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Kaposi’s Sarcoma in the Era of HAART — An Update
on Mechanisms, Diagnostics and Treatment
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Abstract

Kaposi’s Sarcoma (KS) signified the AIDS epidemic in the 1980’s and led to the discovery of the
eighth human herpesvirus, KS-associated herpesvirus (KSHV), as the causative agent for this dis-
ease. Today we know a lot about KSHV and can begin to understand, diagnose and treat KS as
a viral disease rather than another sarcoma. (AIDS Reviews 2005;7:56-61)
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One quarter to one third of all human cancers are
associated with infectious agents' that are normally
contained by the host immune system. Hence, patients
that are immunodeficient, such as AIDS patients or
patients receiving immunosuppressive drugs following
organ transplantation, are at risk for immunodeficiency-
associated cancers. Kaposi’'s sarcoma (KS) is an
AIDS-defining cancer, which is caused by Kaposi's
sarcoma-associated herpesvirus (KSHV).

Kaposi's sarcoma is divided into several subtypes
with varying clinical manifestations?2. Classic KS was
first described in 1872 as a fatal, disseminated sar-
coma of the skin. KS is endemic in parts of equatorial
Africa where it is responsible for an estimated 1% of
all adult tumors. In these regions, transmission of KSHV
proceeds from mother to child before puberty and KS
is often fatal by an early age. Widespread HIV-1 infec-
tion has now turned KS into an epidemic disease on
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childhood KS has become the most common neoplasm
in many regions of sub-Saharan Africa. KS has also
been documented in organ transplant recipients (iatro-
genic KS) in whom it comprises an estimated 3% of all
tumors*. This is seen particularly in regions of high
KSHV prevalence, such as southern Italy, Turkey, and
Saudi Arabia. Under these circumstances, KSHY may
be already present in the recipient, acquired during
immunodeficiency after transplantation, or transmitted
through the graft>. In 1981 KS was recognized as the
signature pathology of AIDS. Highly active antiretroviral
therapy (HAART) has led to a decline of AIDS-related
KS in the USA, although data indicating a failure rate
of HAART of up to 22% (primarily due to noncompli-
ance) suggests that KS represents a permanent health
problem for years to come®”.

Figure 1 A plots the annual incidence rates for KS in
the San Francisco Bay area from the National Cancer
Institute SEER database (http://seer.cancer.gov). In the
mid-1980s, incidence rates for KS showed a greater
than exponential increase, while incidence rates for
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Figure 1. A. Incidence rates of Kaposi’s sarcoma in the San Francisco Bay area. B. Age-specific incidence rates of Kaposi's sarcoma (from SEER).

Cancers with a strong association to one genetically
predisposing mutation, such as loss of Rb alleles in the
case of retinoblastoma, also exhibit a bimodal age
distribution. However, in cases of genetic predisposi-
tion, a familial pattern is also present and the typical
age of onset is early childhood. By contrast, to date,
only a single report has suggested a genetic factor for
KS®. In AIDS KS, incidence rates correlated signifi-
cantly with the lifetime number of male sexual part-
ners®, which corroborated KSHV as the sexually trans-
mitted agent that caused this cancer.

Kaposi’s sarcoma-associated herpesvirus

Attempts to culture a virus directly from KS tumors
failed, but in 1994 Chang, et al."® used representa-
tional difference analysis to demonstrate the presence
of this novel human herpesvirus in KS lesions, but not
in normal skin of the same patient, or in KS-negative
patients. Hence, for the definite diagnosis of KS and
the detection of KSHV it is essential to biopsy the le-
sion. The cloning of KSHV established a new paradigm
for the discovery of uncul
tionally, infectious cause
Koch’s postulates: a) they needed to be found exolu-
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loads may predict immanent clinical lesions. These can
be internal as well as on the skin.

The presence of anti-KSHV antibodies documents
prior exposure, but does not allow a prediction of KS
development within the next six months (Dittmer and
Martin, unpublished), since in HIV-positive individuals
the median time from seroconversion to disease is
seven years'®. We do not know whether a temporal
change in antibody titers is of prognostic value for KS,
or merely reveals sporadic viral reactivation that is suf-
ficiently controlled by the immune system, since most
immunodeficient AIDS patients are expected to also be
deficient in their CD4-dependent humoral response.

By definition, all KS cases (and all other KSHV-as-
sociated cancers such as primary effusion lymphoma
(PEL) and multicentric Castleman’s disease (MCD)?6,
contain KSHV. However, KS lesions are heterogeneous.
The tumor is characterized by a mixture of infiltrating
inflammatory leukocytes and spindle-formed endothe-
lial cells, which constitute the malignant cells' 8. KSHV
genomes have been found exclusively in the CD34-pos-
itive endothelial lineage-derived cells by in situ hybrid-
b tion'8,"? and KSHY mRNA and proteins have been
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Figure 2. Model of KS development and possible intervention points.

passage in culture. Presumably in vitro conditions se-
lect for cells that no longer depend on viral oncogenes
for survival. These could be KSHV-infected cells that
have acquired additional mutations that substitute for
KSHV oncogenes, or cells within the KS lesions that
were never infected®. This may be mechanistically
similar to lymphomas at advanced stages where mu-
tations in cellular genes can substitute for the viral
oncoproteins. This has not been documented for
KSHV-associated PEL, but may be one explanation
why histologically identical Burkitt's lymphomas (BL)
can occur either as Epstein-Barr Virus (EBV)-positive
(classic BL) or as EBV-negative (most AIDS-associated
BL) varieties. PEL always contain KSHV, but may or
may hot be coinfected with EBV.
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Pathogenesis and treatment approaches

