

Could Mitochondrial DNA Quantitation Be a Surrogate Marker for Drug Mitochondrial Toxicity?

Carmen de Mendoza¹, Matilde Sanchez-Conde¹, Esteve Ribera², Pere Domingo³
and Vincent Soriano¹

¹Service of Infectious Diseases, Hospital Carlos III, Spain; ²Service of Infectious Diseases, Hospital Vall d'Hebron, Barcelona and

³Service of Internal Medicine, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain

Abstract

Nucleoside reverse transcriptase inhibitors have been proven to inhibit mitochondrial DNA (mtDNA) polymerase gamma, resulting in decreased mtDNA synthesis and consequential risk for the development of mitochondrial dysfunction in HIV-infected individuals. The depletion of mtDNA seems to correlate with the development of symptomatic hyperlactatemia and lipoatrophy. A validated quantitative mitochondrial DNA assay could be useful to monitor and prevent mitochondrial damage in HIV-infected patients, especially in those under antiretroviral therapy with nucleoside analogues. This review analyzes the current methods to determine mitochondrial damage and the available data to support their utility in clinical practice. (AIDS Reviews 2004;6:169-80)

Key words

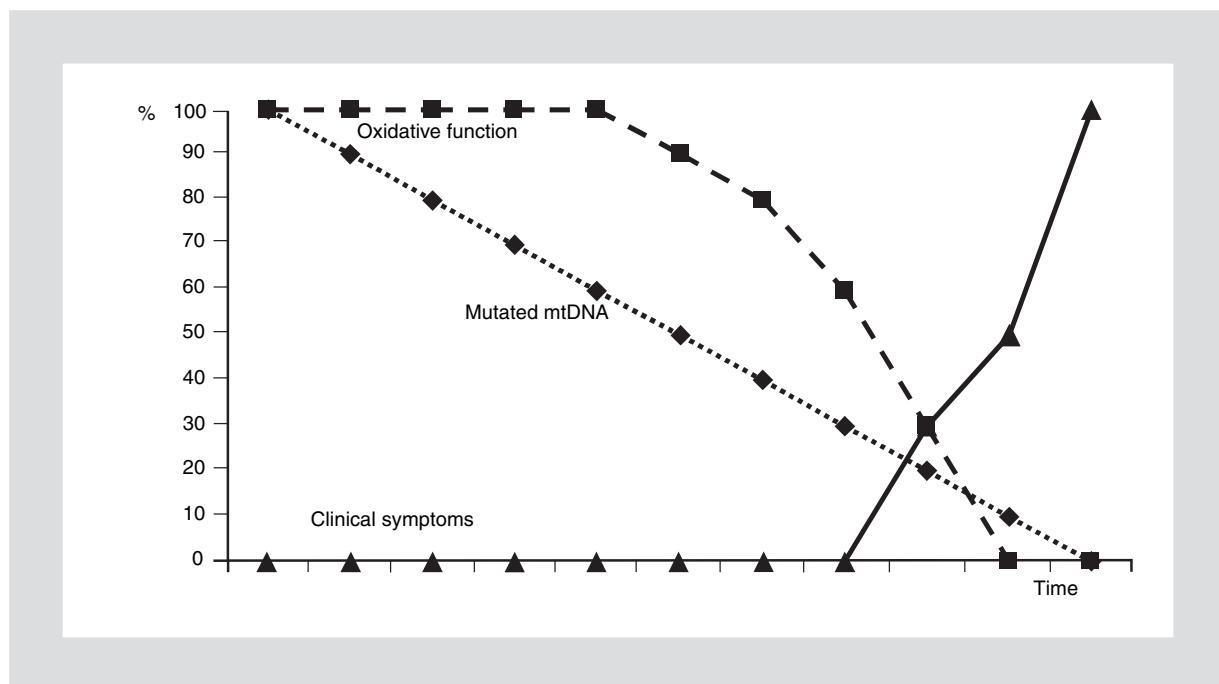
Mitochondrial DNA. HIV. Nucleoside reverse transcriptase inhibitors. Hyperlactatemia. Lipoatrophy.

Background

Damage to cellular mitochondria is one of the most important long-term toxicities of antiretroviral therapy and has only been fully accepted in recent years¹⁻³. Its incidence and prevalence is variable, and several factors have been identified to affect mitochondria in the context of HIV infection⁴.

In this review we will try to summarize the etiology of mitochondrial damage and the possible role of monitor-

ing mitochondrial DNA (mtDNA) levels in HIV-infected individuals, particularly in those under antiretroviral therapy, as a marker of drug toxicity.


Mitochondrial genetics and disease

The mitochondrion is the organelle responsible for the majority of cellular energy production through the generation of adenosine triphosphate (ATP), although is also implicated in pyruvate oxidation, Krebs cycle, and metabolism of amino acids, fatty acids and steroids⁵. Each cell contains hundreds to thousands of mitochondria, with each mitochondrion containing 2-10 mtDNA molecules. Because mtDNA has only 37 genes, most of the gene products in the organelle (approximately 900) are encoded by nuclear DNA (nDNA) and are imported from the cytoplasm. Defects in any of the numerous mitochondrial pathways can result in mitochondrial disease⁶.

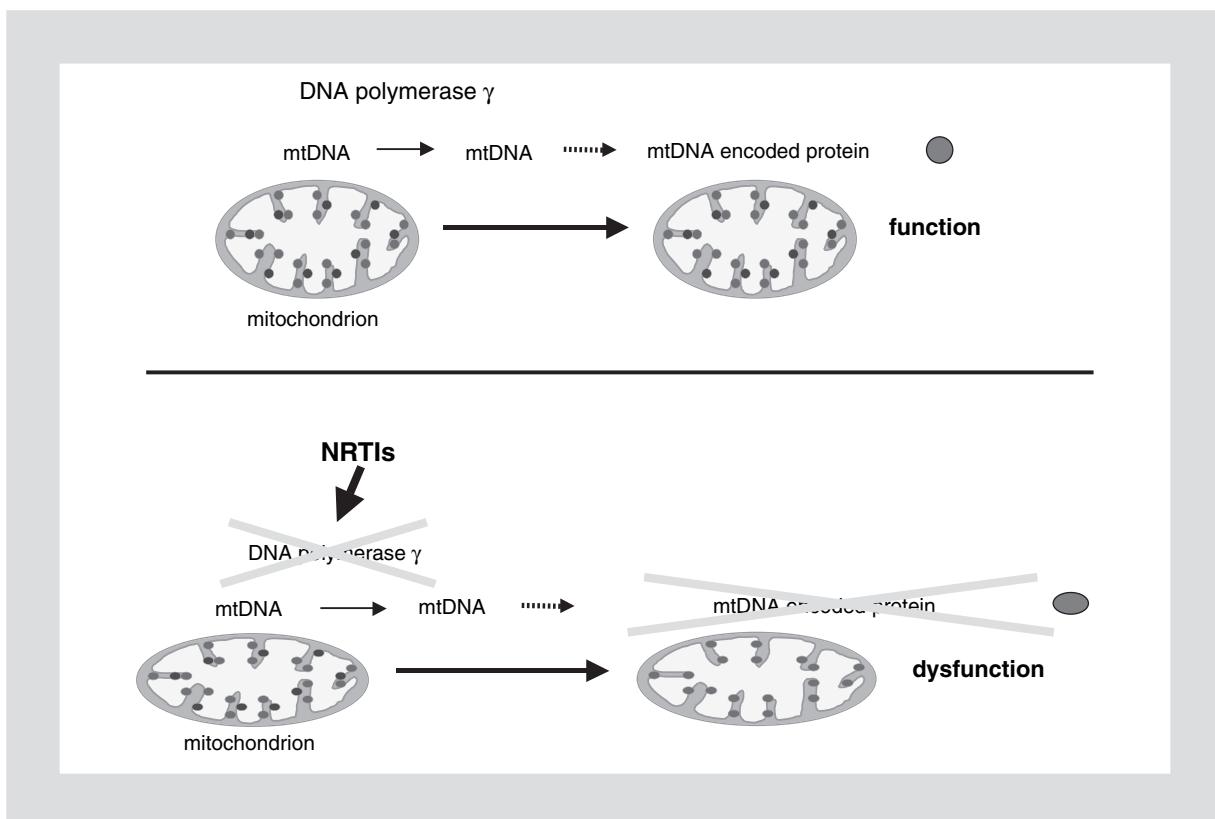
The DNA polymerase gamma is the enzyme responsible for the replication of mtDNA. It has a mutation rate 17 times higher than for nuclear polymerases⁷. However, pathogenic mutations are seen only in a few mitochondrial DNA molecules. For this reason, cells and tissues contain mutated and wild-type mtDNA genomes in a situation known

