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Abstract

Many HIV-1 isolates contain interwoven genomic sections derived from
multiple parental strains. Such chimeric genomes arise via genetic
recombination. This review summarizes experimental approaches for
addressing the frequency of HIV-1 genetic recombination during single cycles
of viral replication in vitro, and describes factors —such as variation in
extents of sequence homology and the metabolic state of the infected cell-
that modulate recombination. Findings from such studies suggest that
recombinogenic template switching is an even more common occurrence
during HIV-1 DNA synthesis than is the introduction of base substitution
errors. This implies that recombination is an inherent property of retroviral
DNA synthesis, and that the vast majority of HIV-1 DNAs are biochemical
recombinants.
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Introduction

Early molecular characterization revealed that
HIV-1 strains could be assigned to genetically
distinct clades. These clades, now known as sub-
types, differ from one another in genetic variation
that likely arose via sequential mutations in genet-
ically isolated branches of HIV-1 after its introduc-
tion into humans®. O s@@ﬁbi Eﬁflﬁh
HIV-1 genomes became common practice, it be-

came apparent that the a r zﬂm iral
isolates was not linear. In:ﬁg@;ry@ Qféé&tw@r

nant strains contained patches of sequence de-
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Genetic recombination in animal retroviruses
had been known for decades, and thus the poten-
tial for recombination to contribute to HIV-1 diver-
sity. was.recognized. as soon.as.it. was.discovered
that AIDS is caused by a retrovirus. In fact, early
work with avian RNA tumor viruses suggested that

ch[n@tq@qsm fféGuent that genetic mark-
ers re-assorted essentially as if they were un-
linked!?°, This is:surprising when one considers

Qﬁ@&@pﬁbﬂéﬁc content of retroviruses is

contained on a single RNA'4. Because covalently
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influenza, retroviruses must have evolved a mecha-
Stb]@rassort physically linked genes at an

unprecedentedly high frequency 962,

Early work to determine whether or not HIV-1
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showed that an integrated provirus containing a
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stop codon could be rescued by recombination
with a second defective virus that had a different
mutation'®. Moutouh, Corbeil and Richman, as
well as Kellam and Larder, found that recombina-
tion could lead to the co-segregation of drug-
resistance markers in tissue culture®'7°, and Wool-
ey, et al. demonstrated that SIV recombination
occurred in an experimentally co-infected rhesus
monkey''®. However, because it is difficult to de-
termine generation times in a replicating virus
population, and because competitive advantage
largely dictates population composition??, it would
be inaccurate to deduce the frequency of recom-
bination from the prevalence of replication-com-
petent recombinants.

This review focuses on experimental work that
has examined, more directly, the frequency of
HIV-1 genetic recombination during single cycles
of replication, and on factors that modulate re-
combination under experimentally controlled con-
ditions. Until quite recently, most such work was
performed in simple retrovirus systems, and thus
much of the technology and findings described
here are rooted in studies with alpha- and gam-
ma-retroviruses. Studies with HIV-1 reveal both
similarities and differences between genetic re-
combination for HIV-1 and for simple retroviruses.

Mechanism: reverse transcriptase
template switching between co-
packaged RNAs

Most retroviral recombination results from re-
verse transcriptase (RT) copying part of one viral
genome and then switching to a homologous
region of a second genome to complete DNA
synthesis'®. In the example shown in figure 1, one
parental RNA contains a protease (PR) allele with
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protease cleavage sites?®.

mutations that confer broad resistance to pro-
tease inhibitors (resistance is indicated by the
superscript F), while the second parental RNA
contains RT-coding sequences that confer resis-
tance to AZT. Because both high level resistance
to AZT and cross-resistance to protease inhibitors
require multiple alterations to wild-type sequences,
developing either form of resistance can take
several viral generations®. In contrast, once each
resistance has developed independently, recom-
bination between genomes permits co-segrega-
tion of both traits in a single cycle of replication.

A critical factor that contributes to HIV-1 re-
combination frequency is the unusual genome
organization of retroviruses. Although each virion
RNA includes the entire genome, retroviruses
differ from other viruses in that each contains
duplicate RNAs'. Retroviruses are sometimes
considered to be diploid, and virions that contain
two different RNAs are described as heterozy-
gous in this review. Co-packaging two complete
RNAs in a single virion provides two templates to
the reverse transcription machinery and is a crit-
ical factor in the high frequency of retroviral
recombination.

Another important factor is the unusual proper-
ties of RT. Most DNA polymerases do not readily
perform the sorts of template switches that are
required for retroviral recombination. It has been
postulated that the reason reverse transcription is
prone to recombinogenic switching is because
replicative template switches are required during
the synthesis of every viral DNA (Fig. 2)2"1,
During every round of reverse transcription, viral
genomic RNA templates a double-stranded DNA
product that is longer on both of its ends than is
the template RNA. As outlined in figure 2, the so-
called “jumps”, or strong-stop template switches
during reverse transcription result in the joining
and duplication of sequences found only once in
genomic RNA, thereby generating the long termi-
nal repeats (LTRs)?. Replicative strong-stop tem-
plate switching and recombination are believed to
be mechanistically similar processes'". Whenever
template switches in addition to strong-stop jumps
occur, the product DNA can be considered a
biochemical recombinant..Genetic-recombination
—re-assortment of genetic markers— can result
when recombinogenic template switching occurs
er from one another.

