliza-
tion include physical separation of tissue com-
partments, selective migration of infected cells,
distinct target cells, and selective pressure within
compartments'’. Understanding how different
compartments contribute to the systemic qua-
sispecies can give insights into the pathogenesis
of HIV-1. In addition, M. tuberculosis establishes
infection and a granuloma in the same tissues
involved in HIV-1 compartmentalization (Figs. 1
and 2).

Several studies have indicated that HIV-1 in the
lung may evolve separately from blood isolates.
Phylogenetic analysis of env DNA in the blood
and lung shows separate clustering of isolates in
each compartment'>'"4 |n vivo analysis of core-
ceptor utilization of the V3 regions of primary HIV-
1 isolates derived from the lung and blood indi-
cates that lung strains are restricted to using
CCR5, whereas blood strains may use CCR5 and/
or CXCR4'®, |t has also been shown that HIV
strains from bronchoalveolar lavage cells, but not
from peripheral blood cells, contain V3 domain
nucleotide sequences with a greater degree of
homogeneity in the C-terminal region and a highly
conserved, negatively charged amino acid mo-
tif''3, This indicates that strains infecting alveolar
macrophages may have evolved further from the
founder strain than those infecting blood mono-
cytes. Longitudinal phylogenetic analysis has
shown the lung quasispecies evolve separately
from the blood, and harbor a very diverse popu-
lation of HIV-1 quasispecies. This compartmental
evolution may also be a continual HIV-1 reservoir.
HIV-1 compartments,
y recurrent exposures
to ant|gen through air and blood exposure. Alve-

cells, which temporarily blocks T cell prolifera-
|mmunosuppression likely results in
of HIV-1 replication in the lung, which
may be suppressed by surfactant!'®, and type-1
lead-
HIV-1
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lead to immune activation in the lung, which lead
to the increased pulmonary HIV-1 replication upon
coinfection™!. Worldwide, M. tuberculosis is the
most common HIV-1 coinfection'??. As a result, we
have used TB as a model for the effects of oppor-
tunistic infections on HIV-1 disease progression.

Impact of TB on HIV heterogeneity

Secondary infections such as TB can affect
HIV-1 evolution and compartmentalization (Fig. 2).
Nakata, et al.’® studied the effects of pulmonary
TB on HIV-1 replication and heterogeneity in 11
cases of pulmonary TB. Consistent with in vitro
experiments’’76, HIV-1 replication and heteroge-
neity was higher in TB-involved lung segments
than the uninvolved segments. In a related study,
tetanus inoculation led to no consistent change in
HIV-1 viral heterogeneity””. However, tetanus inoc-
ulation models an acute immune activation, where-
as TB models a more chronic immune stimulation,
resulting in more persistent effects on HIV-1. In a
majority of cases, the actual diagnosis and subse-
qguent treatment of TB occurs on average two
months after active TB infection has been initiat-
ed. As described above, TB is associated with
increased systemic viral replication” and hetero-
geneity®, decreased CD4 cell counts, a more rap-
id progression to AIDS, and increased mortality®”.
In vitro, M. tuberculosis infection or PPD stimula-
tion of primary cell populations results in potent
activation of HIV-1 replication and may explain the
increase in HIV-1 viral loads following the diagno-
sis of TB °.

Increased systemic HIV-1 heterogeneity was
observed in patients with active pulmonary TB®. In
a CD4 matched cohort, the mutation frequency of
HIV-1 quasispecies in HIV-1-infected adults with

B (HIV/TB) patients was at least 2- to 3-fold
greater than in HIV-1 patients without TB. It was
hypothesized that this increase in systemic viral
heterogeneity may be due to stimulation of HIV-1
replication at sites of M. tuberculosis infection
(e.g. lung and/or pleural space) that could lead to
a significant migration of genetically distinct lung-
derived HIV-1 quasispecies into the blood (Fig. 2).
This hypothesis was supported by a greater fre-
quency of distinct HIV-1 quasispecies lineages in

space as compared to the blood. However, phylo-
genetic separation of the blood quasispecies from
the pleural quasispecies in several patients was
suggestive of compartmentalization and divergent
evolution in pleural effusions. Also, there were
substantial migration events between compart-
ments in all of the patients™. Upon removing
obvious migrants from the heterogeneity analysis,
the pleural compartments contained a more heter-
ogeneous HIV-1 population than that found in the
blood (Fig. 2). In addition, the majority of these
migrants tended to be viral particles that relocat-
ed from the pleural space to the blood. Thus, this
migration from the pleura to the blood coupled
with the higher viral loads in the pleura support
the hypothesis that pleural (or lung) quasispecies
are contributing to the increase in systemic HIV-1
heterogeneity observed in the presence of local
M. tuberculosis infection' (Fig. 2).

