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Abstract

Nucleoside reverse transcriptase inhibitors have been proven to inhibit mitochondrial DNA (mtDNA)
polymerase gamma, resulting in decreased mtDNA synthesis and consequential risk for the develop-
ment of mitochondrial dysfunction in HIV-infected individuals. The depletion of mtDNA seems to
correlate with the development of symptomatic hyperlactatemia and lipoatrophy. A validated quanti-
tative mitochondrial DNA assay could be useful to monitor and prevent mitochondrial damage in
HIV-infected patients, especially in those under antiretroviral therapy with nucleoside analogues. This
review analyzes the current methods to determine mitochondrial damage and the available data to

support their utility in clinical practice. (AIDS Reviews 2004;6:169-80)
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Background

Damage to cellular mitochondria is one of the most
important long-term toxicities of antiretroviral therapy
and has only been fully accepted in recent years'S. Its
incidence and prevalence is variable, and several fac-
tors have been identified to affect mitochondria in the
context of HIV infection®.

In this review we will try to summarize the etiology of
mitochondrial damage and the possible role of monitor-

ing mitochondrial DNA (mtDNA) levels in HIV-infect-
ed individuals, particularly in those under antiretroviral
therapy, as a marker of drug toxicity.

Mitochondrial genetics and disease

The mitochondrion is the organelle responsible for the
majority of cellular energy production through the gen-
eration of adenosine triphosphate (ATP), although is also
implicated in pyruvate oxidation, Krebs cycle, and me-
tabolism of amino acids, fatty acids and steroids®. Each
cell contains hundreds to thousands of mitochondria, with

ch mitachondrion containing 2-10 mtDNA molecules.
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Figure 1. Threshold effect. Appearance of clinical symptoms only in the presence of a high level of mutated mtDNA.

as heteroplasmy. To observe a mitochondrial dysfunction,
a minimal number of mutated mtDNA molecules should
be present at cellular level as well as at tissue level. This
phenomenon is known as a “threshold effect”, above
which clinical events may appear (Fig. 1)8.

Mitochondrial diseases appear due to the presence
of mutations or deletions in the mtDNA, affecting spe-
cific proteins, protein-coding genes or particular
genes®. Other factors which have been associated
with impairing of mitochondrial DNA synthesis include
alcohol, drug abuse, obesity, and aging®'°. Since the
introduction of antiretroviral therapy, many complica-
tions associated with mitochondrial dysfunction have
also been recognized in HIV-infected individuals, but
these dysfunctions are based mainly on depletion of
mtDNA instead of mutation mltochondrl nome
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with ‘HIV infection rece?/\?lgﬁnuce F e r?everse
transcriptase inhibitors (NRTIs) have begjrt
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ed to
mitochondrial dysfunction341-14. These d
intracellular phosphorylation to be active. Phosphoryla-
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pending on the cell type. The mechanism of reverse
transcriptase (RT) inhibition after NRTI phosphorylation
is by competition with the natural nucleoside for incor-
poration into the nascent DNA chain, leading to pre-
mature DNA chain termination. The NRTIs also are
substrates for the DNA polymerase gamma, the en-
zyme responsible for mtDNA replication. This affinity
results in a depletion or mutation in genes encoded by
the mtDNA (Fig. 2)''%. The consequence of these ac-
tions is a deficiency in ATP production, but also the
emergence of reactive oxygen radicals, which ultimate-
ly may affect mitochondrion structure.

There are eight NRTIs so far approved for the treatment
of HIV infection (zidovudine [AZT], zalcitabine [ddC], di-
danosine [ddl], stavudine [d4T], lamivudine [3TC], aba-

VII’ [ABC], tenofovir [TDF] and emtricitabine [FTC])'®.
or DNA polymerase gamma
have been determined for each of these drugs'”'% The
at the nucleoside with the highest
affinity for this enizyme’is ddC, being followed in order by

?& haﬁ%T W Results from the two last

nuc eos(t)id analogues approved TDF and FTC, indi-
at their potential to interfere with mitochondrial

(ﬁ {éhgrglatwely low?21_ The difficulty in extrapolating
these data to clinical toxicity is the fact that the efficiency
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Figure 2. Mechanism of mitochondrial toxicity by inhibition of DNA polymerase v. Influence of NRTIs in the replication of mtDNA. Adapted

from Brinkman, et al'®.