Correspondence to:

Carmen de Mendoza
Laboratory of Molecular Virology
Department of Infectious Diseases
Hospital Carlos III
Sinesio Delgado, 10
28029 Madrid, Spain
E-mail: cmendoza@teleline.es

Figure 1. Threshold effect. Appearance of clinical symptoms only in the presence of a high level of mutated mtDNA.

as heteroplasmy. To observe a mitochondrial dysfunction, a minimal number of mutated mtDNA molecules should be present at cellular level as well as at tissue level. This phenomenon is known as a "threshold effect", above which clinical events may appear (Fig. 1)⁸.


Mitochondrial diseases appear due to the presence of mutations or deletions in the mtDNA, affecting specific proteins, protein-coding genes or particular genes⁸. Other factors which have been associated with impairing of mitochondrial DNA synthesis include alcohol, drug abuse, obesity, and aging^{9,10}. Since the introduction of antiretroviral therapy, many complications associated with mitochondrial dysfunction have also been recognized in HIV-infected individuals, but these dysfunctions are based mainly on depletion of mtDNA instead of mutations in mitochondrial genome.

Mechanisms of antiretroviral mitochondrial toxicity

A wide range of adverse events occurring in persons with HIV infection receiving nucleos(t)ide reverse transcriptase inhibitors (NRTIs) have been linked to mitochondrial dysfunction^{3,4,11-14}. These drugs require intracellular phosphorylation to be active. Phosphorylation is catalyzed by deoxyribonucleoside kinases, which are located in the cytosol or mitochondria, de-

pending on the cell type. The mechanism of reverse transcriptase (RT) inhibition after NRTI phosphorylation is by competition with the natural nucleoside for incorporation into the nascent DNA chain, leading to premature DNA chain termination. The NRTIs also are substrates for the DNA polymerase gamma, the enzyme responsible for mtDNA replication. This affinity results in a depletion or mutation in genes encoded by the mtDNA (Fig. 2)^{11,15}. The consequence of these actions is a deficiency in ATP production, but also the emergence of reactive oxygen radicals, which ultimately may affect mitochondrion structure.

There are eight NRTIs so far approved for the treatment of HIV infection (zidovudine [AZT], zalcitabine [ddC], didanosine [ddl], stavudine [d4T], lamivudine [3TC], abacavir [ABC], tenofovir [TDF] and emtricitabine [FTC])¹⁶. *In vitro* inhibitory constants for DNA polymerase gamma have been determined for each of these drugs¹⁷⁻¹⁹. The results obtained show that the nucleoside with the highest affinity for this enzyme is ddC, being followed in order by ddl > d4T > 3TC > AZT > ABC. Results from the two last nucleos(t)ide analogues approved, TDF and FTC, indicate that their potential to interfere with mitochondrial function is relatively low^{20,21}. The difficulty in extrapolating these data to clinical toxicity is the fact that the efficiency in phosphorylation also differs among NRTIs, which determines its affinity for the DNA polymerase γ .

Figure 2. Mechanism of mitochondrial toxicity by inhibition of DNA polymerase γ . Influence of NRTIs in the replication of mtDNA. Adapted from Brinkman, et al.¹³.

Clinical evidence

The first mention of mitochondrial dysfunction appeared in the early 1990s, when several reports linked AZT-associated myopathy with mitochondrial damage²²⁻²⁴. Table 1 summarizes the clinical symptoms associated with mitochondrial dysfunction and adverse events of NRTIs ascribed to them. In 1998, Brinkman, et al.¹¹ proposed the theory of mitochondrial toxicity of antiretroviral drugs. When NRTIs inhibit DNA polymerase gamma, the production of mtDNA and mtDNA-encoded proteins is interrupted, finally leading to a dysfunctional mitochondria. A wide range of adverse events associated with NRTI therapy have similar etiology, due to impaired mitochondrial function in different organs and tissues.

The most serious presentation of NRTI-induced mitochondrial dysfunction is lactic acidosis, although it is relatively uncommon^{25,26}. By contrast, elevations of plasma lactate levels are common, particularly since the wide use of triple combination therapy, ranging from 5 to 35% of patients on highly active antiretroviral therapy (HAART)²⁷. Risk factors for the development of symptomatic hyperlactatemia are female sex, obesity,

hepatitis C virus (HCV) infection, pregnancy, low CD4 counts, renal insufficiency, and any intercurrent illness^{28,29}. However, in a recent study the only predictors for elevated lactate levels in 299 patients followed during 24 weeks were baseline cholesterol and the current use of d4T³⁰. Only 16 patients maintained elevated lactate levels during the study follow-up and four of them developed lactic acidosis. One of these four subjects had normal lactate levels two months before symptoms appeared. The measurement of plasma lactate levels does not seem to be useful as a predictor of symptomatic hyperlactatemia³¹, and so far there is not enough data to support that mild hyperlactatemia is a risk factor for developing lactic acidosis or liver disease. However, monitoring of serum lactate levels could alert clinicians to mitochondrial toxicity, and help them to take appropriate precautions.

Lipodystrophy is the other “big syndrome” linked to mitochondrial dysfunction in HIV-infected patients. The overall prevalence of at least one physical abnormality associated with this syndrome is around 50% in patients on stable HAART³²⁻³⁵. The main metabolic abnormalities observed in HIV-infected individuals with lipodystrophy include hypertriglyceridemia, hypercholesterolemia, low

Table 1. Clinical manifestations due to mitochondrial dysfunction and adverse events related to nucleoside analogue treatment in HIV-infected individuals

Organ and tissue	Symptoms and signs	NRTI
<i>Central nervous system</i>	Seizures Ataxia Myopathy Myoclonus Psychomotor retardation Psychomotor regression Hemiparesis and hemianopia Cortical blindness Encephalomyopathy Migraine-like headaches Dystonia	AZT
<i>Peripheral nervous system</i>	Peripheral neuropathy	d4T, ddI, ddC
<i>Muscle</i>	Weakness and exercise intolerance Ophthalmoplegia Ptosis	
<i>Eye</i>	Pigmentary retinopathy Optic atrophy	
<i>Blood</i>	Sideroblastic anemia Pancytopenia	AZT
<i>Endocrine system</i>	Diabetes Mellitus Short stature Hypoparathyroidism	DdI
<i>Heart</i>	Conduction disorder Cardiomyopathy	AZT, ddC, ddI
<i>Gastrointestinal system</i>	Intestinal pseudo-obstruction	
<i>Kidney</i>	Aminoaciduria Renal tubular dysfunction Fanconi's syndrome Bartter syndrome	Adefovir, TDF?
<i>Pancreas and liver</i>	Exocrine pancreatic failure Pancreatitis Hepatocellular failure Lactic acidosis	d4T, ddI AZT, ddI, d4T AZT, ddI, d4T
<i>Skin</i>	Lipomatosis	d4T, all?