Previous studies suggest a compartmentaliza-
tion of HIV-1 quasispecies in the brain'®'¢7 cere-
brospinal fluid'?129 spleen'®, lymph node'?1%7,
lung, and semen'131 |n each of these studies,
there is compartmentalization between the blood
and the respective organ, with varying amounts of
cross talk between compartments. However, it is
not unusual to find lack of compartmentalization in
these various organs. For instance, Delwart, et
al.’® have shown that some patients have clear
communication between the blood and semen,
whereas other patients have more defined com-
partments. These studies indicate that TB-mediat-
ed compartmentalization of HIV-1 in the pleural
space is as defined as compartmentalization in
any other organ. In addition, this model of pleural
TB is quite suitable to explore HIV-1 migration
between an M. tuberculosis infected organ and
the blood (Fig. 2).

Does increased HIV-1
heterogeneity mediated by TB have
any significance? Relating HIV-1
diversity to viral fitness and
disease progression

[t is quite evident that TB increases systemic or
blood HIV-1 heterogeneity through a “spill-over” of
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HIV-1 phenotype, i.e. from non-syncytium induc-
ing (NSI) HIV-1 isolates utilizing the CCR5 co-
receptor (R5) for host cell entry to CXCR4 (X4)-
tropic, syncytium inducing (Sl) isolates®. Host
factors involved in this genotypic and phenotypic
bottleneck are poorly understood but may be due
to depletion of susceptible cell populations or
destruction of the host immune system.
Although the impact of HIV-1 heterogeneity on
disease is not entirely clear, specific factors that
augment HIV-1 diversity or distribution of HIV-1
clones in various tissue compartments appear to
decrease the time to AIDS. Immune activation due
to other stimulants or antigens often has a direct
affect on viral replication, load, and evolution. For
example, tetanus inoculations have been shown
to temporarily increase HIV-1 viral loads and the
composition of the quasispecies’”. Even with ef-
fective treatment, active TB results in transient
increases in viral load, sustained increases in HIV-
1 heterogeneity, and higher mortality in HIV-infect-
ed individuals. Sustained increases in HIV-1 heter-
ogeneity in HIV-1/TB-infected individuals appear
to be due to migration of divergent HIV-1 qua-
sispecies into the blood from TB-affected, HIV-
infected organs, e.g. lung or pleura'. This burst
in the circulating quasispecies population may be
responsible for the rapid progression to AIDS ob-
served in HIV-infected individuals contracting TB.
Increases in HIV-1 quasipecies diversity and
fitness during the course of disease have now
been observed in two independent studies® %2,
However, a direct relationship between increasing
heterogeneity and fitness of an RNA virus has only
been characterized in vitro models utilizing foot
and mouth disease virus (FMDV)'33.134 and vesic-
ular stomatitis virus (VSV)'3.1% Domingo, Hol-
land, and colleagues have shown that exponential
increases in population size and diversity will lead
to continual increases in viral fitness or replication
efficiency (Red Queen hypothesis)'®”. Any chang-
es in selection pressure or a decrease in popu-
lation size will invoke Muller's Ratchet, i.e. the
accumulation of escape/modulating mutations
that are deleterious to the virus and lead to loss
in fitness. In HIV-1 infections, a decrease in viral
fitness may be due to an active and effective
HIV-1-specific immune response and a continual
selection of escape mutants. Certainly, antiretro-
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ues to diverge and diversify during disease pro-
gression. In both untreated and treated HIV-infect-
ed patients, variations in quasispecies diversity
appeared to correspond to respective changes in
ex vivo HIV-1 fitness. A decrease in the quasispe-
cies diversity was observed after the initiation of
ARV therapy, but this was also associated a drop
in relative HIV-1 fitness. Overall, a positive and
direct correlation was evident between quasispe-
cies diversity and HIV-1 fitness (or replication
efficiency in PBMC) whereas a negative correla-
tion was observed when comparing ex vivo fitness
to CD4 cell counts, i.e. a determinant of disease
progression. These data provide the first in vivo
support for the Red Queen hypothesis that is
increases in HIV-1 fitness may be related to in-
creasing viral loads and quasispecies diversity.

In conclusion, pulmonary TB may facilitate the
progression of HIV-1 disease by increasing viral
replication and through immune activation. Direct
activation of viral replication occurs through M.
tuberculosis induction of TNF-o that in turn acti-
vates NFkB and HIV-1 transcription. This TB-medi-
ated HIV-1 replication leads to increased HIV-1
viral loads and heterogeneity at the site of infec-
tion. The increased quantity and diversity of the
HIV-1 quasispecies allow for the evolution of more
fit variants, some of which exit the lung and enter
the systemic population (Fig. 2). The result is a
more fit viral population, which may facilitate dis-
ease progression.
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