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New Insights into the Role of Vif in HIV-1 Replication
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Abstract

HIV-1 and most of the other lentiviruses encode Vif (virion infectivity factor), an accessory protein that 
the virus requires to replicate in primary CD4+ T-cells and monocytes. The host cell factor with which 
Vif interacts was recently identified as APOBEC3G, a cytidine deaminase related to the RNA-editing 
enzymes. Identification of this key host protein has allowed for dramatic leaps in our understanding of 
how Vif functions. Vif prevents the encapsidation of APOBEC3G into HIV-1 virions during virus assem-
bly. If not for Vif, the encapsidated APOBEC3G would damage the virus reverse transcripts, causing 
their degradation and closing the open reading frames of its genes. (AIDS Rev 2004;6:34-9)
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The Vif phenotype

Lentiviruses, except for equine infectious anemia 
virus, encode the accessory protein Vif (Virion infectiv-
ity factor). HIV-1 Vif is a 192 amino acid cytoplasmic 
protein that is expressed from a partially spliced mRNA 
late in the virus replication cycle1,2. It lacks obvious 
homology to known proteins. Vif was initially shown to 
be required for virus replication in primary cells3,4, but 
subsequent surveys of transformed T-cell lines showed 
interesting differences in the ability of Δvif HIV-1 to 
replicate4-6. Cells on which wild-type, but not Δvif virus, 
replicated were classified as ‘non-permissive’; those 
cells on which both viruses replicated were termed 
‘permissive’. Non-permissive cells include primary 
T-cells, macrophages and transformed T-cell lines 
such as PM1, Hut78 and CEM. Permissive cells in-
clude the T-cell lines SupT1, C8166 and CEMss and 
non-lymphoid cells such as HeLa.CD4. The pheno-
type is producer cell-dependent such that Δvif virions 
produced from non-permissive cells are defective 

whether they are applied to permissive or non-permis-
sive cells4-6. 
Δvif virions produced in non-permissive cells are able to 

enter target cells, but abort replication prior to integra-
tion7,8. There is some question as to exactly where the 
block occurs, with reports of a block prior to or after reverse 
transcription7-10. A biochemical basis for the block to repli-
cation proved elusive. Analysis of the protein and RNA 
components of the defective virions on high resolution 2D 
protein gels revealed no difference between wild-type and 
Δvif viruses produced in non-permissive cells using10-13. 

Cell-cell fusion experiments indicated that non-per-
missiveness was dominant over permissiveness14,15. 
That is, Δvif virions produced from heterokaryons 
formed by the fusion of permissive and non-permissive 
cells were noninfectious. This finding suggested that 
non-permissive cells selectively express an antiviral 
factor that is neutralized by Vif. 

Discovery of the elusive host factor

The elusive cofactor CEM15 was identified by 
Sheehy, et al.16 who used a subtractive cDNA cloning 
strategy to identify cDNAs that were specifically ex-
pressed in CEM but not CEMss, a closely matched pair 
with a clear difference in permissiveness. Expression 
of the gene by transfection of permissive cells ren-
dered them non-permissive, proving the critical impor-
tance of the factor. In accord with the Vif phenotype, 
viral output from the cells was not affected. 
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CEM15 is identical to APOBEC3G (apoplioprotein B 
mRNA-editing enzyme, catalytic polypeptide-like 3G), 
a member of the APOBEC family of cytidine deami-
nases that includes the cellular cytidine deaminases 
APOBEC1, APOBEC2, APOBEC3 and activation-in-
duced deaminase (AID)17,18. In humans there are 
seven APOBEC3 genes (APOBEC3A-G) that lie in 
tandem on chromosome 22. Rodents have a single 
APOBEC3 gene17. No significant match has been 
found in Saccharomyces cerevisiae, Drosophila melan-
gogaster or Caenorhabditis elegans16. APOBEC1, 
apoB editing catalytic subunit 1, the prototypical fam-
ily member, catalyzes the deamination of C6666 to U 
of apoplioprotein B (apoB) mRNA, changing a gluta-
mine codon (CAA) to a stop codon (UAA) to generate 
a truncated apoB48 protein19-21. The other family mem-
ber that has been the object of recent attention is AID, 
a B-lymphoid protein that mediates the somatic hyper-
mutation of immunoglobulin genes and stimulates im-
munoglobulin class switch recombination17,22-26. 

