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Abstract

A number of obstacles remain in the search for an animal model for HIV infection and pathogenesis
that can serve to predict efficacy in humans. HIV-1 fails to replicate and cause disease except in
humans or chimpanzees, thereby limiting our ability to evaluate compounds or vaccines prior to human
testing. Despite this limitation, nonhuman primate lentivirus models have been established that re-
capitulate the modes of infection, disease course, and antiviral inmunity that is seen in HIV infection
of humans. These models have been utilized to understand key aspects of disease and to evaluate
concepts in therapies and vaccine development. By necessity, animal models can only be validated
after successful trials in humans and the determination of correlates of protection. Because the only
vaccine product tested in phase lll trials in humans failed to achieve the desired protective threshold,
we are as yet unable to validate any of the currently used nonhuman primate models for vaccine
research. In the absence of a validated model, many experts in the field have concluded that prophy-
lactic vaccines and therapeutic concepts should bypass primate models, and rely solely upon the
systematic testing of each individual and combined vaccine element in human phase I or I/l trials to
determine their relative merits. Indeed, a large effort is underway to expand efforts to test all products
as part of an international effort termed “The HIV Vaccine Enterprise”, with major contributions from
the Bill and Melinda Gates Foundation. This Herculean task could potentially be reduced if it were
possible to utilize even partially validated nonhuman primate models as part of the screening efforts.
The purpose of this article is to review the data from nonhuman primate models that have contrib-
uted to our understanding of lentivirus infection and pathogenesis, and to critically evaluate how
well these models have predicted outcomes in humans. Key features of the models developed to
date are described and their contributions to HIV pathogenesis, therapeutics, and vaccines, are
compared. This analysis shows that many of the models at hand have yielded data on drug action
and immune responses to vaccines that are congruent with clinical data. This finding suggests that
primate models are valuable as adjunctive testing systems to prioritize future therapeutic and vaccine
strategies. Nonhuman primate testing of vaccine approaches in particular has provided valuable
information and can significantly enhance and accelerate the evaluation of novel concepts necessary
to achieve acceptable levels of efficacy. Because major gaps remain in the quest for fully effective
vaccines and therapies, it seems prudent to continue aggressive research programs in the nonhuman
primate models. (AIDS Reviews 2004;6:187-98)
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Nonhuman primate models for AIDS research have
been a major focus of vaccine and pathogenesis work
since the discovery of simian AIDS, following acciden-
tal cross-species transmission of SIV in the primate
centers in the early 1980s"2. Since that time, a great
deal of progress has been made in understanding
primate lentiviruses in their natural hosts and in their
new hosts, with the goal of developing nonhuman mod-
els for HIV replication and pathogenesis®. Lack of a
readily available host, and failure to progress to dis-
ease before 10 years, has limited the use of HIV-1 in
nonhuman primates®. Divergence in protein sequenc-
es, and differences in antigenicity between HIV-1 and
HIV-2/SIV, required that many therapies and vaccines
be tailored specifically for the two lineages. Serial in
vivo passage of some human HIV-2 isolates in ba-
boons and in macaques was shown to “heat up” the
virus and result in depletion of CD4+ T-cells, a hall-
mark of AIDS in humans®”. Subsequently, chimeric SHIV
viruses bearing HIV envelope genes in a backbone of
the SIV genome have been developed?; these have
been similarly passaged in vivo to achieve high levels
of replication and reproducible CD4+ T-cell decline
and pathogenesis®'". The ability to recapitulate Koch’s
postulate with viral mutants has allowed the unequivo-
cal identification of genes that are key for pathogene-
sis, routes of infection, and targets for drugs and
therapies. Using these chimeric SHIVs, several groups
have shown that human HIV Env-directed monoclonal
antibodies, capable of blocking infection in rodent mod-
els'®, were also effective in primates'1°,

Several excellent reviews of progress in HIV patho-
genesis, therapies, and vaccine development, have
been written in recent years that point to the use of
nonhuman primate models to evaluate concepts and
types of compounds™® ' and vaccines'®0. By neces-
sity, animal models can ONL be validatedd:af r.suc-

cessful trials in humans, a Qo@@eﬁ&s@

immunity may then be identified. The recently com-

pleted phase Il trials, testing ﬁe@p@d@@eﬂ
subunit in humans, failed to achieve the desired pro-
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validated nonhuman primate models as part of the
screening efforts, then this timeline might be signifi-
cantly reduced. The purpose of this article is to review
the data from nonhuman primate models that have
contributed to our understanding of lentivirus infection,
pathogenesis, and antiviral immunity, and to critically
evaluate how well these models have predicted out-
comes for therapies and vaccines in humans.