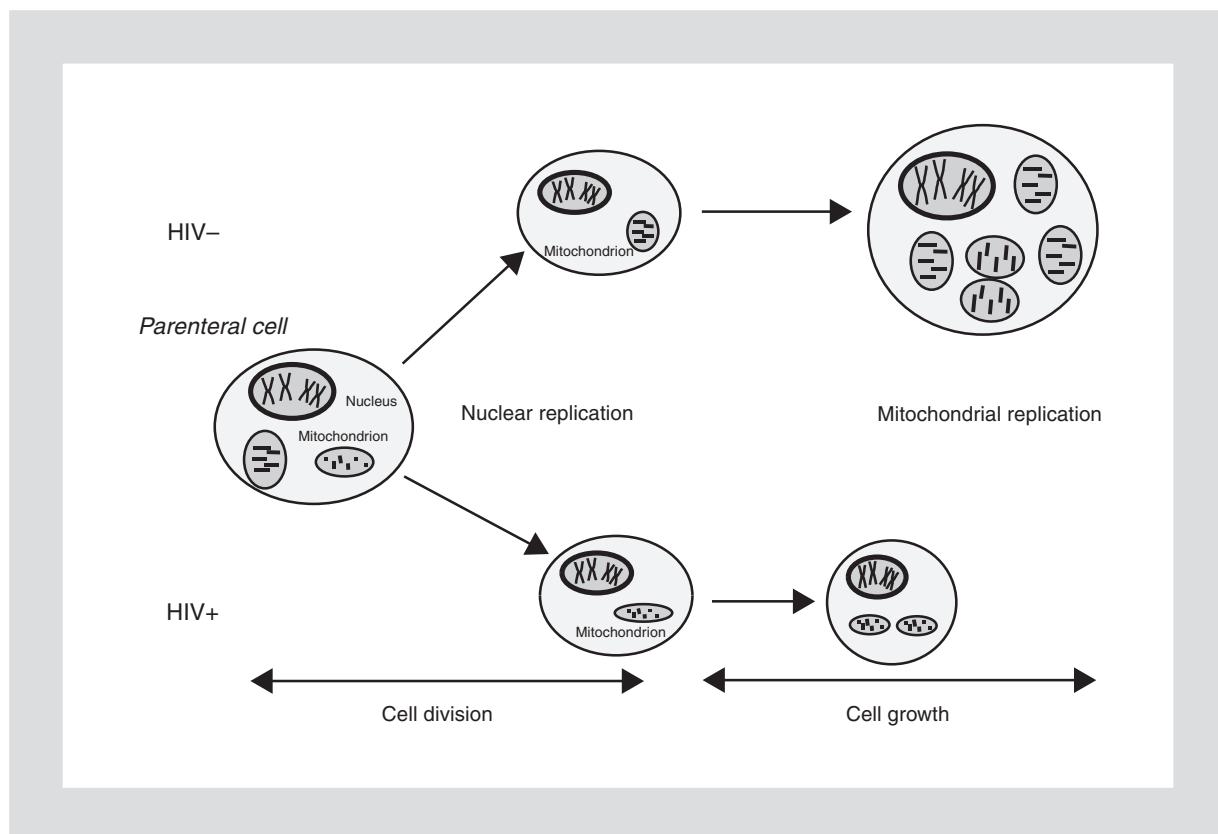
levels of HDL-cholesterol, insulin resistance, type 2 diabetes mellitus, lactic acidemia, and elevated hepatic transaminase^{32,36-40}. Lipodystrophy was firstly associated with the use of protease inhibitors (PIs)^{35,41}, although patients never exposed to PIs and taking NRTIs during long periods soon were reported to develop lipoatrophy and buffalo hump⁴²⁻⁴⁴.

The pathogenesis of HIV lipoatrophy remains unclear. Several evidences suggest that lipoatrophy may

result from mitochondrial toxicity caused by NRTIs, especially when d4T is included in the combination⁴⁵⁻⁴⁸. The incidence of this syndrome differs for different NRTI combinations. In a cohort of 76 HIV+ drug-naive individuals who started HAART, the combination of d4T + ddI produced greater increases in serum lactate and lipoatrophy than therapies based on AZT and 3TC within the first year of therapy⁴⁹. Moreover, the selective replacement of d4T with ABC reduces lactate levels

Figure 3. Influence of HIV infection itself and antiretroviral therapy on the mtDNA copy number in peripheral blood mononuclear cells⁵⁴.

and improves lipoatrophy⁵⁰. In the Gilead 903 trial, in which d4T + 3TC + efavirenz (EFV) was compared with TDF + 3TC + EFV in drug-naive patients, the main difference after 144 weeks of treatment was a better lipid profile and less lipodystrophy in the TDF-containing arm⁵¹. One hypothesis published last year is stating that the central nerve system is playing a major role in the body-fat distribution, wherein the sympathetic and parasympathetic nerve systems play a key role. The effects of the NRTIs, suggestively on the mitochondria of the nerve cells, would thereby indirectly influence the redistribution of adipose tissue. Clearly, although all NRTIs may affect mitochondria, not all do it to the same extent.


Depletion of mtDNA in HIV infection

The role of nucleoside analogues

Since the release of Brinkman's hypothesis, several studies have pointed out the association between the use of NRTIs and depletion of mtDNA. In 2002, Cote, et al. published for the first time that patients with symptomatic hyperlactatemia had significantly lower