Ongoing research s addressing which properties
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factor is the viral nucleocapsid protein (NC), which

RSBl s e

in in vitro reconstituted reaction studies, and its

41:5%hc@[’recombination during replication are
currently under examination” 3", RT itself is also a
likely ,candidate. All retroviral RIs contain two
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tion studies have revealed that some alterations to




Wenfeng An and Alice Telesnitsky: HIV-1 Genetic Recombination: Experimental Approaches and Observations

R U5 PBS cPPT PPT _U3 R
 e— — C— T JAAA 3
R U5
\ a} minus strong stop template switch
\N
PBS cPPT PPT__ U3 R
T 1 AAA 3¢
R U5
w
PBS PP PPT
DT PPT U3 R U5 #
c)¢
cPPT PPT U3 R U5 PBS
PBS cPPT PPT U3 R US <f
7
d) plus strong stop template switch /
U3 R U5 PBS cPPT PPT U3
PBS cPPT PPT U3 R U5
e)¢
u3 R U5 PBS cPPT\ _PPT U3 R U5
s R U5 PBS cPPT PPT U3 R U5
S~ — S~ —
LTR LTR
Figure 2. Replicative template switches during HIV reverse transcription. Outline of prevailing model for retroviral DNA syn-
thesis?® modified to reflect the presence of a secondary plus-strand DNA initiation site (the central polypurine tract
[cPPT]'%1%) in HIV and other lentiviruses. a) The initial minus-strand DNA intermediate synthesized at the RNA’s 5’ end is
transferred to the 3’ end during minus strong-stop template switch. b) Continued minus-strand synthesis is accompanied by
RNaseH degradation of the RNA template. ¢) Residual polypurine tract (PPT) oligoribonucleotides prime plus-strand DNA
synthesis. d) The plus-strand product that results from synthesis into the tRNA primer is transferred to the 5’ end of nascent
minus-strand DNA during plus-strand strong-stop transfer. e) Completion of both DNA strands results in a gapped duplex
with long terminal repeats (LTRs) on either end.

gammaretrovirus RT affect template switching® 104,
but these studies have not yielded a clear picture
of RT structural determinants required for recom-
bination.

One property of RT —its RNaseH activity— is
an_undisputed. requirement..for-high. frequency
template switching™ 3. Template switching fre-

activity. It should be noted, however, that naturally
arising recombinants have been reported, even
for HIV-264107,

Note that the model presented in figure 3
describes recombination during minus-strand
synthesis. . Models for plus-strand.recombination
have also been proposed*®4°. Available experi-

quencies are decreased several fold. for gam- mental evidence suggests that most retroviral
maretroviruses that cdntdin [0éttain @N{JQW?UI@E@@W@@@ @ing minus-strand syn-
fective forms of RT or that have reduced levels of  thesis®'?”. Howevetf, an important caveat to
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RNaseH*. This observation, paired with finding
that demonstrate limiting RNaseH increases re-

combi 0 Si retra-
viruse relati \j‘l i;, S chu
as HIV-2%97 mdy recombi r ly than

HIV-1, which possesses relatively high RNaseH

ackaging properties appear to differ be-
ammaretroviruses and lentiviruses, and
thus gammaretrovirus genetic observations can
isrepresent biochemical _processes. Plus-

they appear to be for gammaretroviruses. Con-
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Figure 3. Minus-strand exchange model for genetic recombination. a) DNA synthesis becomes asynchronous once RT ad-
vances further on one co-packaged RNA (the donor template) than on the other. b) Cleavage of the RNA template strand
by RNaseH exposes single stranded minus sense DNA, which can base-pair with complementary sequences on the accep-
tor RNA. ¢) Branch migration of the nascent DNA: acceptor RNA duplex positions the donor template growing point near the
acceptor template, and RNaseH degradation of the donor template causes the slower RT complex to abort. d) Template
switch is accomplished by a repositioning of the primer strand onto the acceptor template, as has been demonstrated in re-
constituted reactions®. Thin lines represent RNA, thick lines represent DNA, ovals represent RT.

sistent with this possibility are the observed
“backwards” sequence insertions, suggestive of
plus-strand recombination, which have been
reported for certain retro-elements and alpharetro-
viruses’®1%. Recombination within proviral DNA
has also been postulated to contribute to retro-
viral genetic variation, and phylogenetic com-
parisons of integrated retro-elements support
the existence of variation generated at the DNA
level. However, it seems likely that some early
experimental approaches, used to suggest
DNA-level.recombination, were subject to-trans-
fection-related artifacts3%3'. More recent experi-
mental work suggests that DNA-medi te%r.etro-
viral recombination iN@r Fﬁﬁ{tfr@j%ett

recombination which occurs during reverse

Hap

Single cycle assays use vector and helper
systems, like those used to generate lentiviral
vectors for gene transfer®®. One assay compo-
nent is a reporter vector that contains one or
more selectable marker genes embedded in
sequences that include cis-acting signals such
as the packaging signal, ¥, and those required
for reverse transcription. The second compo-
nent is the trans-acting factors required to pro-
duce virions. These can either be provided by
packaging cells that express virion proteins, or
by co-expressing vector and packaging defec-
tive (W-) virion protein expression constructs:in

raducer cells. Virions harvested from produc-

p
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Vector RNAs packaged in these virions be-
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electable markers, because cells with vector

VU$Ees can be selected and amplified by
cell division in the same way that E. coli -
ontajning plagmids can be _selected on antibi-
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rus-containing cells are clonally expanded, and
structures of integrated proviruses are ana-
lyzed by standard molecular approaches.

Gammaretrovirus two vector
recombination assays

Pioneering studies by Howard Temin, et al.
examined recombination between co-packaged
gammaretrovirus vectors?®4""1 An overview of
these approaches is presented in figure 4. Based
on these researchers’ confirmation of earlier ob-
servations'! that recombination is not observed
when two viruses co-infect a single cell but is
detected among products of virions from dually
infected cells*, an initial step in these assays was
to establish heterozygous virion producer cell
lines. These cells co-expressed virion proteins
and two different retroviral vectors. The vectors
were highly similar, but each was engineered to
express only one or the other of two different
drug-resistance markers*C. These vectors also dif-

fered at other positions (indicated by * in figure
4a), to allow genetic screening for recombination
in vector intervals other than the target region
between selectable markers.