Current models: pathogenesis
and immunology

Animal models have been utilized as tools for under-
standing elements of infection and pathogenesis for
many infectious diseases. Despite concerted efforts,
there is as yet no reproducible HIV-1 infection and
pathogenesis model other than the chimpanzee*?3,
The discovery that primate lentivirus infection leads to
AIDS-like disease in macaques has allowed the devel-
opment of models for key aspects of HIV-1 infection in
humans. Specific combinations of lentiviruses in different
hosts have led to a number of observations that have
confirmed or informed HIV-1 infection of humans. Using
these models, certain types of studies can be performed
that would be risky or unethical to pursue in human clin-
ical studies. A summary of the major nonhuman primate
lentivirus infection models is shown in table 1, noting the
nonhuman primate common name, the viruses tested,
and the concepts elucidated by these models.

From our 21%t century perspective, we can see that
the models that result in pathogenesis represent infec-
tion in non-natural hosts, where the virus is by definition
poorly adapted. One of the first models to be utilized
was the infection of chimpanzees (Pan troglodytes) with
HIV-1, using lab-adapted viruses that were the only
ones available at the time: HIV-IIIB/LAI and HIV-SF2.
This model was useful in recapitulating the infection
process, route of infection, and antiviral immunity es-
tablished. It was only after more than 10 years of study
hat disease was observed*. Given the knowledge that
b%@a)tbaranm&yp Zees? it is less surprising
that the human-adapted HIV-1 strains were not very
| feiftroduced into the chimpanzee.
For comparison, we need look only at the African sim-

tective threshold?!. The Wgh i Eg&? rise; | Wi i tt@ iruses in-their native hosts. SIVsm infection of
major funding from the Bil arll I\/I(gig@a at;e; @:Jln(glh- V\gg]o y mﬁﬁt@e@%gﬁﬁ SIVagm infection in Afri-

tion, has the goal of mounting a oonoertéci efﬁréjt rh reen monkeys®, shows high replication without
develop and test, in parallel, multiple vaceine fbugét gﬁr%gis, evidence of a virus that is well adapted

dates in humans??. The HIV vaccine field faces years,

to the host. HIV-1 originally looked promising in the
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Table 1. Pathogenesis and immunity in nonhuman primate lentivirus models

Natural host Virus

Concepts elucidated (reference)

Sooty mangabey SIVsm

- Significant viral replication in natural host®"92

- Lack of pathogenesis due to adaptation or lack of immune activation®

African green monkey SIVagm

- Significant viral replication®3%*

- Lack of pathogenesis due to adaptation®

Experimental host Virus Concepts elucidated (reference)
Chimpanzee HIV-1 - Time to disease similar to humans*9:%
— Superinfection observed by multiple HIV-1 clones®”
- Infection by mucosal and intravenous routes®
— Immunity: T-cell and B-cell immunity?3.9%-101
Pig-tailed macaque ~ HIV-1 — No sustained replication and no pathogenesis’1%
Baboon HIV-2 - Relatively low-level replication with no sustained diseasg®28104
Macaque species SlVmac, - Progression to disease typically accompanied by loss of CD4+ T-cells'®

SIVmne, SIVsm - Replication dependent upon virus isolate or clone®
- Time to disease predicted by plasma virus load®>3
- Roles of individual genes in infection, pathogenesis in vivo'06:107
- Breakthrough SIV or SHIV after sustained control08.19°
- Mucosal transmission and fate of infecting virus''%-11?
- 100-fold more virus required for mucosal vs. intravenous infection''3114
— Tissue tropism of certain viruses and clones'®
— Coreceptor studies'e-118
- Rapid disease progression in newborns'"®
- Viral diversification from clonal infection20:121

- Escape from CTL'?2123

- Escape from NAp™23-125
- Removal of CD8 cells results in viral rebound®; B-cells also important®”

Macaque species

Macaque species SHIV (R5)

HIV-2, SHIV (X4) - Rapid, irreversible CD4+ T-cell decline after multiple passages in vivo?:126:127
- Variable set-points similar to SIV!