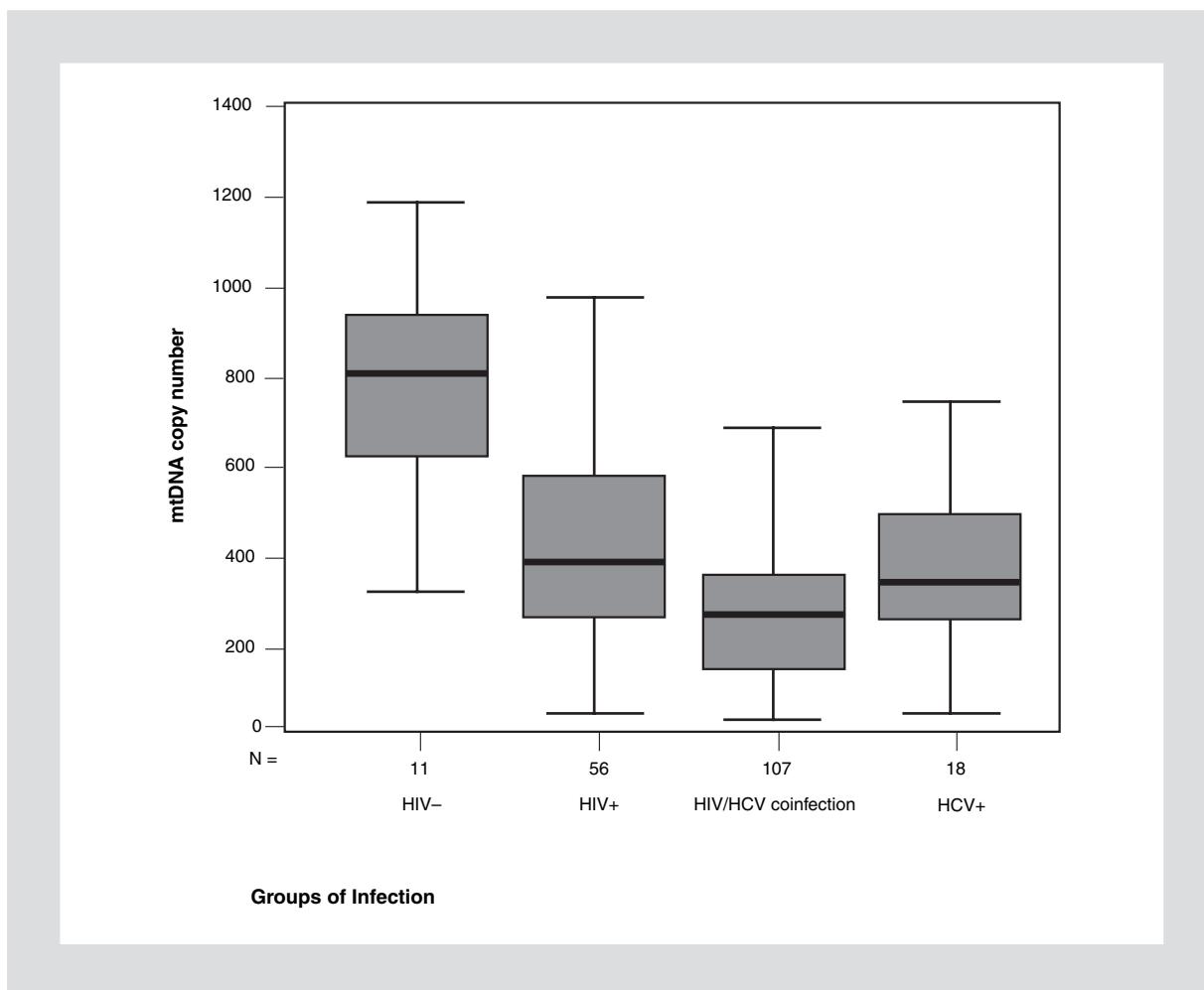
mtDNA levels in their peripheral blood mononuclear cells (PBMCs), taking as comparison HIV- and HIV+ individuals without symptoms⁵². Moreover, clinical manifestations resolved after discontinuation of antiretroviral therapy. Surprisingly, HIV-infected subjects never exposed to antiretroviral drugs also showed significantly lower mtDNA levels than HIV- controls. More recent studies have confirmed this observation (Fig. 3), suggesting that HIV infection itself may produce depletion of mtDNA to some extent^{53,54}.

At least two possible mechanisms have been proposed to explain mtDNA depletion in HIV infection. First, HIV itself by shortening the half-life of lymphocytes might compromise mitochondrial replication, which is independent of cell division and occurs during the G0/G1 cellular phase (Fig. 4)⁵⁴. The second mechanism might be related with cell apoptosis^{55,56}. HIV infection may cause apoptosis through multiple mechanisms, some of which rely on the intricate virus host cell interaction, and some of which involve activation of the host's inflammatory and immune systems. Soluble HIV-1 products, such as the accessory proteins Tat, Vpr and gp120, have been shown to promote

Figure 4. Cell division and mitochondrial segregation. Influence of HIV infection on cell growth and total number of mitochondria per cell.

cell death directly through interactions of gp120 with CD4, CXCR4 and other uncharacterized receptors⁵⁷, or by induction of the caspase via⁵⁸. Another mechanism has been proposed in which the HIV infection results in changes in cytokine and interleukine profiles that play a role in the regulation of mtDNA transcription, eg. TNF α .

Recent reports have revealed that NRTI therapy is associated with mtDNA depletion in PBMCs^{52-54,59-61}, adipocytes^{59,62} and the liver⁶³. Depletion of mtDNA in PBMCs is much higher when d4T or the combination of d4T + ddI is used^{52,54}. *In vitro*, the triphosphate form of d4T is incorporated into DNA more readily than other NRTIs, and exerts the greatest inhibition over the DNA polymerase gamma^{15,64}. This fact may explain the strong association noticed between d4T and mitochondrial toxicity.


Although lactate levels have not been considered as an independent marker for mitochondrial toxicity, when a significant mtDNA depletion occurs, lactate levels tend to increase, and this is particularly true for patients with symptomatic hyperlactatemia⁵².

Reports that have highlighted mtDNA depletion in adipocytes and adipose tissue^{62,65} have confirmed that prolonged NRTI treatment is associated with reduced

adipocyte mtDNA copies/cell. On average, mtDNA depletion in the treated group was 78% with respect to HIV+, untreated individuals. Significant differences were found between subjects treated with d4T (mean mtDNA depletion of 87%) vs. AZT (mean mtDNA depletion of 52%)⁶². These data support that mtDNA depletion contributes to the pathogenesis of subcutaneous fat loss associated with NRTI therapy, and that selected drugs within this family are associated with a higher relative risk of inducing adipocyte mtDNA depletion. In the study conducted by Walker⁶⁵, ultrastructural abnormalities of adipocytes were found, suggesting a link between mitochondrial damage, the use of NRTIs, and lipoatrophy in HIV-infected patients. Of note, these authors emphasized that their results were mainly associated with a depletion of mtDNA instead of a high rate of mutations and deletions, as previously reported by others⁶⁶.

Hepatitis C and mtDNA depletion

An association between hepatitis C and lipoatrophy has been suggested for a long time. In a cohort of

Figure 5. Comparison of mtDNA copy number in PBMCs from different groups (HIV- individuals, HIV alone, HIV-HCV co-infected, and HCV alone)⁷¹.

226 HIV-infected patients, HCV infection was significantly more frequent among lipoatrophic patients than in subjects with adiposity, or the mixed lipodystrophy syndrome, or those without lipodystrophy (46.2 vs. 14.7% vs. 19.6%, respectively; $p < 0.03$)⁶⁷. The authors concluded that HCV infection might be associated with the atrophic form of lipodystrophy in conjunction with a prolonged NRTI exposure. In favor of a role of HCV as a cause of mitochondrial damage in the liver are recent demonstrations of mitochondrial abnormalities in patients with hepatocellular carcinoma^{68,69}. Additionally, a recent study has pointed out that liver mtDNA content may be decreased by 47% in HIV-HCV coinfecting individuals on d4T, ddI or ddC compared to subjects not treated with these drugs⁷⁰.

In a cross-sectional study, coinfection with HCV and/or HBV was associated with a higher decrease of the mtDNA content in PBMCs than in HIV-monoinfected

patients⁵⁴. A more detailed investigation showed that HCV infection itself leads to a depletion of mtDNA in PBMCs, which could be further enhanced if treatment of chronic hepatitis C with pegylated interferon and ribavirin was used (Fig. 5)⁷¹.

Ribavirin is a guanosine analogue that could also inhibit the DNA polymerase gamma. In HIV-HCV coinfecting patients, the co-administration of anti-HCV therapy and antiretrovirals may synergistically enhance the toxic effects on mitochondria. Several reports have demonstrated that the concomitant use of ddI and ribavirin may result in a higher risk of pancreatitis⁷²⁻⁷⁴. Ribavirin inhibits the inosine monophosphate dehydrogenase (IMP), promoting the phosphorylation of ddI⁷⁵. This results in an increase in the intracellular levels of ddATP, the active form of ddI, leading to further inhibition of the DNA polymerase gamma.