Clinical evidence

The first mention of mitochondrial dysfunction ap-
peared in the early 1990s, when several reports linked
AZT-associated myopathy with mitochondrial dam-
age®?*, Table 1 summarizes the clinical symptoms
associated with mitochondrial dysfunction and ad-
verse events of NRTIs ascribed to them. In 1998,
Brinkman, et al.'" proposed the theory of mitochon-
drial toxicity of antiretroviral drugs. When NRTIs in-
hibit DNA polymerase gamma, the production of mtDNA
and mtDNA-encoded proteins is interrupted, finally
leading to a dysfunctional

itochondria. Af range
of adverse events associa Q\n@aﬁ | & ﬂ}hﬁa\{au

similar etiology, due to impaired mitochondrial function

in different organs and tissues. [ @ roduced or F}h

The most serious presentation of NRTI-induced mi-

tochondrial dysfunction Is\)%ﬂ(h?é GﬁSI ﬁ
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relatively uncommon®26. By contrast,
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hepatitis C virus (HCV) infection, pregnancy, low CD4
counts, renal insufficiency, and any intercurrent illness?-2,
However, in a recent study the only predictors for el-
evated lactate levels in 299 patients followed during
24 weeks were baseline cholesterol and the current
use of d4T%0. Only 16 patients maintained elevated
lactate levels during the study follow-up and four of
them developed lactic acidosis. One of these four sub-
jects had normal lactate levels two months before symp-
toms appeared. The measurement of plasma lactate
levels does not seem to be useful as a predictor of symp-
tomatic hyperlactatemia®', and so far there is not

ough data to support that mild hyperlactatemia is a

@B@(ﬁ maé() rl@eaonc acidosis or liver dis-

ease. However, monitoring of serum lactate levels
|@§@€®Wq@@ mitochondrial toxicity, and help
them to take approprlate precautions.

“big syndrome” linked to
[V-infected patients. The

plasma lactate levels are common, particul rlr]ya Lﬂéjgallmvalence of at least one physical abnormality
the wide use of triple combination therag/ h@] vv|th this syndrome is around 50% in patients

from 5 to 35% of patients on highly active antiretroviral
therapy

on stable HAART®235, The main metabolic abnormalities
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Table 1. Clinical manifestations due to mitochondrial dysfunction and adverse events related to nucleoside analogue treatment
in HIV-infected individuals

Organ and tissue Symptoms and signs NRTI
Central nervous system Seizures
Ataxia
Myopathy AZT
Myoclonus

Psychomotor retardation
Psychomotor regression
Hemiparesis and hemianopia
Cortical blidness

Encephalomyopathy AZT, 3TC
Migraine-like headaches
Dystonia
Peripheral nervous system Peripheral neuropathy d4T, ddl, ddC
Muscle Weakness and exercise intolerance
Ophtalmoplegia
Ptosis
Eye Pigmentary retinopathy
Optic atrophy
Blood Sideroblastic anemia AZT
Pancytopenia AZT
Endocrine system Diabetes Mellitus Ddl
Short stature
Hypoparathyroidism
Heart Conduction disorder
Cardiomyopathy AZT, ddC, ddl
Gastrointestinal system Intestinal pseudo-obstruction
Kidney Aminoaciduria Adefovir, TDF?

Renal tubular dysfunction
Fanconi's syndrome
Barter syndrome

Pancreas and liver Exocrine pancreatic failure
Pancreatitis d4T,ddl
Hepatocellular failure AZT, ddl, d4T
Lactic acidosis AZT, ddl, d4T
Skin Lipomatosis d4T, all?