- No rapid CD4+ T-cell decline

- Vaginal infection

The next step toward finding a host for human vi-
ruses was to test HIV-2 in baboons and macaques,
which was done with varying degrees of success. Dis-
ease was seen in the baboon model with HIV-2-UC 2528,
and an animal-passaged HIV-2-EHO replicated to very
high levels and caused reproducible loss of CD4+
T-cell'in pigtailed macaques®. The mechanism of rapid
CD4+ T-cell loss is not WeMnderstood.

Most of the progress in
immunity has arisen from the study of African SIV in
the Asian macaques: rhesus (l
tailed (M. nemestrina), and crab-eating macaques

(M. fascicularis). There are WﬁWyﬁggﬂe@g@ Hl@fs

the SIVmac and SIVmne viruses, an sm’ Vi-

Ve turtachigr pla

pathogenicity was dependent upon the virus, whether
clonal or non-cloned viral isolate, and upon the host3°.
The role of individual genes in pathogenesis could be
directly tested, leading to a better understanding of
regulatory genes such as nef'. A major step forward
in validating nonhuman primate models was the dis-
covery that plasma viral load predicts time to dis-

e%23 similar to the finding that plasma viral loads

@yi@aﬂfh@tntbiﬁr{augjj%m@mamy‘o flisease progression in HIV-

infected patients®*. This correlate has allowed the

Ig)ati@(:@@ Hﬂ@ and vaccines that are unable

to provide “sterilizing immunity”, but do affect the set-

] ir ?ﬁsh (relative importance of CD8+
V\@Q(I:ngw c?n rol ing@gr‘? alaiute infection was directly

ruses, which are closest to HIV-2 in sequ%erx omoI\-p LﬁSIL%r;ﬁtrated by depletion in vivo®3% and subse-
4

ogy?. In these models, disease is acco
loss of CD4+ T-cells and death is usually, though not

1@4’ role of neutralizing antibodies was also
explored by B-cell depletion®”. Neutralizing antibodies
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chimpanzee (HIVIG)®. The development of chimeric SHIV
clones bearing HIV env genes in the SIV backbone has
allowed the testing of vaccines and therapies that are
directed at the Env protein. One of the pathogenic SHIV
models (SHIV-89.6P) also shows the rapid CD4+ T-cell
depletion seen with macaque-passaged HIV-2-287%.
These studies, and other similar studies with therapies
and vaccines described below, underscore the power
of the nonhuman primate models in understanding key
immune responses in Vivo.

Successes with antivirals
and immune-based therapies

Antiretroviral drugs have been tested to a limited
degree in nonhuman primates, and many of these
studies followed FDA approval of compounds for hu-
man use. Conservation of reverse transcriptase (RT)*
meant that RT inhibitors could be tested using SIV.
Monotherapy with zidovudine (azidothymidine, or AZT)
was only poorly effective in controlling acute SIV infec-
tion, and this outcome was interpreted as a weakness
of the primate models*!. Viewed in hindsight, and in
comparison with more effective drugs such as prote-
ase inhibitors or with cocktails in acute infection, clini-
cal experience with AZT has been similarly disappoint-
ing. However, there are three key discoveries in
therapeutics that stemmed from successes in nonhu-
man primate models. It was the successful testing of
(R)-9-(2-phosphonylmethoxypropyl) adenine (PMPA)
by Tsai, et al.*? that led to the development of this drug
for humans, in contrast to most other antiretrovirals,
which were developed on the basis of in vitro testing
prior to phase | trials in humans.

The second advance was immediate postexposure
prophylaxis (PEP) with stavudine (D4T) in the HIV-2-287
model. Prior to this point, there was epidemiological
evidence that PEP in humans using AZT could prevent
infection*. The macaque study showed that short-
course prophylaxis at very high doses, followed by
cessation of therapy, was &r&npbad? Ecﬁtffol thj

load and preventing CD4+ T-cell decline in five out of

Sirpu

and interrupted treatment in the SIV model*44® — stud-
ies that have been more difficult to perform in hu-
mans*. In both the human and the macaque studies,
early control of viremia is important, and in cases
where infection is established, host immunity is neces-
sary for viral containment in the absence of drug*’°.