Table 2. Tests available to measure mitochondrial function and mitochondrial DNA

Information	Method	Measure
<i>Measure of mtDNA depletion</i>	Southern blot In-house real time PCR Retina Mitox	mtDNA/nDNA ratio mtDNA/nDNA ratio
<i>Deletions and mutations</i>	Southern blot Sequencing	Molecular weight Sequence changes
<i>Genomic expression of mRNA</i>	Northern blot	mRNA density
<i>Protein expression</i>	Western blot	Protein density
<i>Function of mitochondrial respiratory chain</i>	Fluorimetric assays Polarographic assays Spectrophotometric	Oxidative damage Oxygen consumption Enzymatic activity

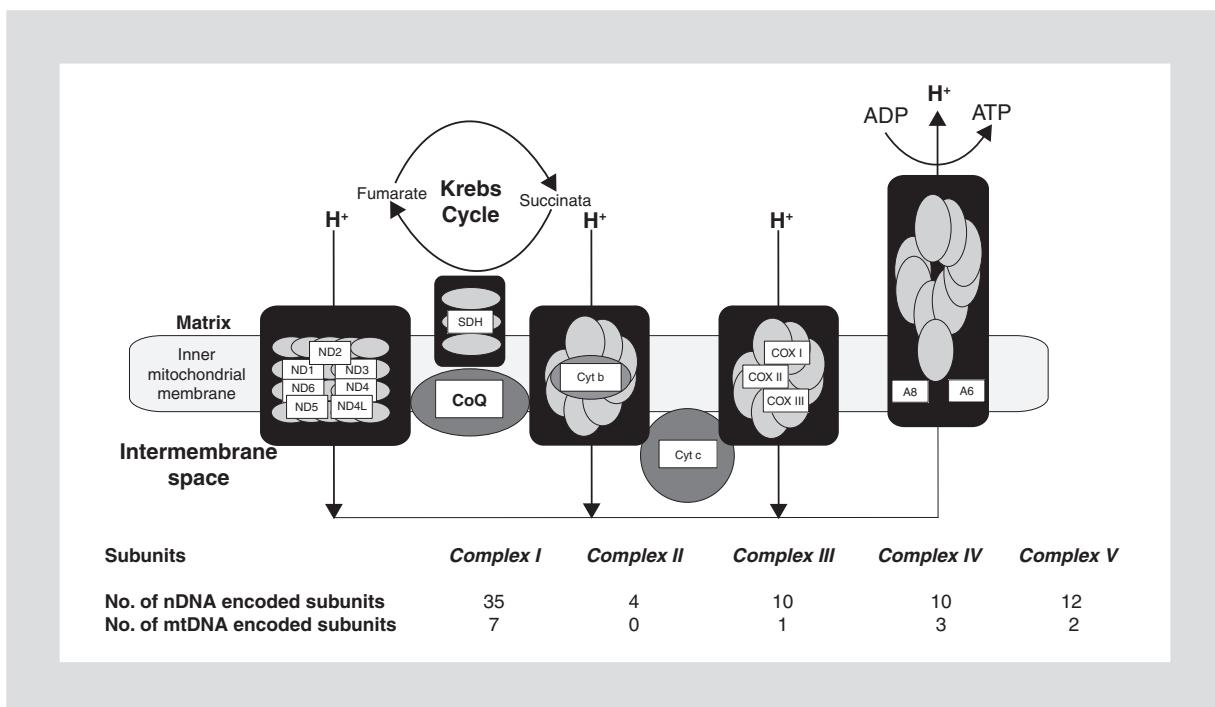
Another report has highlighted a potential synergistic interaction between d4T and ribavirin, leading to a rapid and severe weight loss in HIV-infected patients receiving both antiretrovirals and anti-HCV therapy⁷⁶. A pronounced weight loss, and high lactate and amylase levels were found among patients taking d4T or ddI compared with those taking other NRTIs along with ribavirin.

Finally, a higher risk of metabolic abnormalities, including insulin resistance and modifications in body compositions, have been reported among HIV-HCV coinfected individuals receiving antiretroviral therapy compared to HIV-monoinfected subjects^{72,73,76-78}.

mtDNA depletion in children born from HIV-infected mothers

A lower mtDNA copy number has been observed in placenta and cord blood of pregnant women exposed to HAART compared to HIV- pregnant women⁷⁹. Results from a cohort of 18 HIV- children whose mothers took Combivir during pregnancy revealed morphological and molecular evidence of mitochondrial damage, in spite of an absence of clinical symptoms⁸⁰. However, persistent mitochondrial dysfunction has been reported more recently in a group of HIV-uninfected children born to HIV-infected mothers who had received either AZT or AZT + 3TC during pregnancy, and two infants died with severe persistent mitochondrial toxicity^{81,82}.

Since all mitochondria in the zygote derive from the ovum, mtDNA depletion or mutations present in the mother due to prior antiretroviral therapy may pass to the children, ultimately leading to mitochondrial dysfunc-


tion in the infant, even in those children without acquired HIV infection.

Methods for measuring mtDNA

If mitochondrial toxicity is the main pathogenic mechanism underlying the side effects of NRTIs, especially lipoatrophy and hyperlactatemia, a method to quantify mitochondrial damage would be helpful to monitor HIV-infected individuals on antiretrovirals. Different tools have been proposed in recent years to follow mitochondrial toxicity, from simple quantitative methods to more complicated ones, including those based on the analysis of phenotypes for each of the functions of mitochondria. In this section we will summarize all these methods (Table 2) in an attempt to identify which could be the most reliable for monitoring mitochondrial toxicity in different settings.

Biochemical methods: enzymatic function and oxygen consumption

The enzymatic analysis of mitochondrial respiratory chain (MRC) complexes is an important step in the diagnosis of mitochondrial disorders. The mtDNA contains 37 genes, and 13 of them encode subunits of the respiratory chain: seven subunits of complex I, one subunit of complex III (cytochrome b), three subunits of complex IV (cytochrome c oxidase), and two subunits of complex V (ATP synthase) (Fig. 6). The absolute enzyme activity of the complexes of the MRC as well as of the single enzymes that form each complex can be determined either by spectrophotometric or

Figure 6. Mitochondrial respiratory chain (MRC) and subunits encoded by nuclear DNA (nDNA) and mitochondrial DNA (mtDNA).

polarographic techniques⁸³⁻⁸⁵. These assays require the use of simple instruments such as spectrophotometers, spectrofluorimeters or plate readers, and provide quantitative measurements of the activity of a given enzyme.

The analysis of MRC oxidative phosphorylation (OXPHOS) has the advantage of providing a functional view of the respiratory chain. OXPHOS biochemical studies can be performed in tissue homogenates, in permeable whole cells, or in mitochondria isolated from tissue or cultured cells⁸⁵⁻⁸⁷. Adipose tissue, skeletal muscle and liver tissue as well as PBMCs would be the ideal tissues for the diagnosis of mitochondrial dysfunction due to antiretroviral therapy. Several reports have demonstrated alterations in the enzymatic activity of MRC and oxygen consumption in each of these tissues⁸⁸⁻⁹⁰. However, the accessibility for tissues like the liver, adipose tissue or muscle requires a biopsy, a bloody method, that makes its use difficult for treatment monitoring. Additionally, biochemical assays are neither standardized nor robust and therefore the interpretation of the data is complicated.

Genetic methods

Two different approaches, qualitative and quantitative, are useful for the measurement of disorders related to

mtDNA. The qualitative assays are based on sequence analysis and represent the best approach to identify specific mutations, causing illnesses such as mitochondrial encephalomyopathies, stroke-like episodes, retinitis pigmentosa, etc. or long deletions, such as in Kerns-Sayre syndrome, progressive external ophthalmoplegia, Pearson's syndrome, etc⁸. Mechanisms behind these disorders will not be further discussed, since this review focuses on acquired mitochondrial disorders.