APOBEC3 proteins consist of an N-terminal catalytic 
domain fused to a pseudo-catalytic domain, joined by 
a linker to a similar repeat of both domains17. This 
structure suggests that it evolved from the duplication 
of a primordial cytidine deaminase. Each domain of the 
protein has a Cys-His Zn2+ coordination motif that forms 
the active site of the enzyme and is characteristic of 
cytidine deaminases. APOBEC genes are expressed 
with characteristic tissue specificity. APOBEC1 is pri-
marily expressed in the small and large intestine, APO-
BEC2 in cardiac and skeletal muscle. AID is expressed 
in B-lymphocytes while APOBEC3G is expressed pri-
marily in lymphoid and myeloid cell lineages17.

Inactivation of HIV by APOBEC3G

In non-permissive cells, APOBEC3G is encapsidated 
into Δvif HIV-1 virions in abundance27-30. The encapsid-
ated enzyme does not interfere with virus assembly or 
release and does not block the ability of the virus to 
enter target cells. The vital clue as to the mechanism by 
which APOBEC3G interferes with virus replication was 
provided by an analysis of the reverse transcripts. Se-
quencing of the reverse transcripts of Δvif HIV-1, but not 
wild-type virus, showed that they had numerous G→A 
mutations27,31-34. The G→A mutations were presumed to 
arise from cytosine deamination of the minus-strand of 
the reverse transcript. Because the minus-strand serves 
as the template for plus-strand synthesis, U nucleotides 
program the synthesis of a complementary A, resulting 
in a G→A mutation27,31-34 (see model in Fig. 1). GG di-

nucleotides are attacked preferentially. Why are all of 
the mutations G→A and not C→T? There are two pos-
sible explanations. Either the minus-strand is specifi-
cally deaminated, or both strands are deaminated and 
then the plus-strand is repaired27,31-34. Cytosine deami-
nation has two consequences for HIV-1 replication. First, 
it causes most of the reverse transcripts to be degraded 
prior to integration. This probably involves DNA repair 
enzymes that target uracil-containing DNA such as 
uracil DNA glycosylase (UDG) which removes uracil 
and AP endonuclease that cleaves at abasic sites. 
Second, it introduces numerous stop codons into the 
open reading frames. 

Bioinformatic analysis of retroviral DNA sequences 
suggests that APOBEC3G has played a role in molding 
the HIV genome over evolution. Vif seems not to com-
pletely exclude APOBEC3G from virions, leading to 
continual low level of G→A mutation27. This was found 
to be the case for laboratory-generated wild-type virus 
produced in cells expressing transfected APOBEC3G. 
Several years earlier, interesting, but poorly under-
stood observations were reported by Berhkout’s group, 
who found that nucleotide content and codon usage in 
retroviral genomes is heavily skewed35,36. The genome 
of HIV-1 is A-rich, while other retroviruses, such as 
human T-cell leukemia virus type I (HTLV-I) and murine 
leukemia virus (MuLV) are C-rich. HIV-1 coding regions 
are 36% A and codon third base positions approach 
60% A35,36. This ‘A-pressure’ could have been caused 
by reverse transcriptase errors or nucleotide pool im-
balances, but pressure from APOBEC3G seems likely 
to have contributed.