Because virion producer cells co-expressed
both vectors, some of the resulting virions con-
tained both RNAs. If recombination between marker-
inactivating mutations occurred during reverse
transcription of such heterozygous virions, a provi-
rus encoding resistance to both drugs could re-
sult. Provided that the multiplicity of infection was
low enough that the chance of single cell co-
infection was minimal, the number of target cells
that expressed both markers was an indication of
genetic recombination.

Recombination frequencies can be calculated
from single- and double-resistant selectable marker
titer data after consideration of a number of pa-
rameters™. One is to calculate the predicted
“recombining population” size, or fraction of virions
that are capable of generating detectable recom-
binants because they have co-packaged both
vectors. It has been assumed that if two packaga-
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Figure 4. Two-vector rec\AMAirut,o(h) gslaysl? IaB gel}é“alt}b) Jepr\é;/e!vt]ab}nt;)!‘ !anm%]eJrJ)Ji}LPs ?Jc%”blination assay vectors
used by Hu and Temin®®4!. * indicates position of genetic difference between templates; x indicates genetic difference re-
sponsible for inactivating marker gene; recombindtio rget region_i$intérval between inactivating mutations. LTR indicates
long terminal repeat, which contains U3, R, aéfﬁﬂﬁén ﬁ@ b&% é,r neo and hyg indicate drug-selectable marker
genes. Crossed-out text represents inactivated gene. b) Overview of experimental scheme for recombination assays that use
two vectors such as those in figure 4a. Two different proviruses are introduced into single producer cells: in the example

this figure, virions are represented with capgid morphology more reminiscent of HIV-1 than of gammaretroviruses.
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ble RNAs are co-expressed, they will associate
and dimerize randomly, based on their intracellu-
lar proportions ™. This generates heterozygous and
homozygous virions at frequencies predicted by
the equation

A2 + 2AB + B?= 1

which is known in population genetics as the
Hardy Weinberg equation. When the concentra-
tion of one RNA, ‘RNA A’, is the same as that of
RNA B, then AB heterodimers should be present
in half of the total virions, and AA and BB ho-
modimers are predicted to be present in 25% of
the total apiece. For recombination frequency
calculations, the proportions of co-expressed
RNAs in one dimer form or another have often
been inferred from single drug resistance ti-
ters41,124'

To calculate recombination frequencies, dual
drug resistance titers per calculated recombining
population member are doubled to account for the
fact that for every dual resistant provirus, the recipro-
cal (an undetected dual-drug sensitive) recombi-
nant should form*+'2°. Values are also adjusted to
account for the fraction of the genome length in
which recombination was measured (the recombi-
nation target), which in the figure 4 example is the
distance between drug resistance-inactivating mu-
tations. If the target interval were 0.8 kb and the
entire vector were 8 kb, then target interval recom-
bination values must be multiplied by 10 to yield a
genome-wide rate. These approaches have yield-
ed frequencies of approximately one recombina-
tion event during the synthesis of every two to
seven gammaretroviruses*4041:43,

Potential weaknesses of two-vector recombina-
tion assays include the fact that they are techni-
cally challenging and that they are based, in part,
on some theoretical assumptions. One assump-
tion is that recombination occurs at all genomic
positions at more-or-less uniform frequencies rather
than principally at specific sites. Experimental
work has confirmed that although recombination
frequencies are not uniform —indicating the pres-
ence of “hot” and/or “cold” spots for recombina-

tion— recombination is observed throughout the
HIV-1 genome®#2117. Recombinogenic crossover
frequencies are at least roughly proportional to
recombination target length for both gammaretro-
viruses and HIV-1246.130,

One technical challenge is to establish a situa-
tion where the investigator can be reasonably
certain whether or not a particular proviral product
was generated by a heterozygous virion. One way
that this has been addressed is to co-express
vector RNAs at very different levels™. If 99% are
RNA A and only 1% are RNA B, then Hardy
Weinberg predicts that the vast majority of proviral
products harboring marker B were derived from
AB heterozygotes. These issues are addressed in
the classic series of HIV-1 genetic recombination
experiments outlined below.

Dougherty and Preston HIV-1
recombination experiments

Dougherty, et al. were the first to report single
replication cycle two-vector recombination assays
for HIV-142124  Assay vectors were derived from
two HIV-1 strains, HXB2 and BCSGS, respectively,
which differ in nucleotide sequence by approxi-
mately 5%. Both vectors retained most of the
native HIV-1 genomic sequences except that part
of env was replaced by a different marker gene in
each vector: that for xanthine-guanine phosphori-
bosyltransferase (gpt) in the HXB2-based vector,
and the puromycin (puro) resistance gene in
the vector derived from BCSG3 (Fig. 5). Thus, the
vectors themselves provided all replication pro-
teins except env. These vectors were individually
pseudotyped and introduced by sequential infec-
tion into a CD4-negative producer cell line that
contained inducible HIV-1 env, so that infectious
vector-containing virions were produced upon in-
duction. Virions were harvested and used to infect
CD4-positive target cells. In this system, vector
virus could not reinfect the producer cells, be-
cause those cells lacked CD4, and target cells
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Figure 5. HIV-1 based two-vector recombindtion assay vectors. See text.
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did not produce infectious virions, because vector
provirus-containing target cells did not express
env. Thus, replication was confined to a single
cycle.

Virions from the producer cell clones that were
chosen for further study generated gpt titers in
target cells that were 100-fold higher than their
puro titers. As discussed earlier, the Hardy Wein-
berg equation predicts that 99% of the puromycin-
resistant proviruses synthesized by such virions
will be generated by heterozygotes. Thus, by
analyzing puromycin-resistant proviruses generat-
ed by virions from cells that expressed skewed
ratios of vector RNAs, the authors could assume
that the majority were products of heterozygous
virions. A total of 86 separate puromycin-resistant
proviral cell clones were isolated. Proviral DNA
was amplified by PCR and various non-overlap-
ping segments of the vectors (indicated by the
bars under HIVgptHXB2 in figure 5) were subject-
ed to heteroduplex tracking assay (HTA), using
probes derived from the BCSG3-based vector.
Because the two strains contained scattered ditf-
ferences throughout their lengths, homo- and het-
ero-duplex fragments yielded distinct gel migra-
tion patterns that were used to identify the
parentage of each segment, and the genome
intervals in which crossovers occurred were deter-
mined. The data yielded an average HIV-1 recom-
bination rate of about three crossovers per ge-
nome per replication cycle, which was roughly
10-fold higher than those which had previously
been reported for simple retroviruses, using similar
experimental approaches**'.