For mtDNA secondary dysfunction due to the use of NRTIs in HIV-infected individuals, there is no evidence of one specific mutation that affects mitochondrial function. Martin, et al. reported the presence of multiple mutations after treatment with NRTIs, and this was especially significant in patients with lipoatrophy⁹¹. However, Walker, et al. failed to detect mutations or deletions in the adipose tissue of patients with lipoatrophy⁶⁵. Since the recent introduction of quantitative methods using real-time PCR detection, the availability of accurately measured mtDNA has greatly improved. Several reports have described in-house, real-time PCR methods based on the detection of both nuclear and mtDNA genes^{52,60,62}. The ratio established between nuclear DNA (nDNA) and mtDNA may allow to estimate the total copy number of mtDNA per cell. Based on this

principle, a commercial method for the quantitation of mtDNA has recently become available. The Retina DNA Mitox™ assay is based on the NASBA amplification principle⁹², followed by molecular beacon, real-time detection. Both mtDNA and nDNA are amplified and detected in one tube. The one-tube format allows direct measurement of the ratio under the same amplification conditions, avoiding any external influence which might interfere when amplifications are done separately. This assay has been proven to be reproducible, with a low variability and high robustness^{93,94}.

The first step of the blood sample collection/preparation is critical for valid mtDNA quantitation in PBMCs, especially when depletion of mtDNA is expected to be found due to NRTI therapy. In PBMC specimens, platelets that contain mtDNA, but not nDNA, can influence the mtDNA/nDNA ratio, yielding higher results due to mtDNA contamination⁹³⁻⁹⁶. Platelet sorting using magnetic beads⁹⁶, or the use of special cell preparation tubes for blood collection that have cheaper than magnetic beads, may be useful to eliminate platelets from PBMCs. However, when the platelet content is lower than five times the PBMC content, the quantitation of mtDNA is only minimally affected and the results are reliable⁹³.

Current limitations and future prospects

Treatment with NRTIs has been associated with mitochondrial toxicity. Depletion of mtDNA can be found in PBMCs collected from HIV-infected patients on antiretroviral therapy with hyperlactatemia, and in adipose tissue of subjects with severe lipodystrophy. Therefore, quantitative mtDNA assays could be useful to monitor and evaluate mitochondrial toxicity in HIV+ patients on antiretroviral therapy. However, several aspects need to be resolved before the implementation of these tests. Firstly, changes in mtDNA in one tissue or cell line (PBMCs) may not accurately reflect what is happening in other tissues (adipocytes, muscle, liver,...). This observation makes it difficult to extrapolate changes in mtDNA content in PBMCs for each of the pathologies associated with mitochondrial dysfunction. Secondly, for other inherited mitochondrial diseases, severe symptoms tend to occur when mtDNA levels go down 20% or less than normal. However, no threshold has been defined yet in HIV infection. Thirdly, the inter-individual variability for mtDNA content seems to be high, which may make it difficult to establish

clinically significant thresholds, and monitoring including baseline measures may be necessary to assess changes over time. Fourthly, the various methods that have been developed to measure mtDNA in cells should be further harmonized and validated to enable a proper comparison between the various methods and studies. The recent introduction of a commercially available assay could be the first step to solve this problem.

An important question that clinicians have to answer regards whether we can prevent mitochondrial toxicity associated with NRTIs based on the results of mtDNA measurements. All the limitations discussed above should be solved before attempting to answer this question, in particular the clinical significance of mtDNA depletion, the relationship between mtDNA depletion in PBMCs and other tissues, and the prognostic value of low mtDNA contents in asymptomatic patients. Fortunately, many investigations are in progress in an attempt to answer these questions.

Acknowledgements

The authors would like to thank Michel P. de Baar for helpful discussion and critical reading of the manuscript, supported in part by a grant from Red de Investigación en SIDA (RIS), project 173.

References

1. Gerard Y, Maulin L, Yazdanpanah Y, et al. Symptomatic hyperlactatemia: an emerging complication of antiretroviral therapy. AIDS 2000;14:2723-30.
2. Walker U, Setzer B, Venhoff N. Increased long-term mitochondrial toxicity in combinations of nucleoside analogues reverse transcriptase inhibitors. AIDS 2002;16:2165-73.
3. Dagan T, Sable C, Bray J, et al. Mitochondrial dysfunction and antiretroviral nucleoside analogues toxicities: what is the evidence? Mitochondrion 2002;1:397-412.
4. Cossarizza A, Moyle G. Antiretroviral nucleoside and nucleotide analogues and mitochondria. AIDS 2004;18:137-51.
5. Elston T, Wang H, Oster G. Energy transduction in ATP synthase. Nature 1998;391:510-3.
6. Chinnery P, Howell N, Andrews R, Turnbull D. Clinical mitochondrial genetics. J Med Genet 1999;36:425-36.
7. Johnson A, Johnson K. Exonuclease proofreading by human mitochondrial DNA polymerase. J Biol Chem 2001;276:38097-107.
8. Di Mauro S, Schon E. Mitochondrial respiratory chain diseases. N Engl J Med 2003;348:2656-68.
9. Fromenty B, Pessayre D. Impaired mitochondrial function in microvesicular steatosis. Effects of drugs, ethanol, hormones and cytokines. J Hepatol 1997;26:43-53.
10. Petersen K, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003;300:1140-2.
11. Brinkman K, Ter Hofstede H, Burger D, et al. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as a common pathway. AIDS 1998;12:1735-44.