No part of this publication may be

levels of HDL-cholesterol, insulin[’r@e}@mdm@@ddi@r ph@t@r@@po}dnq@rial toxicity caused by NRTIs,

betes mellitus, lactic acidemia, and elevated hepatic especially when d4T is included in the combinations-48,
transaminase®%6-40. | ipo tlr Ef@ i le] V\{r i 'ﬁe IOffTﬁ] :? f:]'ome differs for different
ed with the use of proteajg\?nrg |torggtlgﬁg,ﬁn@; Ff]tltrg)mbrga%ions. I?Sa gy ort of 76 HIV+ drug-haive
patients never exposed to Pls and taking Nafs ?ir'n Lﬂﬂ\iggﬁés who started HAART, the combination of
long periods soon were reported to develop olt r gh?p ;groduoed greater increases in serum lactate
and buffalo hump*>-44, and lipoatrophy than therapies based on AZT and 3TC
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Figure 3. Influence of HIV infection itself and antiretroviral therapy on the mtDNA copy number in peripheral blood mononuclear cells**.

and improves lipoatrophy®°. In the Gilead 903 trial, in
which d4T + 3TC + efavirenz (EFV) was compared with
TDF + 3TC + EFV in drug-naive patients, the main dif-
ference after 144 weeks of treatment was a better lipid
profile and less lipodystrophy in the TDF-containing
arm®' One hypothesis published last year is stating that
the central nerve system is playing a major role in the
body-fat distribution, wherein the sympatic and para-
sympatic nerve systems play a key role. The effects of
the NRTIs, suggestively on the mitochondria of the nerve
cells, would thereby indirectly influence the redistribu-

tion of adipose tissue. Cleagll, although %&NR Is may
affect mitochondria, not all do(i t@t@eﬂa e

Depletion of mtDNA in HI:infestiomed OF Wi
The role of nucleosideanalogués prior thgﬁtmﬂ‘rﬂ

i pU

mtDNA levels in their peripheral blood mononuclear
cells (PBMCs), taking as comparison HIV- and HIV+
individuals without symptoms®?. Moreover, clinical
manifestations resolved after discontinuation of antiret-
roviral of therapy. Surprisingly, HIV-infected subjects
never exposed to antiretroviral drugs also showed sig-
nificantly lower mtDNA levels than HIV- controls. More
recent studies have confirmed this observation (Fig. 3),
suggesting that HIV infection itself may produce deple-
tion of MDNA to some extent354,

At least two possible mechanisms have been pro-

sed to. explain mtDNA depletion in HIV infection.
E)jdﬁafu @éalfmayo @ng the half-life of lympho-

cytes might compromise mitochondrial replication,

’[s@@@p 'emg)f cell division and occurs during

the GO/G1 cellular phase (Fig. 4)%*. The second

%gallaﬁi with cell apoptosig® 8,

y cause apoptosis through multiple

Since the release of Brinkman’s hypothﬁﬁiﬁ&a@ Lﬂberwgﬂsms, some of which rely on the intricate virus
studies have pointed out the association tI | %{eraction, and some of which involve activa-

use of NRTIs and depletion of mtDNA. In 2002,

tion of the host’s inflammatory and immune systems.
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Figure 4. Cell division and mitochondrial segregation. Influence of HIV infection an cell growth and total number of mitochondria per cell.

cell death directly through interactions of gp120 with
CD4, CXCR4 and other uncharacterized receptors®’, or
by induction of the caspase via®®. Another mechanism
has been proposed in which the HIV infection results in
changes in cytokine and interleukine profiles that play a
role in the regulation of mtDNA transcription, eg. TNFa.

Recent reports have revealed that NRTI therapy is as-
sociated with mtDNA depletion in PBMCs52%45%61 - adipo-
cytes®®62 and the liverss. Depletion of mtDNA in PBMCs is
much higher when d4T or the combination of d4T + ddI
is used®®*. In vitro, the triphosphate form of d4T is incor-
porated into DNA more readjly than other NRTls, and ex-
erts the greatest inhibition @@5 /O£
gamma'®84, This fact may explain the strong association
noticed between d4T and mﬂooﬂr(@ re@gi