Fidelity of genetic recombination

Substitution errors arise approximately once ev-
ery 10,000 to 100,000 bases during viral DNA
synthesis, or roughly once during the synthesis of
one to ten genomes®. In reconstituted in vitro
reactions designed to mimic HIV-1 template switch-
ing, base substitutions are observed at a signifi-
cant percentage of all template-switching junc-
tions?:83. These observations with purified RT led
to the hypothesis that genetic. recombination might
cause many of the substitutions found in HIV-1
genomes®®®. It was suggested that trapsfer-asso-
ciated errors could resultffd rr—terﬁ]j?agd Hel

tion of an uncoded base followed by mispair exten-

u

However, in contrast to products from purified
biochemical reactions, recombination junctions
generated during replication in tissue culture ap-
pear fairly free of errors. Two-vector recombination
assays have been used to study whether or not
misincorporation errors occur more frequently at
recombination junctions than during synthesis that
proceeds without recombination® 1%, In one study
that addressed gammaretrovirus recombination
fidelity, the entire recombination target region was
sequenced from 29 individual products of two-
vector recombination assays'™. The frequency
with which substitutions were observed —no sub-
stitutions in a total of about 1.5 kb sequenced—
suggests substitutions at recombination junctions
are not significantly more frequent than reported
~0.1 to 1 per 10 kb whole genome substitution
frequencies'°. Similar studies performed with HIV-
1-based vectors concluded that HIV-1 recombina-
tion also is not particularly error-prone’3. An alter-
nate approach for studying gammaretrovirus
fidelity involved a genetic system for forced re-
combinogenic template switching between the 5’
end of one RNA and an acceptor target region on
a co-packaged RNA. If template switching were
faithful, a restriction site would form at the transfer
junction, but if a non-templated acceptor template
non-complementary base were added prior to
template switching, the restriction site would be
destroyed. The findings demonstrated that errors
at that position occurred below the <1% threshold
of detection®.

Interestingly, in experiments where gammaretro-
virus template switching frequency was sup-
pressed by RNaseH limitation, the fidelity of DNA
synthesis was drastically reduced®. Some or all of
the reduced fidelity may have resulted from RT
defects unrelated to template switching™?2. None-
theless, template switching generally may be more
of a fidelity factor than a mechanism of error
introduction. During the reverse transcription of
every retroviral DNA, RT must switch templates
when it reaches its tRNA template’s first modified
base, which is perceived to be non-coding'®. By
analogy, it is possible that recombinogenic tem-
plate switching may provide an error-escape
mechanism..when. the reverse. transcription..ma-
chinery reaches a dysfunctional, environmentally
modified. base?. Error-avoidance —particularly

M@bk@ﬂemafys fis part of “forced copy

choice” models for genetic recombination®'. These

sion upon growing point transfer to jthe secon emain U even though it is now clear
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than 50% of all template ends when studied with

as nucleotide availability and genetic properties
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retroelements®7". It has been suggested that hos
DNA recombination may be mutagenic®, and the
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en, such as simultaneous rather than sequential
co-transfection of vectors to generate producer
lines’™. Although such experimental “noise” can
sometimes be circumvented, and is often tolera-
bly within the range of experimental variation,
alternate, more experimentally amenable ways of
studying template switching are often preferable.
Repeat deletion is one such method for measur-
ing recombinogenic template switching.

This approach is based on observations that
repeated sequences are often precisely deleted
from retroviral vectors, suggesting that their removal
is a form of homologous recombination®. In assays
designed to exploit this, repeat deletion has been
used to inactivate or reconstitute marker genes*6.%,
Figure 6a shows HIVlaacPuro, a repeat deletion
vector that contains both a selectable marker (a
puromycin resistance gene) and a screenable mark-
er (lac2)'. This vector was engineered to contain a
coding region-internal sequence duplication that
disrupts the LacZ translational reading frame, so
that parental-form proviruses confer puromycin re-

sistance, but do not express functional p-galactosi-
dase. A functional lacZ gene is generated if precise
repeat deletion occurs during reverse transcription,
and cells harboring a deleted provirus stain blue
when incubated with the chromogenic substrate, X-
gal®”. Because repeat deletion is presumed to be a
recombination-like property, the blue to total (blue
plus unstained) puromycin resistance titer is an
indication of recombinogenic template switching fre-
quency. Similar vectors that express gfp and can be
scored by florescence-activated cell sorting have
also been developed'?41%6,

A major advantage of repeat deletion assays is
that template switching can be monitored using a
single vector. Because each vector contains both
the sequence from which RT will switch (the donor
template region) and the sequence to which RT
will switch (the acceptor region), this approach
obviates the need to determine template RNA
ratios. Although repeat deletion is sometimes re-
ferred to as intramolecular recombination, a weak-
ness of this experimental approach is that it is
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unclear whether or not repeat deletion is a good
mechanistic mimic for genetic recombination. Pos-
sible concern is raised by findings from E. coli,
where direct repeat deletion is RecA-independent
but other forms of homologous recombination are
RecA-dependent®’. However, HIV-based assay
data that compared deletion frequencies using a
single vector RNA to switching rates between
repeats located on two different vectors, suggest
that repeat deletion does reproduce properties
associated with retroviral intermolecular recombi-
nation’”. This data was derived from assays that
compared frequency of repeat deletion using HIV-
laacPuro (Fig. 6) to the frequency of intermolecu-
lar switching between ‘reciprocal repeat’ vectors.
Repeats in these later HIVlaacPuro derivatives
differed by the introduction of a sufficient number
of synonymous substitutions —27% differences
overall— so that deletion between the two repeats
on a single vector did not occur detectably. The
vectors were designed so that one vector had the
mutant repeat downstream of the wild-type repeat
while the reciprocal vector contained the wild-type
repeat downstream of the mutant sequence. Ex-
perimental values were adjusted to reflect the
predicted heterozygous virion concentration and
the assumption that while copying the 156 base

repeat, the elongating polymerase would only be
able to use one of the three potential acceptor
template regions (the one on the same RNA and
the two on the co-packaged RNA). The data
indicated that switching between repeats occurred
at a similar frequency, regardless of whether the
acceptor repeat was on the same or on a co-
packaged RNA".