A third advance has been in defining the potency
and role of neutralizing antibodies in preventing and
limiting infection. Animal models have allowed the test-
ing of polyclonal and monoclonal preparations, both as
preexposure and postexposure therapies (Table 2), as
summarized in a recent review'. Originally these ex-
periments were performed with human polyclonal
HIVIG®? or V3-region-specific monoclonal antibodies®'
in HIV-1-infected chimpanzees or macaques, to dem-
onstrate sterilizing immunity. With the advent of SHIV
viruses that not only replicate, but also cause disease
in macaques, it has been possible to study the role of
human monoclonal antibodies and polyclonal prepara-
tions as PEP and therapy. These studies demonstrated
that complex neutralizing antibodies can limit the infec-
tivity of HIV in vivo®. PEP therapy with polyclonal SIVIG
at a high dose can ameliorate SIV infection and delay
disease®?. Parameters such as timing®°4, potency of
antibody combinations® and routes of challenge 19,
and dose® can be explored without risking human
lives. These advances have led to the testing of
HIVIGS7 8 and planned testing of monoclonal antibod-
ies as therapeutics for mother-to-child transmission in
humans®.

Vaccine protection and immunity

Given some of the useful information derived from
nonhuman primate models in the therapeutic area, it is
at least theoretically possible that one or more of these
models may inform vaccine design. Two types of read-
outs are used in nonhuman primate work: vaccine-
elicited immune responses and protection following
viral challenge. As noted in table 1, the quality and
bf&&EMamaﬁYi ne responses to HIV, SHIV

and SIV infection in the non-adapted host have many

six treated animals for more tfr@pir@@l@({@d/it@r F}h@@@a@@fyhmbsence of proven correlates, an

drawal of treatment8. Control of viremia and prevention

indication of the congruence of data between humans

of CD4 declines oorrelat%ﬁﬁmg@@égﬁ?k V\?ﬁﬁf@ﬁur?@rmggfoﬁhe direct comparison of

ble CD8-produced factors, an cia

ed products in

he two systems, and the use of validated

control. These results demonstrate that earli agrtt]iviral éﬁﬂaﬁf compare the immune responses. For a sys-
intervention, even of a limited duration, ma@ 0 i@ltepu ! @ruseful as a screen, this minimal criterion

an important strategy against lentiviral-induced dis-

must be met. Considerable efforts have been applied
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Table 2. Examples of therapeutic approaches tested in nonhuman primate models

Type of study Host Virus Outcome or concept (reference)
DAT treatment Pigtailed macaque HIV-2-287 - Immediate prophylaxis controls infection®
Antiretrovirals Pigtailed macaque SIVmne - Postexposure chemoprophylaxis with PMPA prevents
infection42128.129; AZT is less effective*!
— Effects on chronic infection are poor30:131
Antiretrovirals Rhesus macaque SIvV - Transient treatment during acute infection improves outcome?
PMPA*, tenofovir Rhesus macaque SIVmac 251 — Infection in newborns is blocked by drug treatment’2-1%
in newborns SHIV-SF33

CCR5 inhibitor

Rhesus macaque

SlVmac; SHIV-89.6P; — CCRS5 inhibitor reduces viremia in high-replication models

SHIV-SF162P4
Preexposure Chimpanzee HIV-1
passive IgG
Preexposure Rhesus macaque SIV, SHIV-DH12
passive IgG
Postexposure Rhesus macaque SIVsmEG60,
passive IgG SHIV-KU2 and
SHIV-DH12
Preexposure Rhesus macaque SHIV89.6P
passive mAb
Postexposure Rhesus macaque SHIV
passive mAb infants

*9-[2-(phosphonomethoxy)propyl]adenine.

samples. In both systems, cellular immunity is deter-
mined by antigen (peptide)-specific cytokine secretion
by ELISPOT and neutralizing antibodies against panels
of HIV-1 patient isolates using standard cell line-based
assays. Although these assays are not yet to the stage
of good laboratory practice (GLP) validation, they are
close to this threshold.