Although lactate levels have not been considered as
an independent marker far,
a significant mtDNA de ﬂﬁggﬁgﬁh?@ @T
tend to increase, and this is particularly tr
tients with symptomatic hyperlaotatem|a52

Reports that have highlighted mtDNA depletion in

KadoU
dwed or

adipocyte mtDNA copies/cell. On average, mtDNA
depletion in the treated group was 78% with respect
to HIV+, untreated individuals. Significant differences
were found between subjects treated with d4T (mean
mtDNA depletion of 87%) vs. AZT (mean miDNA de-
pletion of 52%)2. These data support that mtDNA
depletion contributes to the pathogenesis of subcuta-
neous fat loss associated with NRTI therapy, and that
selected drugs within this family are associated with
a higher relative risk of inducing adipocyte mtDNA
depletion. In the study conducted by Walker®, ul-
hstructural abnormalities of adipocytes were found,

d@@ﬁrﬁ@ﬂlm?ﬁ itochondrial damage, the
use of NRTIs, and lipoatrophy in HIV-infected pa-

t@’[@(:r@tgy E}sg authors emphasized that their

results were mainly “associated with a depletion of

nﬁﬁlf@ﬁsl@@m ﬁe of mutations and dele-
|ons as previously reported by others®®.

uF {(h 8ap Ulhljbgb@; C and mtDNA depletion
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Figure 5. Comparison of mtDNA copy number in PBMCs from different groups (HIV- individuals, HIV alone, HIV-HCV co-infected, and

HCV alone)”".

226 HIV-infected patients, HCV infection was signifi-
cantly more frequent among lipoatrophic patients than
in subjects with adiposity, or the mixed lipodystrophy
syndrome, or those without lipodystrophy (46.2 vs.
14.7% vs. 19.6%, respectively; p < 0.03)%”. The authors
concluded that HCV infection might be associated with the
atrophic form of Iipodystr n, with a
prolonged NRTI exposure. |
a cause of mitochondrial damage in the liver are recent

demonstrations of mitochondrigf @ |U@@d P&y

tients with hepatocellular carcinoma®8. Additionally,

patients®. A more detailed investigation showed that
HCV infection itself leads to a depletion of mtDNA in
PBMCs, which could be further enhanced if treatment
of chronic hepatitis C with pegylated interferon and
ribavirin was used (Fig. 5)"".
Ribavirin is a guanosine analogue that could also
Jblt the DNA polymerase gamma. In HIV-HCV

phy in comu@;
Qv@afrat othdis epU ||{ffﬁtd@5btr¥}1@yt Cco-administration of anti-

HCV therapy and antiretrovirals may synergistically

@1‘@@@@@? ects on mitochondria. Several
e

reports hav monstrated that the concomitant

a recent study has pomtew mvgzrvmgﬁﬁpw V\yjlsﬁ:ﬁé(ﬁjlpﬁs Egﬁfégpwy result in a higher risk

may be decreased by 47
dividuals on d4T, ddl or ddC compared to su
treated with these drugs™.

In a cross-sectional study, coinfection with HCV and/or

snot U;E

of pancrea avirin inhibits the inosine mo-
hate dehydrogenase (IMP), promoting the

lation of ddI”5. This results in an increase
in the intracellular levels of ddATP, the active form
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Table 2. Tests available to measure mitochondrial function and mitochondrial DNA

Information

Method

Measure

Measure of mtDNA depletion

Deletions and mutations

Genomic expression of mRNA
Protein expression

Function of mitochondrial respiratory chain

Southern blot
In-house real time PCR
Retina Mitox

Southern blot
Sequencing

Northern blot
Western blot
Fluorimetric assays

Polarographic assays
Spectrophotometric

mtDNA/nDNA ratio
mtDNA/nDNA rario

Molecular weight
Sequence changes
mRNA density
Protein density
Oxidative damage

Oxygen consumption
Enzymatic activity

Another report has highlighted a potential synergistic
interaction between d4T and ribavirin, leading to a rap-
id and severe weight loss in HIV-infected patients re-
ceiving both antiretrovirals and anti-HCV therapy’®. A
pronounced weight loss, and high lactate and amylase
levels were found among patients taking d4T or ddl
compared with those taking other NRTIs along with
ribavirin.