12. Safrin S, Grunfeld C. Fat distribution and metabolic changes in patients with HIV infection. *AIDS* 1999;13:2493-505.
13. Brinkman K, Kakuda T. Mitochondrial toxicity of nucleoside reverse transcriptase inhibitors: a looming obstacle for long-term antiretroviral therapy? *Curr Opin Infect Dis* 2000;13:5-11.
14. Miller R, Shahmonesh M, Hanna M, et al. Polyphenotypic expression of mitochondrial toxicity caused by nucleoside reverse transcriptase inhibitors. *Antiviral Ther* 2003;8:253-7.
15. Lim S, Ponamerev M, Longley M, Copeland W. Structural determinants in human DNA polymerase γ account for mitochondrial toxicity from nucleoside analogs. *J Mol Biol* 2003;329:45-57.
16. Yeni P, Hammer S, Hirsch M, et al. Treatment for adult HIV infection: 2004 recommendations of the International AIDS Society-USA Panel. *JAMA* 2004;292:251-65.
17. Martin J, Brown C, Matthews-Davis N, et al. Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. *Antimicrob Agents Chemother* 1994;38:2743-9.
18. Lewis W, Dalakas M. Mitochondrial toxicity of antiretroviral drugs. *Nat Med* 1995;1:417-22.
19. Kakuda T. Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. *Clin Ther* 2000;22:685-708.
20. Birkus G, Hitchcock M, Cihlar T. Assessment of mitochondrial toxicity in human cells treated with tenofovir: comparison with other nucleoside reverse transcriptase inhibitors. *Antimicrob Agents Chemother* 2002;46:716-23.
21. Feng J, Murakami E, Zorba S, et al. Relationship between antiviral activity and host toxicity: comparison of the incorporation efficiencies of 2',3'-dideoxy-5-fluoro-3'-thiacytidine-triphosphate analogs by HIV-1 reverse transcriptase and human mitochondrial DNA polymerase. *Antimicrob Agents Chemother* 2004;48:1300-6.
22. Dalakas M, Illa I, Pezehkpour G, et al. Mitochondrial myopathy caused by long-term zidovudine toxicity. *N Engl J Med* 1990;322:1098-105.
23. Arnudo E, Dalakas M, Shanske S, et al. Depletion of muscle mitochondrial DNA in AIDS patient with zidovudine-induced myopathy. *Lancet* 1991;337:508-10.
24. Peters B, Winer J, Landon D, et al. Mitochondrial myopathy associated with chronic zidovudine therapy in AIDS. *Q J Med* 1993;86:5-15.
25. Falcó V, Crespo M, Ribera E. Lactic acidosis related to nucleoside therapy in HIV-infected patients. *Expert Opin Pharmacother* 2003;4:1321-9.
26. Guo Y, Fung H. Fatal lactic acidosis associated with co-administration of didanosine and tenofovir disoproxil fumarate. *Pharmacotherapy* 2004;24:1089-94.
27. Lonergan J, Havlir D, Barber E, et al. Incidence of symptomatic hyperlactatemia in HIV-infected adults on NRTI. 9th Conference on Retrovirus and Opportunistic Infections. Seattle 2002 [abstract 35].
28. John M, Mallal S. Hyperlactatemia syndromes in people with HIV infection. *Curr Opin Infect Dis* 2002;15:23-9.
29. McComsey G, Yau L. Natural history of sustained hyperlactatemia in HIV-infected subjects. 43rd ICAAC. Chicago 2003 [abstract H-1955].
30. McComsey G. Asymptomatic hyperlactatemia: predictive value, natural history and correlates. *Antiviral Ther* 2004;9:205-12.
31. McComsey G, Lonergan T. Mitochondrial dysfunction: patient monitoring and toxicity management. *J Acquir Immun Defic Syndr* 2004;37(Suppl):30-5.
32. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidemia and insulin resistance in patients receiving HIV protease inhibitors. *AIDS* 1998;12:51-8.
33. Gervasoni C, Ridolfo A, Trifiro G, et al. Redistribution of body fat in HIV-infected women undergoing combined antiretroviral therapy. *AIDS* 1999;13:465-72.
34. Heath K, Hogg R, Chan K, et al. Lipodystrophy in HIV-1 infected patients treated with protease inhibitors: a prospective cohort. *AIDS* 2001;15:231-40.
35. Carr A. HIV lipodystrophy: risk factors, pathogenesis, diagnosis and management. *AIDS* 2003;17(Suppl):141-8.
36. Thiebaut R, Daucourt V, Mercie P, et al. Lipodystrophy, metabolic disorders, and HIV infection: Aquitaine cohort, France 1999. *Clin Infect Dis* 2000;31:1482-7.
37. Hadigan C, Meigs J, Corcoran C, et al. Metabolic abnormalities and cardiovascular disease risk factors in adults with HIV infection and lipodystrophy. *Clin Infect Dis* 2001;32:1045-52.
38. Strawford A, Hellerstein M. Metabolic complications of HIV and AIDS. *Curr Infect Dis Rep* 2001;3:183-92.
39. Dube M, Johnson D, Currier J, Leedom J. Protease inhibitors associated hyperglycemia. *Lancet* 1997;350:713-34.
40. Yarasheski K, Tebas P, Sigmund C, et al. Insulin resistance in HIV protease inhibitor-associated diabetes. *J Acquir Immun Defic Syndr* 1999;21:209-16.
41. Martínez E, Mocroft A, García-Viejo M, et al. Risk of lipodystrophy in HIV-1 infected patients treated with protease inhibitors: a prospective cohort study. *Lancet* 2001;357:592-8.
42. Saint-Marc T, Partisani M, Poizot-Martin I, et al. A syndrome of peripheral fat wasting (lipodystrophy) in patients receiving long-term nucleoside therapy. *AIDS* 1999;13:1659-67.
43. Carr A, Miller J, Law M, Cooper D. A syndrome of lipoatrophy, lactic academia and liver dysfunction associated with HIV nucleoside analogue therapy: contribution to protease inhibitor related lipodystrophy syndrome. *AIDS* 2000;14:25-32.
44. García-Benayas T, Blanco F, Gómez-Viera J, et al. Lipodystrophy body-shape changes in a patient undergoing zidovudine monotherapy. *AIDS* 2002;16:1087-9.
45. Martin A, Smith D, Carr A, et al. Reversibility of lipoatrophy in HIV-infected patients 2 years after switching from a thymidine analogue to abacavir: the MITOX Extension Study. *AIDS* 2004;18:1029-36.
46. Moyle G, Baldwin C, Langrudi B, Mandalia S, Gazzard B. A 48-week, randomized, open-label comparison of three abacavir-based substitution approaches in the management of dyslipidemia and peripheral lipoatrophy. *J Acquir Immun Defic Syndr* 2003;33:22-8.
47. Van der Valk M, Casula M, Weverling G, et al. Prevalence of lipoatrophy and mitochondrial DNA content of blood and subcutaneous fat in HIV-1-infected patients randomly allocated to zidovudine- or stavudine-based therapy. *Antiviral Ther* 2004;9:385-93.
48. Nolan D, Mallal S. The role of nucleoside reverse transcriptase inhibitors in the fat redistribution syndrome. *J HIV Ther* 2004;9:34-40.
49. Blanco F, García-Benayas T, De la Cruz J, et al. First-line therapy and mitochondrial damage: different nucleosides, different findings. *HIV Clin Trials* 2003;4:11-9.
50. García-Benayas T, Blanco F, De la Cruz J, et al. Replacing stavudine by abacavir reduces lactate levels and may improve lipoatrophy. *AIDS* 2003;17:921-4.
51. Gallant J, Staszewski S, Pozniak A, et al. Efficacy and safety of tenofovir DF vs. stavudine in combination therapy in antiretroviral-naïve patients: a 3-year randomized trial. *JAMA* 2004;292:191-201.
52. Cote H, Zabrina D, Brumme L, et al. Changes in mitochondrial DNA as a marker of nucleoside toxicity in HIV-infected patients. *N Engl J Med* 2002;346:811-20.
53. Miura T, Goto M, Hosoya N, et al. Depletion of mitochondrial DNA in HIV-1 infected patients and its amelioration by antiretroviral therapy. *J Med Virol* 2003;70:497-505.
54. De Mendoza C, De Ronde A, Smolders K, et al. Changes in mitochondrial DNA copy number in blood cells from HIV-infected patients undergoing antiretroviral therapy. *AIDS Res Hum Retroviruses* 2004;20:271-3.
55. Arnoult D, Petit F, Lelievre J, Estaquier J. Mitochondria in HIV-1 induced apoptosis. *Biochem Biophys Res Comm* 2003;304:561-74.
56. Badley A, Roumier T, Lum J, Kroemer G. Mitochondrion mediated apoptosis in HIV-1 infection. *Trends Pharmacol Sci* 2003;24:298-305.
57. Twu C. Cardiomyocytes undergo apoptosis in HIV cardiomyopathy through mitochondrion and death receptor controlled pathways. *Proc Natl Acad Sci USA* 2002;24:14386-91.
58. Nie Z. HIV protease processes pro caspase 8 to cause mitochondrial release of cytochrome c, caspase cleavage and nuclear fragmentation. *Cell Death Differ* 2002;9:1172-84.