Homologous vs non-homologous
recombination

Work described thus far has focused on recom-
bination between highly similar sequences. Retro-
viruses also perform non-homologous recombina-
tion between unrelated sequences. For example,
the junctions between host and viral sequences in
retroviruses with host-derived oncogenes presum-
ably arose via non-homologous recombination
(Fig. 7a)'®. Gammaretrovirus assays designed to
compare frequencies of homologous and non-ho-
mologous recombination concluded that non-homol-
ogous recombination was less frequent by two to
three orders of magnitude'.

Of interest to HIV biologists is how recombina-
tion is affected by sequence variation that lies
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between homology and non-homology. Recombi-
nation between related but differing sequences,
which has occasionally been referred to as “ho-
meologus” recombination, has been examined ex-
perimentally using a variation of the repeat dele-
tion assay introduced in figure 6'. Synonymous
substitutions were introduced into one copy of a
repeated sequence in lacZ, while the native se-
quence was maintained in the second repeat.
Identical repeat deletion frequencies were com-
pared to rates for repeats that differed from one
another by 5, 9, 18, 27, 37, or 42%. As presented
in figure 6¢, decreases in deletion rate with in-
creasing genetic distances could be fit to an
exponential decay curve. As little as 5% differ-
ence between repeats decreased deletion fre-
quency to 65% of that for identical repeats, and
frequency was further reduced to about 5% of the
identical repeat value when repeats differed by
18%. These findings suggest that HIV-1 recombi-
nation is less sensitive to genetic differences than
is the wild-type cellular DNA recombination ma-
chinery00.115,

Differences of 27% and greater did not vyield
detectable HIV-1 recombinants, suggesting re-
peat deletion was reduced more than 300-fold.
However, lower levels of overall sequence similar-
ity may be sufficient to direct detectable homolo-
gous recombination in vivo, provided the recombi-
nant possesses a selective advantage. Products
of recombination between significantly different
subtypes®, and even between M and O group
members®?1% have been reported.

Such recombinants may arise essentially by
chance, may rely on residual homology or homol-
ogy independent recombination triggers, or may
be disproportionately common in short regions of
high donor/acceptor template sequence identity.
It is important to consider that, in the homeologus
deletion assay described above, sequence varia-
tion was evenly distributed, whereas naturally aris-
ing variation can be more clustered. In gammaretro-
virus systems, as little as 12 nucleotides of identity
between recombination donor and acceptor tem-
plates appears sufficient to accurately target ho-
mologous recombination, albeit at a lower fre-
guency.-than.that observed. for.more. extensive
regions of homology?3®. Small patches of se-
quence identity are so times observ%d other-

wise non-homologou ?@@l’tr
junctions, suggesting that at least some non- h

ub&@@ﬂ@rhmae\#

have been characterized. Similarly, determining
whether or not common crossover junctions ob-
served among clinical isolates are recombination
hot spots, or if they are detected solely due to
selective advantage, will require experiments de-
signed to test recombination frequencies within
the implicated regions.

One implication of the suppressive effects of
sequence variation is that reported HIV-1 recom-
bination frequencies (two to three events per rep-
lication cycle*>'* may be underestimates, be-
cause they were based on studies with HIV-1
strains that differed by around 5%. Another impli-
cation is that the complex mosaic structures often
observed for inter-subtype recombinants likely did
not arise during a single replication cycle, but
instead by sequential co-infection by viruses con-
taining subsets of the observed recombination
junctions. However, significant deviation from
average crossover frequencies has been ob-
served, even when small numbers of recombi-
nants were studied, with some products display-
ing at least 10 crossovers even though the
average number was less than three*?. Thus,
the range of crossover numbers within recombi-
nant populations is likely to be broad, and multiple
crossovers may occasionally occur in single cy-
cles even between two highly divergent strains.

Transduction assays

Transduction assays provide another one-vec-
tor approach for studying template switching.
These are based on one of the prevailing models
for host oncogene capture by simple retroviruses,
which postulates that host gene incorporation
occurs via non-homologous recombination be-
tween viral and host RNAs (Fig. 7a)'?. This model
envisions that host sequences became encapsi-
dated as a 3’ appendage to a viral RNA. Retroviral
polyadenylation signals are “leaky”’, and if poly-
adenylation read-through occurred from a provi-
rus that had integrated upstream of an oncogene,
oncogene RNA would be covalently linked to the
viral sequences and ferried into viral particles'.
An.additional-rare event.—non-homologous.tem-
plate switching between sequences in the body of