Finally, a higher risk of metabolic abnormalities, in-
cluding insulin resistance and modifications in body
compositions, have been reported among HIV-HCV coin-
fected individuals receiving antiretroviral therapy com-
pared to HIV-monoinfected subjects’737678,

mtDNA depletion in children born from
HIV-infected mothers

A lower mtDNA copy number has been observed in
placenta and cord blood of pregnant women exposed
to HAART compared to HIV- pregnant women’. Re-
sults from a cohort of 18 HIV- children whose mothers
took Combivir during pregna
cal and molecular evidenc
in spite of an absence of clinical symptoms®. However,

persistent mitochondrial dysfunction ﬁ@@@h@e@rte@r [@|

more recently in a group of HIV-uninfected children born

to HilV-infected mothers wiyo e e ?tw mts ) 708"

AZT + 3TC during pregnancy, an d with

Orfidkingih UBisoR

tion in the infant, even in those children without ac-
quired HIV infection.

Methods for measuring mtDNA

If mitochondrial toxicity is the main pathogenic
mechanism underlying the side effects of NRTIs, espe-
cially lipoatrophy and hyperlactatemia, a method to
quantify mitochondrial damage would be helpful to mon-
itor HIV-infected individuals on antiretrovirals. Different
tools have been proposed in recent years to follow
mitochondrial toxicity, from simple quantitative meth-
ods to more complicated ones, including those based
on the analysis of phenotypes for each of the functions
of mitochondria. In this section we will summarize all
these methods (Table 2) in an attempt to identify which
could be the most reliable for monitoring mitochon-
drial toxicity in different settings.

Biochemical methods: enzymatic function
and oxygen consumption

bh@@tmnma%/ysb@f mitochondrial respiratory

chain (MRC) complexes is an important step in the
s@@optyq rial disorders. The mtDNA con-
tains 37 genes, and 13 of them encode subunits of the

units of complex |, one
W? é om@%%rc[ggfhrome b), three subunits

severe persistent mitochondrial toxicity8'82 Lfb IV (cytochrome ¢ oxidase), and two sub-
Since all mitochondria in the zygote derl%ffrt)hehep j%ﬁcéj;wplex V (ATP synthase) (Fig. 6). The abso-

ovum, MtDNA depletion or mutations present in the moth-

lute enzyme activity of the complexes of the MRC as
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Figure 6. Mitochondrial respiratory chain (MRC) and subunits encoded by nuclear DNA (nDNA) and mitochondrial DNA (mtDNA).

polarographic techniques®. These assays require the
use of simple instruments such as spectrophotometers,
spectrofluorimeters or plate readers, and provide quanti-
tative measurements of the activity of a given enzyme.
The analysis of MRC oxidative phosphorylation
(OXPHOS) has the advantage of providing a functional
view of the respiratory chain. OXPHOS biochemical
studies can be performed in tissue homogenates, in
permeable whole cells, or in mitochondria isolated from
tissue or cultured cells®®. Adipose tissue, skeletal
muscle and liver tissue as well as PBMCs would be the
ideal tissues for the diagnosis of mitochondrial dys-
function due to antiretroviral therapy. Several reports
have demonstrated alterations in the enzymatic activity
of MRC and oxygen consumption in each of these tis-
sues® 9, However, the aocjgf i@a‘&ttigﬁezﬁu
liver, adipose tissue or muscle requires a biopsy, a
bloody method, that makes its[’t@@{i@i
ment monitoring. Additionally, biochemical assays are

neither standardized norw@’fﬁ@“ ‘ghﬁﬁ@rﬁﬁﬁdﬂ*

terpretation of the data is complicated.

Genetic methods

otfe U
clit top ey

mtDNA. The qualitative assays are based on sequence
analysis and represent the best approach to identify
specific mutations, causing illnesses such as mito-
chondrial encephalomyopathies, stroke-like episodes,
retinitis pigmentosa, etc. or long deletions, such as in
Kerns-Sayre syndrome, progressive external ophthal-
moplegia, Pearson’s syndrome, etc®. Mechanisms be-
hind these disorders will not be further discussed,
since this review focuses on acquired mitochondrial
disorders.

