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Intracellular Interactions Between Nucleos(t)ide Inhibitors 
of HIV Reverse Transcriptase
Adrian S. Ray
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Abstract

Current standard-of-care regimens recommended for the treatment of HIV infection include two or 
more nucleos(t)ide reverse transcriptase inhibitors (NRTI) in combination with a protease or non-
nucleoside reverse transcriptase inhibitor. NRTIs are activated through interactions with the cellular 
machinery for regulating endogenous nucleoside triphosphate (NTP) pools. Once activated to their 
triphosphate form, NRTIs compete with natural 2’- deoxynucleoside triphosphates (dNTP) for incor-
poration by the virally encoded reverse transcriptase and host polymerases. Competitive inhibition, 
changes in enzyme expression, or allosteric modulation of cellular metabolizing enzymes may 
therefore alter NRTI activation or perturb cellular dNTP levels causing changes in NRTI antiviral 
activity and toxicity. This paper reviews the unique metabolic profiles of NRTIs and discusses meth-
odologies for understanding the effects of combining them. Cell culture experiments assessing the 
antiviral synergy and intracellular metabolism of NRTI combinations have yielded valuable insights 
into the behavior of treatment regimens in vivo. The development of more reliable and convenient 
methods for detecting nucleotides, including those applying mass spectrometry, are helping to 
further elucidate the intracellular pharmacology of NRTIs. Studies assessing the potential for intra-
cellular NRTI drug-drug interactions will facilitate a better understanding of the efficacy of current 
therapies, as well as the design of combination therapies with optimal activity and toxicity profiles. 
(AIDS Reviews 2005;7:113-25)
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Introduction

Since the Food and Drug Administration (FDA) ap-
proved zidovudine (AZT) in 1987 for the treatment of 
HIV, nucleos(t)ide reverse transcriptase inhibitors (NRTI) 
have served as the cornerstones of successful HIV 
therapy. Following AZT, a number of NRTIs have been 
approved by the FDA including didanosine (ddI), zal-
citabine (ddC), stavudine (d4T), lamivudine (3TC), aba-
cavir (ABC), tenofovir disoproxil fumarate (TDF, prodrug 

for oral delivery of the nucleotide analog tenofovir (TFV)) 
and emtricitabine (FTC) (structures shown in Fig. 1). 
Currently favored regimens for anti-HIV therapy contain 
two NRTIs and either a protease or nonnucleoside re-
verse transcriptase inhibitor (NNRTI) of HIV1. The use of 
more than one NRTI in current combination therapies 
and their dependence on metabolic activation makes an 
understanding of the intracellular interactions of NRTIs 
crucial. This review gives an overview of the pharmacol-
ogy of NRTIs and discusses in vitro techniques for bet-
ter understanding their interactions with each other. 
Select examples of clinically relevant interactions are 
given from literature citations, prescribing information, 
and recent conference proceedings. 

Metabolism of NRTIs 

The intracellular pharmacology of NRTIs has been 
previously reviewed2-7, and will only be discussed 
briefly here. All NRTIs are inactive in their parent forms 
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Figure 1. Structures of the nucleoside/tide reverse transcriptase inhibitors currently approved by the United States Food and Drug Adminis-
tration for the treatment of HIV.

and must enter cells and be phosphorylated to nucle-
oside triphosphate analogs before being able to com-
pete with natural 2’-deoxynucleoside triphosphates 
(dNTP) for incorporation by HIV reverse transcriptase. 
After incorporation, their lack of a 3’-hydroxyl group 
causes chain termination of viral reverse transcripts. 
While the plasma pharmacokinetics of NRTIs can be 
readily monitored, their dependence on intracellular 
activation makes intracellular concentration the most 
critical parameter in predicting antiviral activity and 
toxicity in vivo8,9. 