Some of the key advances learned from vaccine
studies in nonhuman primate models are summarized
in table 3. These include:

that use CCR5 and reduces viremia in SF162P4 infection'%

- HIVIG and MAbs directed to V3 can protect against HIV-IIIB
(lab-adapted) challenge®

- IgG with neutralizing activity can block infection at high
doses‘37“38

— Very high levels of NAb are needed to slow infection
and affect diseasg??53.199.140

- Combinations of mAbs effective in blocking oral or vaginal
infectionm,wm,wm-ma

— Cocktails of monoclonals can block infection if given
within hours of exposure®

- the relative efficacy of different types of vaccines
(subunits, live recombinant viral vectors, prime-boost,
and live-attenuated);

—the merits of including individual and multiple com-
ponents in the vaccine (e.g. Env only, multiple anti-
gens, regulatory genes or proteins);

- the inclusion of cytokines as adjuvants; and

- the effects of different routes of challenge.

Will these lessons translate into appropriate choices
for HIV vaccines in humans? A review of the qualitative

Table 3. Key advances in vaccine development from primate models

Concept

No part of this publication may be

References

— Subunit Env gp120 vaccines provide sterilizi rotection onl witHow—re lication medels
— Subunit Env gp160 and gp140 VE@IFA{@&E&@Q‘)S@IF\;I@ i @I\GSG@IFQt

— Prime-boost vaccines provide sterilizing protection with low- and moderate- but no)éhigh—%plication challenges ~ 7273108145

— DNA vaccines can serve as-%rhne or Toﬁlwith vaccinia virus
T

- Parenteral vaccines protW} @JUa al @n

61-63
144

90

rior written permission

— Protection with live-attenuated vaccines is dependent upon viral replication 147,148
— Cytokine (interleukin-2) as adjuvant improves DNA and recombi vagcinia virus vaccine immunity and efficacy 146149
— Protection from disease is improved by inclu ofﬁbﬁ@G@ Iajwrﬁhﬁht@erns 144,150
- Attenuated viruses that were safe in adult, juvenile macaques cause disease in newborns 151

— Adoptive_transfer_of SIV-naive autologous CD4+ T—cellspmac

u
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Table 4. Comparison of immune responses in vaccinated humans and nonhuman primates

Protection in nonhuman
primates

Vaccines in testing Nonhuman primate

immunity (reference)

Human responses
in phase | trials (reference)

Env gp120 subunit (CHO cells)  Sterilizing in chimpanzees vs. Low level Abs and NAbs Low level Abs and NAbs

HIV-1 (lab-adapted)s' 6480 (lab-adapted)'s® 54
Limited or none vs. SIV No effect on CTL; low-level
in macaques proliferation 516

Env gp160 subunit (baculovirus) No protection from SIVmac251 Low-level Abs and NAbs Transient increased T-helper

infection
No protection in chimpanzees

(lab-adapted)®®
Strong CTL responses'®

responses in infected patients'®"%

Responses similar to primates but
limited by prior vaccinia exposure™

Recombinant vaccinia virus
expressing Env gp160

Recombinant NYVAC Control of SIVmac251 infection CD4 and CD8 responses'® NT
gag-pol-env with DNA

Recombinant MVA, Gag-Pol  Attenuated viremia; SHIV-89.6P CTL at day of challenge; post NT
plus Env; multi-epitopes and  in macaques; poor protection infectioncellular and humoral

Tat, Rev, and Nef against SIVmac239 immunity 161162

Canarypox gag-pol-env plus  Protection from SIVmac251
Env gp120 subunit disease

Multi-epitope CTL vaccines ~ None

(peptide and lipopeptide)

CD4+ and CD8+ T-cell responses®®  Canarypox only; very weak

ELISPOT responses and NAbs'®3163
Weak responses in 9/12 by CTL;
in 5/6 by ELISPOT!6®

Weak responses to Gag and Nef
in majority of animals'64165

Replication-incompetent
adenovirus expressing Gag
Replication-competent
adenovirus expressing

Gag and Env

Enhanced DNA vaccines;
DNA/PLG microparticles

Attenuated infection with
SHIV challenge

Protection from SIVmac251
infection and disease

in macaques

NT

Strong cell-mediated responses®”

Antibody and cell-mediated responses

correlated with better outcome'®®

Strong CMI by CTL and ELISPOT
to Gag, Env'®

Significant CTL responses by
ELISPOT!®
NT

Trial underway in 2004

Oligomeric Env gp140 Reduction in viremia with
subunits and deletion subunits  SHIV challenge

NAbs against primary and lab-adapted
HIV'6® and some heterologous
primary HIV (deletion mutants)'”®'7!