For mtDNA secondary dysfunction due to the use of
NRTIs in HIV-infected individuals, there is no evidence
of one specific mutation that affects mitochondrial
function. Martin, et al. reported the presence of multiple

tations after treatment with NRTIs, and this was
&d&ﬁmwﬂmm&y igbeatients with lipoatrophy?®'.
However, Walker, et al. failed to detect mutations or dele-
the iSsue of patients with lipoatrophy®®.

Since the rg@nﬁr?duotion of quantitative methods

i |-t rlﬁ;ﬁ ion, the availability of ac-
V\gﬁlrzgtte y mjgs‘%red m%?l\fl?ms greatly improved. Sev-

ral-reports have described in-house, real-time PCR
Of the pu?@lfl]ée(ﬁ%ised on the detection of both nuclear and

mtDNA genes®>8082 The ratio established between

Two diffe, pr ltative,and guaniitafve, lear ONA) and,mtD ay4lidWto estimate
are useful ea Tet%@%/r ate toUt tlo rﬁgD percell. Based on this
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principle, a commercial method for the quantitation of
mtDNA has recently become available. The Retina
DNA Mitox™ assay is based on the NASBA amplifica-
tion principle®, followed by molecular beacon, real-
time detection. Both mtDNA and nDNA are amplified
and detected in one tube. The one-tube format allows
direct measurement of the ratio under the same ampli-
fication conditions, avoiding any external influence
which might interfere when amplifications are done
separately. This assay has been proven to be reproduc-
ible, with a low variability and high robustness®%.

The first step of the blood sample collection/prepara-
tion is critical for valid mtDNA quantitation in PBMCs,
especially when depletion of mtDNA is expected to be
found due to NRTI therapy. In PBMC specimens, plate-
lets that contain mtDNA, but not nDNA, can influence
the mtDNA/nDNA ratio, yielding higher results due to
mtDNA contamination®-%. Platelet sorting using mag-
netic beads®, or the use of special cell preparation
tubes for blood collection that have cheaper than mag-
netic beads, may be useful to eliminate platelets from
PBMCs. However, when the platelet content is lower
than five times the PBMC content, the quantitation of
mtDNA is only minimally affected and the results are
reliable®,

Current limitations and future prospects

Treatment with NRTIs has been associated with
mitochondrial toxicity. Depletion of mtDNA can be
found in PBMCs collected from HIV-infected patients
on antiretroviral therapy with hyperlactatemia, and in
adipose tissue of subjects with severe lipoatrophy.
Therefore, quantitative mtDNA assays could be use-
ful to monitor and evaluate mitochondrial toxicity in
HIV+ patients on antiretroviral therapy. However,
several aspects need to be resolved before the im-
plementation of these tests. Firstly, changes in mtDNA
in one tissue or cell line, (PBMCs) may noiﬂaocu-
rately reflect what is ha&)@wi rr{ erlti
(adipocytes, muscle, liver,...).
makes it difficult to extrapolatf@pyh@@
content in PBMCs for each of the pathologies as-

This observation

e
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clinically significant thresholds, and monitoring in-
cluding baseline measures may be necessary to
assess changes over time. Fourthly, the various
methods that have been developed to measure mtDNA
in cells should be further harmonized and validated
to enable a proper comparison between the various
methods and studies. The recent introduction of a
commercially available assay could be the first step
to solve this problem.

An important question that clinicians have to an-
swer regards whether we can prevent mitochondrial
toxicity associated with NRTIs based on the results
of miDNA measurements. All the limitations dis-
cussed above should be solved before attempting
to answer this question, in particular the clinical sig-
nificance of mtDNA depletion, the relationship be-
tween mtDNA depletion in PBMCs and other tissues,
and the prognostic value of low mtDNA contents in
asymptomatic patients. Fortunately, many investiga-
tions are in progress in an attempt to answer these
questions.
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