Neutralization of APOBEC3G by Vif

APOBEC3G is encapsidated at high copy number in 
Δvif virions, but was dramatically reduced in wild-type 
particles27-30,37,38. Functionally-inactive Vif mutants 
failed to block APOBEC3G encapsidation28,37-39. These 
findings provided a molecular explanation for the ability 
of Vif to neutralize the antiviral activity of APOBEC3G. 
Because the antiviral effect is mediated during reverse 
transcription by encapsidated APOBEC3G molecules, 
its exclusion from the virion by Vif prevents its antiviral 
activity (Fig. 1). This hypothesis was supported by co-
immunoprecipitation experiments that showed that HIV-
1 Vif and human APOBEC3G form a complex27-30,37,40. 
This finding does not prove a direct interaction of the 
two proteins. However, the species-specificity of the 
interaction (described below) is most easily explained 
by direct interaction of Vif with APOBEC3G. 
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HIV-2 and SIVmac Vif functionally substitute for HIV-1 
Vif in terms of virus replication in human T-cells41,42. 
In contrast, SIVagm, visna, feline and bovine immuno-
deficiency viruses were inactive in non-permissive 
human cells. In addition, SIVagm Vif complemented 
Δvif HIV-1 and SIVagm produced in simian cells, while 
HIV-1 Vif was inactive. These findings are most eas-
ily explained by species-specific interaction of Vif and 
APOBEC3G. 

AGM and rhesus macaque APOBEC3G differ from the 
human protein by about 30%, whereas APOBEC3G from 
chimpanzee is about 95% identical to human 
APOBEC3G27. All three-primate proteins were active 
against Δvif HIV-1. Interestingly, AGM and rhesus 

APOBEC3G blocked the infectivity of wild-type HIV-1, 
indicating that HIV-1 Vif is unable to overcome the anti-
viral activity of these primate proteins. Similarly, mouse 
APOBEC3G blocked HIV replication and was resistant to 
Vif27. Conversely, SIVmac Vif neutralized all of the 
APOBEC3Gs, while neither the human nor macaque pro-
tein was blocked by SIVagm Vif. In summary, HIV-1 and 
SIVagm neutralize APOBEC3G only from the species from 
which they are derived. In contrast, SIVmac Vif neutralized 
all of the primate APOBEC3Gs27. SIVagm Vif did not pre-
vent human APOBEC3G encapsidation27. In addition HIV-
1 but not SIVagm Vif physically interacted with human 
APOBEC3G43, suggesting that the interaction is critical 
for biological function (summarized in Fig. 2).
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Figure 1. Model for deamination of viral reverse transcripts in Δvif HIV-1 and Vif-induced degradation of APOBEC3G in wild-type virus. In 
Δvif virus, APOBEC3G is encapsidated during assembly. Upon a second round of infection, the encapsidated APOBEC3G deaminates cy-
tosines in the minus-strand of the reverse transcript resulting in G→A mutations in the plus-strand. In wild-type virus, Vif binds to APOBEC3G 
and the complex associates with the SCF-like complex composed of elongin B/C, Rbx1 and Cul5. This results in ubiquitination of APOBEC3G 
which is then degraded by proteosomes. 
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The species-specificity of the Vif:APOBEC3G inter-
action is caused by a single amino acid44. Exchange 
of Asp128 in human APOBEC3G with Lys128 of AGM 
APOBEC3G switched its interaction specificity for Vif. 
Conversely, the change of Lys128→Asp in AGM 
APOBEC3G resulted in a protein that was sensitive to 
HIV Vif and resistant to SIVagm Vif. The switch in spe-
cies-specificity was accompanied by a correspond-
ing switch in the exclusion from virions and the 
physical interaction with Vif. These findings are most 
easily explained by a direct interaction of Vif with 
APOBEC3G.

The mechanism of Vif-induced 
APOBEC3G degradation

How does Vif exclude APOBEC3G from virions? Im-
munoblots on transfected cells showed that Vif caused 
a reduction in the steady-state level of APOBEC3G. 
APOBEC3G fragments were visible on the blots, sug-
gesting that Vif may have induced the degradation of 
APOBEC3G27-30. Initial pulse-chase experiments by 
Mariani, et al.27 failed to detect an effect of Vif on 
APOBEC3G half-life; however, subsequent findings 
from Marin, et al.28 showed remarkably rapid degrada-
tion of APOBEC3G (2 min) that would have been 
missed in standard analysis. Other studies reported a 

half-life between 30 min and 4 h for APOBEC3G in the 
presence of Vif29,30,37,38,40,45. In addition, Stopak, et al.29 
found evidence for a second role for Vif in reducing 
the translation of APOBEC3G mRNA. Further evidence 
for a role of degradation was provided by the finding 
that proteasome inhibitors blocked the Vif-induced 
reduction of APOBEC3G levels and that Vif caused 
polyubiquitination of APOBEC3G28-30,37,38,40,45. 