Trial underway in 2004

NAbs: neutralizing antibodies; VEE: Venezuelan equine encephalitis virus; MVA: modified vaccinia Ankara; NT: not tested.

and quantitative immune responses elicited by differ-
ent and similar vaccines yielded a surprising degree
of congruence for some assays and for many of the
approaches tested to date, as summarized in table 4.
The list of vaccines that have been tested in both sys-
tems is increasing, and the examples shown here are
illustrative rather than comprehensive.

The earliest vaccine approaches were focused on
the recombinant Env subunits gp120 and gp160. In pri-
mates, these had shown some ability to elicit peutral-
izing antibodies against Iab&Tzﬂﬂ)rpi Ilte@ﬁ
activity against primary HIV-1. Env preparations with

conformational determinants prése p@@lqg@@d ghr

fective in generating neutralizing antibodies in baboons

than denatured non-glyc F\Pgﬁa ; é}wH '
tude of responses was am\gﬂt— ep\;tn engmt%

lindited U
B Q0o hatica

tection in macaques using the SIV-homologous
gp1308384 but could block or limit infection by a lower-
replicating SHIV®. The first vaccine product to be
tested in humans in an FDA-approved trial was the
baculovirus-produced gp160 protein. When gp120
products were tested in humans, they also elicited
neutralizing antibodies restricted to laboratory isolates,
at levels at least 10-fold lower than in infected hu-
mans®. And when tested in phase lII clinical trials,

120 failed to achieve, the 30% efficacy of sterilizing
Eﬁﬁ@a&h@ﬁt tﬁaaiyl powered to observe?'. Re-
cent efforts have been directed at testing oligomeric
present oligomeric and confor-
mational determinanfs®’.

Wt

térﬁ Fgé—laﬁqr%giéaﬁombinant viral vector vac-
cine trial tested HIVAC-1e, recombinant vaccinia virus

being the least effective®. Relative to HIV-1i'nj€§tion Lf@jjgﬂn gp160 from HIV-IIIB/LAI. This system was
however, the magnitude of neutralizing ant@ di @asp rattractive from a number of standpoints,

at least 10-fold lower. Although there was evidence of

including the expression of native Env gp160 in vivo,
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self-limiting due to anti-vaccinia clearance. The rela-
tively weak immunity raised by HIVAC-1e in chimpan-
zees®8 and ultimately in humans™7! led to the de-
velopment of a strategy that now is termed “prime-boost.”
Originally envisioned as a method to boost humoral
immunity using an orthogonal antigen delivery method,
macaques primed with recombinant vaccinia virus ex-
pressing HIV Env gp160 were boosted with purified
Env gp160 glycoprotein, which increased antibody re-
sponses. When challenged with SIVmne, these ma-
caques fully resisted infection’. Unfortunately, more
stringent SIV-challenge models failed to show steriliz-
ing immunity®373, Results in humans were similarly
weak, showing some cellular responses and neutral-
izing antibodies against laboratory isolates’* 78,
Safety issues with vaccinia virus in humans, as well
as evidence that macaques’’ and persons’® with pre-
existing vaccinia immunity were poor responders, led
to explorations of more attenuated poxvirus vectors’®7?,
including modified vaccinia Ankara (MVA) and Avipox
or canarypox vectors®®®' When used alone, these vec-
tors were effective in eliciting CTL8 and, in conjunction
with protein boosting, were effective in limiting post-
challenge pathogenesis®84. In humans, immunity was
detectable but weak®. Other strategies aimed at pre-
senting specific CTL epitopes alone, or in combination
as multi-epitope vaccines, have elicited weak respons-
es, both in nonhuman primates and in humans.
Alternative recombinant adenovirus vectors, either
one-round or replication competent, are also showing
significant promise in macaques and in humans in
generating both humoral and fairly strong cellular im-
munity®-87, Experience to date with these two types of
adenovirus is shown as an example in table 4. Where
comparative data are available, they show similar lev-
els of immunity elicited. DNA vaccines have the poten-
tial of generating broad responses against multiple
antigens with relative ease. The first generation of
these have been tested fairly extensively in macaque
SHIV-challenge models, reviewed in®, and these ex-
periments show the value Qopt@tﬁtg@%
vaccine types®. The relatively weak immunity elicited
by DNA vaccines in maoaquesf@@ﬁ@
gests that better adjuvants and delivery systems are