59. Gahan M, Miller F, Lewin S, et al. Quantification of mitochondrial DNA in peripheral blood mononuclear cells and subcutaneous fat using real-time polymerase chain reactions. *J Clin Virol* 2001;22:241-7.
60. Petit C, Mathez D, Barthélémy C, et al. Quantitation of blood lymphocyte mitochondrial DNA for the monitoring of antiretroviral drug-induced mitochondrial DNA depletion. *J Acquir Immun Defic Syndr* 2003;33:461-9.
61. Chiappini F, Teicher E, Saffroy R, et al. Prospective evaluation of blood concentration of mitochondrial DNA as a marker of toxicity in 157 consecutively recruited untreated or HAART-treated HIV-positive patients. *Lab Invest* 2004;84:908-14.
62. Nolan D, Hammond E, Martin A, et al. Mitochondrial DNA depletion and morphologic changes in adipocytes associated with nucleoside reverse transcriptase inhibitor therapy. *AIDS* 2003;17:1329-38.
63. Walker U, Bauerle J, Laguno M, et al. Depletion of mitochondrial DNA in liver under antiretroviral therapy with didanosine, stavudine, or zalcitabine. *Hepatology* 2004;39:311-7.
64. Lim S, Copeland W. Differential incorporation and removal of anti-viral deoxynucleotides by human DNA polymerase γ . *J Biol Chem* 2001;276:616-23.
65. Walker U, Bickel M, Volksbeck S, et al. Evidence of nucleoside analogue reverse transcriptase inhibitor associated genetic and structural defects of mitochondria in adipose tissue of HIV-infected patients. *J Acquir Immun Defic Syndr* 2002;29:117-21.
66. Miró O, Gómez M, Pedrol E, et al. Respiratory chain dysfunction associated with multiple mitochondrial DNA deletions in antiretroviral therapy related lipodystrophy. *AIDS* 2000;14:1855-7.
67. Zylberberg H, Nalpas B, Pol S, et al. Is there a relationship between hepatitis C virus infection and antiretroviral-associated lipodystrophy? *AIDS* 2000;14:2055.
68. Moriya K, Nakagawa K, Santa T, et al. Oxidative stress in the absence of inflammation in a mouse model for hepatitis C virus associated hepatocarcinogenesis. *Cancer Res* 2001;61:4365-70.
69. Shao J, Gao H, Li H, et al. Quantitative detection of common deletion of mitochondrial DNA in hepatocellular carcinoma and hepatocellular nodular hyperplastic. *World J Gastroenterol* 2004;10:1560-4.
70. Walker U, Bauerle J, Laguno M, et al. Depletion of mitochondrial DNA in liver under antiretroviral therapy with didanosine, stavudine, or zalcitabine. *Hepatology* 2004;39:311-7.
71. De Mendoza C, Sánchez-Conde M, Timmermans E, et al. Mitochondrial DNA depletion in HIV-infected patients is enhanced with chronic hepatitis C and treatment with pegylated interferon plus ribavirin. XV International AIDS Conference. Bangkok, July 2004 [abstract MoPeB3313].
72. Lafeuillade A, Hittinger G, Chadapaud S. Increased mitochondrial toxicity with ribavirin in HIV/HCV coinfection. *Lancet* 2001;357:280-1.
73. Salmon-Ceron D, Chauvelot-Moachon L, Abad S, et al. Mitochondrial toxic effects and ribavirin. *Lancet* 2001;357:1803.
74. Moreno A, Quereda C, Moreno L, et al. High rate of didanosine-related mitochondrial toxicity in HIV/HCV coinfected patients receiving ribavirin. *Antiviral Ther* 2004;9:133-8.
75. Balzarini J, Lee C, Herdewijn P, De Clercq E. Mechanism of the potentiating effect of ribavirin on the activity of 2',3'-dideoxyinosine against HIV. *J Biol Chem* 1991;266:21509-14.
76. García-Benayas T, Blanco F, Soriano V. Weight loss in HIV-infected patients. *N Engl J Med* 2002;347:1287-8.
77. Duong M, Petit J, Piroth L, et al. Association between insulin resistance and hepatitis C virus chronic infection in HIV-hepatitis C virus coinfected patients undergoing antiretroviral therapy. *J Acquir Immun Defic Syndr* 2001;27:245-50.
78. Lonardo A, Adinolfi L, Loria P, et al. Steatosis and hepatitis C virus: mechanisms and significance for hepatic and extrahepatic disease. *Gastroenterology* 2004;126:586-97.
79. Shiramizu B, Shikuma K, Kamemoto L, et al. Placenta and cord blood mitochondrial DNA toxicity in HIV-infected women receiving nucleoside reverse transcriptase inhibitors during pregnancy. *J Acquir Immun Defic Syndr* 2003;32:370-4.
80. Divi R, Walker V, Wade N, et al. Mitochondrial damage and DNA depletion in cord blood and umbilical cord from infants exposed *in utero* to Combivir. *AIDS* 2004;18:1013-21.
81. Blanche S, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues. *Lancet* 1999;354:1084-9.
82. Barret B, Tardieu M, Rustin P, et al. Persistent mitochondrial dysfunction in HIV-1-exposed but uninfected infants: clinical screening in a large prospective cohort. *AIDS* 2003;17:1769-85.
83. Rustin P, Chretien D, Bourgeron T, et al. Biochemical and molecular investigations in respiratory chain deficiencies. *Clin Chem Acta* 1994;228:35-51.
84. Miró O, Barrientos A, Alonso J, et al. Effects of general anesthetic procedures on mitochondrial function of human skeletal muscle. *Eur J Clin Pharmacol* 1999;55:35-41.
85. Casademont J, Perea M, López S, et al. Enzymatic diagnosis of oxidative phosphorylation defects on muscle biopsy: better on tissue homogenate or on a mitochondria-enriched suspension? *Med Sci Monit* 2004;10:49-53.
86. Rustin P, Chretien D, Bourgeron T, et al. Assessment of the mitochondrial respiratory chain. *Lancet* 1991;338:60.
87. Birch-Machin M, Turnbull D. Assaying mitochondrial respiratory complex activity in mitochondria isolated from human cells and tissues. *Methods Cell Biol* 2001;65:97-117.
88. Miró O, López S, Pedrol E, et al. Mitochondrial DNA depletion and respiratory chain enzymatic deficiencies are present in peripheral blood mononuclear cells of HIV-infected patients with HAART-related lipodystrophy. *Antiviral Ther* 2003;8:333-8.
89. López S, Miró O, Martínez E, et al. Mitochondrial effects of antiretroviral therapies in asymptomatic patients. *Antiviral Ther* 2004;9:47-55.
90. Miró O, López S, Martínez E, et al. Mitochondrial effects of HIV infection on the peripheral blood mononuclear cells of HIV-infected patients who were never treated with antiretrovirals. *Clin Infect Dis* 2004;39:710-6.
91. Martin A, Hammond E, Nolan D, et al. Accumulation of mitochondrial DNA mutations in HIV-infected patients treated with nucleoside analogue reverse transcriptase inhibitors. *Am J Hum Genet* 2003;72:549-60.
92. Singh K, Hanne A, Krupp G. Real-time monitoring of RNA and DNA reactions by fluorescence detection. *Methods Mol Biol* 2004;252:33-48.
93. De Ronde A, Van Gemen B, Casula M. Decline of mitochondrial DNA during therapy with nucleoside analogue reverse transcriptase inhibitors assessed by a single-tube NASBA simultaneously assaying both mitochondrial and nuclear DNA. XIV International AIDS Conference. Barcelona 2002 [abstract WeOrB1305].
94. Casula M, De Baar M, Van Gemen B, et al. Therapy with efavirenz + ritonavir boosted indinavir, with or without stavudine after 24 weeks does not decrease mtDNA and mtRNA content of PBMC assessed by single-tube duplex real time NASBA. *Antiviral Ther* 2002;7:16.
95. Banas B, Kost B, Goebel F. Platelets, a typical source of error in real-time PCR quantification of mitochondrial DNA content in human peripheral blood cells. *Eur J Med Res* 2004;9:371-7.
96. Cossarizza A. Tests for mitochondrial function and DNA: potentials and pitfalls. *Curr Opin Infect Dis* 2003;16:5-10.