Several studies have ascertained the transcription
profile in tissue culture models of KSHV infection33-36,
Potentially interesting drug targets emerged in each
of these studies, but a consensus has yet to be gen-
erated. These tissue culture results may or may not
relate to cellular transcription in the primary KS lesion;
however, KS will almost certainly have a cellular tran-
scription signature that is distinct from other cancers
and tied to the pathology of this disease. Finding
upregulation of c-Kit and other growth-factor recep-
bis in_micro-array studjes of KSHV-infected endothe-
h&fﬂﬂ&no eb&ul pilot study using the ki-
nase inhibitor Gleevec (Imatinib)37.
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or the tumor RNA. Every KS tumor transcribed high
levels of the canonical KSHV latency genes LANA,
vFLIP, vCyclin and kaposin. LANA, vFLIP and vCyclin
are under control of the same promoter and are ex-
pressed in every KS tumor cell?%?'. Kaposin is located
immediately downstream of these three genes and regu-
lated by a promoter located between LANA and cy-
clin®. Kaposin too is expressed in every tumor cell'®
and has recently been shown to stabilize cellular cyto-
kine mRNAs*. Hence, these four genes are required
for KS tumorigenesis.

We were able to separate histologically indistinguish-
able primary tumors into distinct subsets based upon
the extent of Iytic viral gene expression, including expres-
sion of the KSHV interferon regulatory factor (vIRF-1) and
G-coupled receptor (vGPCR) homologs*!, suggesting
that a subset of KS phenotypes may be attributable to
these genes*-*8. Interestingly, VIRF-3, a duplicated
KSHV-IRF homolog, is constitutively (latently) tran-
scribed in KSHV-infected PEL*’, but not KS. Most
likely, KSHV has to interfere with the host cell's innate
interferon response in every infected cell and has thus
placed copies of the vIRFs, which both interfere with
normal IRF signaling, under different control elements:
one VIRF-3 specific for B-cells, and one vIRF-1 spe-
cific for endothelial cells. Therefore, in KS both latent
and select lytic genes can be considered tumor-spe-
cific therapy targets.

How do we treat KS and what future therapies are
on the horizon? Current therapies do not take into ac-
count the viral association of KS. Instead KS is treated
with local irradiation or conventional chemotherapy in-
cluding anthracyclines and paclitaxel*®. Interferon
(IFN)-a. is also approved for treatment of KS. IFN-a
inhibits KSHV replication directly, but may have more
important anti-tumor effects independent of KSHV#%-%5,
The exact mechanism of action has yet to be eluci-
dated, since KSHV encodes a slew of viral interferon
regulatory factors, which inhibit IFN-a signaling in
vitro®6-59, Thalidomide also has shown activity against
KS8961 In addition to cytotoxic therapies, new KS-
specific targets and new KS-specific drugs have
entered clinical trials.
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0110E); c¢) topical halofuginone, which |nt
matrix metalloproteinases (AMC036); d

(AMC038), which induce KSHYV Iytic replication thereby

o e anyerER U

Dirk P. Dittmer, et al.: KS update

Only clinical trials will show which molecular target
affects clinical outcome for this disease.

Controlling KS disease in HIV patients by restoring
CD4+ levels through HAART is very effective. HAART
serves two purposes: a) it controls HIV+ viral load,
which in the context of AIDS KS may reactivate KSHV®3
or vice versa®, or exasperate the KS phenotype
through changes in the local cytokine milieu®®8; b) it
enables a functional immune response against KSHV
thereby limiting systemic spread®. It is important to
give HAART therapy time to restore the immune system
as some lesions take up to three months to respond.

Every KS tumor cell expresses the viral LANA. LANA
alone is necessary and sufficient to maintain the viral
episome during latency®. In addition, LANA also has
been shown to modulate cellular transcription directly®.
Abolishing LANA (or vFLIP, or vCYC) expression abol-
ishes the transformed phenotype®, and LANA there-
fore stands out as a target for novel anti-KS drugs.
Since LANA first and foremost binds to the latent viral
origin of replication’®’!, high-throughput screens have
a high chance of success. However, it will be some
time until even experimental drugs will become avail-
able that can cure latent KSHV infection.

It is tempting to employ anti-herpesvirus drugs to
fight KSHV-associated cancers, since they would be
highly selective against the virally infected tumor cells.
A single study showed that systemic ganciclovir re-
duced the incidence of KS”, yet ganciclovir had no
effect on established PEL tumors in a mouse model”.
Because ganciclovir requires activation by the KSHV
thymidine kinase or phosphotransferase™, cells, like
most PEL, that do not express these viral proteins are
resistant to this drug. Yet some KS lesions, which ex-
press viral lytic genes in a great proportion of cancer
cells, would be susceptible. Phase | trials using val-
ganciclovir (MSKCC-04-055) and phase Il studies us-
ing other herpesvirus inhibitors have been initiated
(NCI-00-C-0193). At this point we do not know whether
this class of tumors are the most benign or the most
aggressive. Ganciclovir, cidofovir and other anti-her-
pesvirus drugs most certainly limit KSHV replication
and peripheral viremia’™, which would explain some
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