retrovirus (between viral LTRs) and host se-
3" tail— would be re-

quired to generate ah oncogenic retrovirus with a
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clude modifications that increase recombination
between sequences in the vector body and the
appended 3’ end (Fig. 7b)”7. In these vectors,
the native polyadenylation signal was inactivated
so that all RNAs include the 3’ extension. The
second modification was to make vector body
and the 3" extension sequences homologous to
one another. The vector body contained a defec-
tive lacZ allele, and the patch repair donor in the
3" extension contained lacZ sequences that flank
the region deleted from the vector body. Recom-
bination, as scored by patch repair of lacZ, is
surprisingly frequent using these vectors; more
than 25% of the puromycin resistant products
stain blue with X-gal””. Because homologous re-
combination that did not restore lacZ might pro-
ceed undetected, in follow-up experiments peri-
odic point mutations were introduced into the
patch-repair donor to score crossovers in alter-
nate intervals (An and Telesnitsky, in prepara-
tion). The introduced mutations decreased blue
colony frequency slightly, as homeologus recom-
bination assays would predict’. However, analy-
sis of unstained colonies confirmed that these
included recombinants at a frequency roughly
equal to those detected by blue-white screening.
These findings suggest that synthesis of more
than half of all parental vector products involved
non-selected template switching to 3" appendage
sequences that were co-packaged with “genome”
(vector body) sequences, but which are not re-
quired for provirus formation according to the
model presented in figure 2. Transduction assays
for recombination offer the advantage of requiring
only a single vector. On first consideration, they
appear to suffer from some of the same limitations
as repeat deletion vectors, since the assayed
template switches appear to occur between two
positions on a single RNA. However, RT is such a
sluggish enzyme that DNA synthesis takes several
hours to complete™. Each virion contains a large
molar excess of RT, and RT's RNaseH and poly-
merase activities can act sequentially. This pro-
vides RNaseH time to degrade template RNA
after the first strong-stop template switch, and
thus sequences in the 3 appendage and the
recombination target are almost certainly on sep-
arate RNAs at the time of the assayed switches.

observations that serial infection can occur, even in
the presence of robust immune responses, provide
evidence that patient superinfection occurs more
readily than had previously been speculated®90.91.9,
However, co-infection of an individual does not
invariably lead to recombination. For example, no
HIV-1/HIV-2 recombinants have been reported,
even though dual infections are not rare®. The
reasons for this are not completely understood, but
interference at the level of cell co-infection and
differences in RNA packaging are among potential
blocks to recombination that have been de-
scribed®©%, The following sections introduce these
and other parameters that can limit recombination.

Cell co-infection for simple retroviruses is frequent-
ly limited by viral interference: the phenomenon
whereby cell infection by one virus limits repeated
infection by a second virus that shares the same
receptor''®. Even though HIV-1 is known to down-
regulate the surface expression of its receptor and
viral interference has been observed in vitro, the
extent to which cellular resistance to superinfection
affects HIV-1 spread in vivo is unclear. Some reports
suggest that cell co-infection in vivo is common®47.,

Recombination between variants that arise within
an individual can be detectable without superinfec-
tion of a patient, provided cell co-infection occurs,
and it is likely that the extent of this has been
under-appreciated because the similarity of paren-
tal strains masks recombinants®. It has been ar-
gued that one competitive advantage of recombi-
nation is its potential to repair deleterious mutations
that arise during error-prone replication, or to pro-
mote phenotypic reversion?'. Such phenomena
clearly function during HIV replication in vivo, as
studies of the dynamics of drug resistance have
revealed evidence of intrapatient recombination
between circulating strains and archived provirus-
es®. It is interesting to note that as integrated
elements, defective proviruses can persist without
replication. Some may even have a survival advan-
tage if their defects shield cells that contain them
from immune detection. Many patient-derived iso-
lates contain mutations that likely render HIV repli-
cation defective'’®, but because two different de-
fective retroviruses can readily recombine to form
infectious. virus, even defective genomes.can serve
as functional recombination substrates.
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eral requirement for retroviral recombination ap-
pears to be virion co-packaging of more than
one type of RNA from the producer cell. Thus, one
factor that limits the ability of two co-expressed
sequences to recombine is whether or not they
can become co-packaged in an individual virion.

The genomic RNAs in retroviral particles are pack-
aged as non-covalently linked dimers®. Despite
significant effort, the nature of the HIV-1 RNA
dimer linkage structure is not fully understood.
Dimerization is likely nucleated by inter-RNA base-
pairing between palindromic loops that cap hair-
pin structures present on each RNA, followed by
an expansion of the dimer interface to form an
extended structure (Fig. 8)%. The dimer-initiating
hairpin, or dimerization initiation site (DIS), is part
of the genetically-defined W packaging signal near
the 5’ end of HIV that is necessary for preferential
encapsidation of W+ RNAs (Fig. 8)"%7. Dimer link-
age and packaging signals are difficult to sepa-
rate genetically, and are not as easily assigned to
a limited genomic region for HIV-1 as for gam-
maretroviruses like murine leukemia virus (MLV).

HIV RNAs that lack W are packaged fairly well and
preferentially over bulk mRNA in the absence of
W+ RNAs”38. Retroviruses engineered to lack ge-
nomic RNAs are not “empty” —even for wild-type
viruses, about half the encapsidated RNA in a
virion population is non-viral’.

Although viral RNAs are packaged as dimers,
an ability of RNAs to heterodimerize is not abso-
lutely required for co-packaging. Simple retrovi-
ruses have provided several examples of re-
combinogenic patch repair by endogenous
retroelements known to be incorporated into retro-
viral particles but which are unlikely to het-
erodimerize with virus genomes, and RNAs, which
presumably only occasionally and by chance be-
come encapsidated, can also recombine with viral
genomes®. Co-packaged RNAs can recombine
and form a functional provirus if at least one of the
RNAs contains cis-acting sequences necessary
for replication. It has been reported that encapsi-
dated RNAs that lack retroviral cis-acting signals
can be converted into DNA and integrated like
proviruses in certain circumstances®.
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Although recombinants between RNAs that can-
not dimerize have been observed, it has been
assumed that these products arise only rarely. An
untested assumption used in recombination frequen-
cy calculations has been that when two retroviral
RNAs are co-packaged, they are generally pack-
aged as partners in heterodimers'. Because re-
combination is only detectable if more than one kind
of RNA is co-packaged into a virion, this assumption
predicts that if two RNAs cannot heterodimerize,
recombination between them will be vastly reduced.