The elegant findings of Yu, et al.40 provided a mo-
lecular basis for Vif-induced APOBEC3G degradation. 
They noted that the highly conserved amino acid motif 
in Vif, SLQXLA, resembles a motif that targets proteins 
to an ubiquitin ligase. They further found that Vif co-
immunoprecipitated with Cul5, elongins B and C and 
Rbx1, proteins that comprise an E3 ubiquitin ligase 
similar to the Skp1-cullin-F box (SCF) complex that 
targets proteins for ubiquitination and proteasomal 
degradation. Such complexes ubiquitinate a large num-
ber of cellular proteins, including those involved in cell-
cycle regulation, signal transduction and transcription46. 
Vif can be considered an F-box-like protein that links the 
SCF complex to APOBEC3G (see model in Fig. 1). 

Speculation and future perspectives

Although much new information has been unearthed 
regarding Vif function, important questions remain un-
answered. How does APOBEC3G become encapsid-
ated? Human APOBEC3G is encapsidated in HIV-1 and 
MuLV, which are quite divergent, and the mouse en-
zyme is also encapsidated in both viruses. This argues 
against a specific interaction with a viral protein, such 
as one of the Gag or Pol proteins, but does not rule it 
out (proteins such as RT have patches of conserved 
residues). In addition, an interaction with a specific viral 
protein seems unlikely since the virus could have easily 
escaped APOBEC3G by altering its protein-binding site. 
HIV-1 proteins are, for the most part, pretty malleable. 
The viral RNA would seem to be a likely means for 
APOBEC3G to gain access to the virus, and APOBEC3G 
has been shown to bind RNA (unpublished observa-
tion). While the RNA can change its sequence, it cannot 
fundamentally change its structure. APOBEC3G RNA 
binding would have to be specific to viral RNA; other-
wise the enzyme would be titrated out on cytoplasmic 
cellular RNA. Specific binding could conceivably involve 
binding to secondary structures such as the RRE or 
TAR. Nevertheless, in preliminary experiments there did 
not seem to be an effect of mutations in the RNA pack-
aging site on the amount of APOBEC3G encapsidated 
(unpublished observation).
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Figure 2. The functional interaction of HIV-1, SIVmac and SIVagm 
with APOBEC3G. An arrow indicates that the viral Vif neutralizes the 
APOBEC3G.
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The question of the resistance of simpler retroviruses 
to APOBEC3G deamination is unresolved. Mariani, et 
al.27 and Harris, et al.31 differed on the sensitivity of 
MuLV to APOBEC3G. Both groups studied model vi-
ruses in vitro. In vivo, it is clear that MuLV replicates in 
murine T-cells and that these express active APOBEC3G. 
The virus has no evidence of G→A hypermutation or 
suppression of APOBEC3G target sites and therefore 
must have a means of resisting the effects of the en-
zyme. MuLV encapsidated mouse APOBEC3G in co-
transfection experiments, ruling out the possibility that 
the mouse virus fails to encapsidate the enzyme27. An 
attractive possibility is that MuLV uncoats differently 
than HIV-1, such that the encapsidated enzyme is re-
leased from the virion into the cytoplasm of the infected 
cell post-entry. Once released it would not be active 
against the virus, as demonstrated by the failure of 
APOBEC3G to act against incoming Δvif virus.

Finally, what are the clinical implications of these 
studies? The Δ32-ccr5 and ccr5 promoter polymor-
phisms provide a clear precedent for the effect of host 
polymorphisms on disease pathogenesis. Polymor-
phisms in the APOBEC3G coding sequence could 
reduce the ability of Vif to bind APOBEC3G and allow 
it to escape inactivation. Polymorphisms in the pro-
moter could alter expression. In tissue culture cells, 
sufficient expression of APOBEC3G overwhelmed Vif 
and blocked virus replication27. Donor variation could 
play a role in limiting virus replication in vivo. 

Much remains to be learned about Vif and 
APOBEC3G. The experimental systems and reagents 
are in place, and further insight is surely around the 
corner. 
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