needed, and some of th@ﬁﬁfﬁﬁﬁ@fﬁ@mﬁ)ﬁ

nonhuman primates. DNA complexed inside,

RS0l U
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neutralizing antibodies. If these newer recombinant viral
vectors, DNA delivery systems, and oligomeric protein
strategies elicit improved immunity in humans, this will
be additional supportive data for the predictive value of
nonhuman primate testing in vaccine development.

Remaining issues

We are faced with several critical challenges in the
control and prevention of HIV infection and disease.
In infected humans, the virus causes extreme suffering
and 100% mortality. Effective nontoxic drugs are still
desperately needed for those who become infected
and to more effectively prevent mother-to-child trans-
mission. If vaccines are to protect against any of the
multiple genetic variants that continue to diversify and
recombine worldwide, persistent, broad cellular and hu-
moral immunity are both needed. None of the vaccine
candidates currently in testing comes close to eliciting
the level of responses seen in infected individuals such
as long-term nonprogressors.

The data summarized here suggest that, where ben-
eficial effects of drugs, immune-based antiviral thera-
pies, and vaccines, are seen in the nonhuman primate
models, these may be indicative of potential success
in humans. Clearly there are limitations to the use of
nonhuman primate models, particularly in enzymatic
drug targets that differ between SIV and HIV-1, such
as with protease. Are models that cause rapid, irrevers-
ible CD4+ T-cell decline representative of HIV, with its
steady slow decline over years? It is also not yet clear
whether SHIVs are representative of HIV-1 in their
pathogenic course. No single animal model is likely to
serve as a perfect model for HIV infection of humans.
Each of the models has advantages, but none can
replace the knowledge gained from human clinical
work. As a field, most investigators agree that we are
still years away from having nontoxic drugs that will
effectively control infection, or a vaccine candidate that

ill.provide even modest protection from disease. Cur-
ﬁh@a&l@&r{m}a@b Eprimates is not considered
to be on the critical path for drug or vaccine testing.
h\@{e@ ypmgnpelling arguments for a parallel
pathway of discovery and testing in nonhuman pri-

Wn?‘ﬂef%ﬁsﬁg ﬁﬁ‘ﬂﬁ@ﬁ@ﬁms such as PMPA pro-

nthe ceede

ans only after successful testing in non-

surface of PLG microspheres, reduces th néob Lﬂérgesrﬁ)rimates - an example of the use of positive
DNA needed per immunization. This stratze;m n t ﬁe{ model systems to ignite enthusiasm for

tered human phase | testing in conjunction with a

clinical testing. As antiretrovirals become more widely
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primate testing can complement or augment these
findings by the ethical testing of new components,
such as monoclonals, for efficacy in the absence of the
current standard-of-care.

Should nonhuman primates be on the critical path
for vaccine testing? The published experimental data
for vaccines show that the quality and magnitude of
immune responses elicited in macaques is in many
cases similar to that seen in humans, and thus may be
at least relatively predictive of responses in humans.
It would be risky to extrapolate vaccine success based
solely on results of challenge studies in nonhuman
primates. However, given the surprising congruence of
the immunogenicity data, it can be argued that the
vaccine successes we have seen in the nonhuman
primate models may portend the ultimate success for
human vaccines that can blunt infection, if not pre-
vent it. Vaccines with strong safety profiles that are
successful in protection from disease or infection in
more than one nonhuman virus-host model should be
considered first for testing in humans, as they may
ultimately lead to successful HIV vaccines. Advances
in science are derived both from individual break-
throughs as well as the combined wisdom of multiple
concordant studies that define limits and show repro-
ducibility. It will take new ideas as well as the contin-
ued collaborative efforts of the entire field to control
this difficult and challenging pathogen. The nonhuman
primate models for AIDS remain a critical tool in this
endeavor.
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