St. Louis, et al. approached the question of
RNA heterodimerization effects on recombination
rates by studying HIV-1 recombination in tissue
culture with RNAs whose dimer initiation signals
were believed incapable of heterodimerization'?,
Among natural HIV-1 isolates, the palindromic
sequences that cap DIS stem-loops vary so that,
for example, a subtype B RNA should be incapa-
ble of dimerizing with a subtype A RNA. If such
sequence differences do prevent heterodimeriza-
tion, and if heterodimerization is a normal prerequi-
site to recombination, recombination frequencies
between RNAs that differ in palindromic sequenc-
es should be much lower than for RNAs with the
same sequences. Because clinical isolates result-
ing from recombination between seemingly het-
erodimer-resistant strains were known, it was clear
that such differences did not block recombination
entirely. The St. Louis, et al. studies sought to
address if and/or how much effect DIS variation
had on recombination frequencies. In these stud-
ies, restriction site polymorphisms were engi-
neered into pairs of HIV vectors that either pos-
sessed the same DIS or that possessed different
subtype specific DIS regions, and restriction site
co-segregation patterns were examined to moni-
tor recombination. Although experiments were
performed with replication-competent virus, which
limited measurement precision, the results clearly
demonstrated that the reduction in recombination
frequency associated with differing DIS was much
lower than predicted if DIS palindrome-mediated
heterodimerization were essential'®.

The biology behind these findings remains un-
clear. Work with DIS-containing transcripts in pu-
rified.in-vitro-reactions-has-demonstrated-the .im-
portance of the DIS to dimerization®, so it seemed
reasonable to assume, that differing PIS would
inhibit recombination. |WhstKeH bf b
specific differences in DIS loops are sufficient

tmo%u

measured during single replication cycles initially
was surprising'®. This was because it was al-
ready well established that gammaretrovirus re-
combination was far less frequent*! and it had
been assumed that HIV-1 frequencies would be
similar. Virus species-specific differences in tem-
plate switching properties initially appeared the
most likely cause of recombination-rate differences
between HIV-1 and gammaretroviruses®. HIV-1
reverse transcription is known to differ from that of
gammaretroviruses in such ways as the number
and specificity of its primers, and several reports
have suggested mechanistic differences between
HIV-1 and simple retrovirus RTs'%. Accessory fac-
tors such as Nef and Vpr, which are absent from
simple retroviruses, appear to affect HIV-1 reverse
transcription and thus might affect recombina-
tion®399, However, ongoing work from our labora-
tory now suggests that such enzymological differ-
ences are not the primary cause of genetic
recombination-rate differences’”.

Our conclusion that HIV-1 and MLV differ in
recombination rates, but perform template switches
at similar frequencies, is based on a series of
single replication cycle assays. We first devel-
oped repeat-deletion assays to compare HIV-1
and MLV. Because it had been demonstrated that
HIV-1 recombines more frequently than MLV4124,
we had anticipated observing a higher repeat-
deletion rate for HIV-1 than for MLV. However, in
contrast to expectations, repeat-deletion frequen-
cies for the two viruses were very similar®. We
next established two-vector recombination assays
for both HIV-1 and MLV, to address whether or not
reported intermolecular recombination differences
were reproducible’’. After we observed intermo-
lecular recombination rate differences consistent
with previous reports, we compared template-
switching properties using the transduction-type
assay vectors described above. Template-switch-
ing frequencies for HIV-1 and MLV were indistin-
guishable using transduction vectors’”. This sug-
gested that whereas recombination rates, as
measured by co-segregation of markers from two
different RNAs, differed dramatically for HIV and
MLV, intrinsic template-switching properties for the
two-virus-species-were-very.similar.

One possible explanation for why HIV and MLV
reﬁ‘ombination rates might differ, even though their
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in

on reported genetic Tindings about gammaretrovi-

interfere with heterodimerizati i i pli- e ination lculated overall genetic re-
cation remains to be estab?éwﬁw;éwﬂér @Mﬁ&@bﬁ@wﬂ@s for gammaretroviruses are

findings of St. Louis, et al. suggest that HIV-1

relatively low —about one crossover per three provi-

Toneneloss, besomes L0 A EHE e RO W e S e s v

Differences between HIV-1 em(dthe p

high frequency of HIV-1 genetic recombination

of gammaretroviruses show no genetic
¢f recombination. However, among re-
combinants, most display evidence of more than

etrovirus recombination ne crossover, and some display_several. These

t} Hafi Ve bee u upport
he cﬁp{emﬁﬂsy%ks U F‘ne@ra@wgcé‘ | fol retroviral
many natural "Hl combifants, the onbifation,"which'sugges genetit recom-

bination is not a routine process but instead bipha-

DSREVIEWS

Al

° 207



AIDSREVIEWS

© 208

AIDS Rev 2002,4

sic, with crossovers during reverse transcription
either frequent or else rare?'. It has been proposed
that the performance of one recombination event
predisposes the ordinarily recombination-proof
virion to performing additional switches, or alterna-
tively that only a subset of virions are prone to
generating recombinant products®®. It has further
been suggested that the viral nucleoprotein com-
plex architecture of one subset of particles is some-
how aberrant, which results in a high frequency of
recombination among products of virions with this
postulated defect*.

An alternate hypothesis for why only a subset of
gammaretroviruses display evidence of recombina-
tion, is that only a subset of particles co-packages
two different RNAs™. Retroviral RNA trafficking
—including which host factors are involved, which
subset of RNAs are packagable, the intracellular
compartment where commitment to packaging is
made, and whether or not cis-acting packaging
sequences are sufficient for RNA packaging— dif-
fers dramatically among retroviral species®1??2. As
mentioned above, recombinogenic template switch-
ing between co-packaged RNAs is only detectable
if the co-packaged RNAs differ. If two different
RNAs become co-packaged less frequently than
random co-packaging would predict, the following
alternate hypothesis for gammaretrovirus recombi-
nation emerges. Recombinogenic template switch-
ing occurs at a uniform and high distribution of
frequencies for all virions. However, recombination
is detectable only for the small subset of virions
that co-package two different RNAs.

Ongoing experiments in our laboratory have
used biochemical approaches to assess the com-
position of virion RNA dimers (Flynn and
Telesnitsky, in preparation). The results suggest
that when two different MLV W+ RNAs are co-
expressed, they generally become encapsidated
as RNA homodimers. In contrast, HIV-1 co-ex-
pressed RNAs are more likely to heterodimerize,
possibly indicating that RNA commitment to dimer-
ization occurs at different replication stages for
these two viruses. We postulate that these differ-
ences in randomness of co-expressed RNA dimer
partner selection contribute to differences in ge-
netic..recombination..rates.. . The .implication. that
MLV preferentially co-packages two identical
RNAs, but HIV-1 co-packages co-expressed RNAs
more randomly, also pr(M'j

aplaUsDle kpiEnd

As introduced above, the RNA content of retro-
viral particles is not tightly fixed. It remains un-
clear whether or not most retroviruses contain
precisely two RNAs, or if variation —from zero to
four or more co-packaged RNAs- is normal. Both
lentiviruses and gammaretroviruses are capable
of packaging W+ RNAs more than twice the native
length®+1%" " and alpharetroviruses may co-pack-
age more than two RNAs when RNAs are short¥’.
Findings that host factors can modulate the molar
ratio of RNA to virion protein in HIV-1 particles
support the notion that lentiviruses share the prop-
erty of flexibility in packaged RNA composition®®.
Our two-vector recombination assays suggest that
MLV recombination is about 6-fold less frequent
than that of HIV-1, but our ongoing dimer detec-
tion assays suggest that MLV RNA heterodimer
formation may be reduced more than 6-fold rela-
tive to predicted random RNA dimer formation
ratios’”. This suggests the possibility that, in at
least some instances, the recombination sub-
strates for MLV may be two co-packaged ho-
modimers rather than two different RNAs co-pack-
aged in a single heterodimer.

If HIV-1 can co-package more than one dimer,
speculatively, it may be possible for HIV-1 to co-
package —and to recombine in a single cycle— more
than two genetically distinct RNAs. It has been
suggested that the appearance of sequences from
more than two parental strains in many HIV-1 recom-
binants likely reflects recombination between pre-
existing recombinants rather than triple or higher
multiplicities of infection®. However, recent in situ
hybridization experiments with patient-derived sin-
gle cells suggest it may not be unusual for individual
cells to contain four or more different proviruses in
vivo®* . Taken together, these observations leave
open the possibility that recombination between
more than two parental strains may sometimes oc-
cur in a single round of reverse transcription.

Implications and limitations of
experimental recombination
systems

An obvious limitation of the recombination as-
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erties related to genetic recombination have been
performed with purified enzymes and model prim-
er-templates in reconstituted reactions in vitro,
and have recently been reviewed elsewhere’73,
The findings from such systems vary in the ex-
tents to which they recapitulate events as they
occur during viral replication, but they provide
valuable insight into mechanistic features of tem-
plate switching. The type of cell a virus infects
can affect reverse transcription outcomes. Single
replication cycle assays have been used to ad-
dress the effects of altering the intracellular envi-
ronment on recombination frequencies. The im-
mortalized tissue culture cells used in most
experiments described above are metabolically
highly active. Compared to tissue culture cells,
HIV-1 reverse transcription takes longer and/or is
disrupted in less active cells® 125, In gammaretro-
virus recombination experiments, where the time
required to complete reverse transcription was
tripled by serum starvation or by treating cells
with hydroxyurea, the frequency of template
switching increased 3-fold over frequencies ob-
served in untreated cells® 1%, Treatment of HIV-1
infected tissue culture cells with either hydroxyurea
or AZT also modestly, but reproducibly, stimulated
HIV-1 template switching?. These findings suggest
that frequencies of HIV-1 genetic recombination
may differ significantly from one cellular context or
host compartment to another during natural infec-
tion. Because HIV-1 DNA synthesis may take up
to ten times as long to complete in resting cells
than in actively dividing ones®, intra-host condi-
tions may increase the frequency of recombina-
tion even more than the 3-fold achieved by exper-
imental substrate limitation®”.1%, The numbers of
crossovers per genome observed among 86 test-
ed HIV-1 recombinants generated in immortalized
cells ranged from one to ten, demonstrating that
at least 10 crossovers can occur per HIV replica-
tion cycle in rapidly dividing cells*. This observed
range of experimental crossover frequencies,
paired with observations of increased recombina-
tion rates when reverse transcription is slowed,
makes it reasonable to postulate that among the
recombinants generated in multiply infected pa-
tients,there-may. be some whose synthesis..in-
volved 30 or more crossovers during a single
replication cycle.

Conclusions

The variability of retroviral qua3|speC|es has
long been recogniz ﬂa@ 0
utes to this geneticWJe S Eﬂhi @1@@
stitution rates: an average of 0.1 to o bsti-
tution per genome per generation®. @Fﬁe aFtp

of HIV-1 to undergo genetic recombination ha
also been reco nized, but it has unt|| recently

rema|
freque nc | g g ur-
rence t ect use of

selective advantage gained by genome rear-
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rangement. The experimental work summarized
above suggests that some recombinants —those
between significantly divergent genomes or be-
tween sequences that are not ordinarily co-
packaged into individual HIV-1 virions— are
generated only rarely. When such recombinants
are detected in viral populations, this likely
reflects both selective pressures and the ex-
ceptional level of replication that is character-
istic of HIV-1. In contrast, these experimental
findings suggest that recombination between
many co-circulating strains occurs at a remark-
ably high frequency, with an average of more
than three crossover events during the synthe-
sis of every provirus formed in a rapidly-divid-
ing cell, and even more frequently in a less
metabolically-active cell. These findings sug-
gest that genetic recombination among similar
strains, such as the quasispecies that develop
longitudinally within individual patients, likely
occurs whenever cell co-infection provides an
opportunity.
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