Permeation and transport

Figure 2 shows a general scheme for cellular factors 
important in the metabolism of NRTIs. NRTIs enter the 
cell by passive diffusion or carrier-mediated trans-

port10. Carrier-mediated transport has been shown to 
contribute to the uptake of the cytidine analogs ddC11,12, 
3TC13, and FTC14. Efflux transporters of the monophos-
phate forms of NRTIs have been upregulated in cell 
lines resistant to the cytotoxic effects of NRTIs15,16. 
Members of the adenosine triphosphate (ATP)-binding 
cassette transporter family capable of transporting 
nucleotide analogs, including the multidrug resistance-
associated proteins (MRP) –4, –5 and –8, and their 
substrate specificity has recently been reviewed by 
Hoggard and Back17 and Borst and colleagues18.

Anabolism

Through interactions with the cellular machinery re-
sponsible for maintaining natural nucleotide pools, 
NRTIs are anabolized to their triphosphate analog forms. 
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Table 1 summarizes what is known about the anabolic 
pathways for the FDA-approved NRTIs. Most research 
has been dedicated to nucleoside kinases and phos-
photransferases responsible for the first phosphorylation 
step. Reduction in nucleoside kinase activity has been 
observed as a cellular resistance factor in experiments 
where cells were continuously passaged in the pres-
ence of increasing concentrations of AZT or ddC19-21. 
However, conflicting results have been observed in vivo 
and it is not known if the development of cellular resis-
tance is a physiologically relevant resistance mecha-
nism (reviewed by Sommadossi3). Both ddI and ABC 
have more complicated activation pathways including 
initial phosphorylation by phosphotransferases (using 
IMP or AMP as the phosphate donor, respectively) fol-
lowed by base conversion to an adenosine or guanosine 
analog, respectively22,23. TFV is the only FDA-approved 
nucleotide analog, mimicking dAMP, and therefore its 
activity is not dependent on the action of nucleoside 
phosphorylating enzymes. Nucleoside monophosphate 
kinases, the enzymes responsible for addition of the 

second phosphate to NRTIs, have been reviewed in 
detail by Van Rompay, Johansson and Karlsson24. It 
was originally believed that the third and final phos-
phorylation step for NRTIs is predominantly catalyzed 
by nucleoside diphosphate kinase25. Recent studies 
have shown that creatine kinase and 3-phosphoglycer-
ate kinase are more likely to catalyze this reaction for 
NRTIs in the D- or L-enantiomeric ribose ring conforma-
tion, respectively26. Since NRTIs are activated by cel-
lular enzymes and compete with natural dNTPs, their 
antiviral activity is dependent on cell type27, cell cycle, 
activation state, and dNTP pool size28-31. These depen-
dencies are most apparent for AZT and d4T. The reason 
AZT is sensitive to the cell’s activation state is its reli-
ance on S-phase specific expression of cytoplasmic 
thymidine kinase 1 (TK1) for activation32. 

Mitochondria

Included in the generic anabolic pathway described 
in figure 2 are the mitochondria. The mitochondria have 
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Figure 2. Generic scheme for the metabolism of NRTIs. After entry into the cell by passive diffusion or carrier-mediated transport (trans-
porter shown in green) NRTIs are subject to anabolic and catabolic pathways. Studies have shown that the monophosphate analog forms of 
NRTIs are subject to efflux out of the cell by transporters (transporter shown in red). Phosphorylation reactions may be catalyzed by cyto-
solic and mitochondrial enzymes. After forming their respective triphosphate analogs, NRTIs can be incorporated by viral or host polymer-
ases, resulting in antiviral activity or toxicity, respectively.
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their own genetic material and unique compartmental-
ized deoxynucleoside phosphorylating enzymes re-
sponsible for maintaining dNTP pools for mitochon-
drial DNA (mtDNA) replication33,34. The toxicity of some 
nucleoside analogs has been attributed to the unique 
substrate specificity of mitochondrial nucleoside ki-
nases including the mitochondrial deoxyguanosine ki-
nase35,36. However, some NRTIs capable of depleting 
mtDNA by chain termination in cellular experiments are 
not anabolized to their triphosphate form in isolated 
mitochondria37, and evidence for the transport of nu-
cleotide analogs into the mitochondria has been ob-
served38-40. The exchange of nucleotide analogs be-
tween the cytoplasm and mitochondria has important 
implications for the activation of NRTIs and their re-
sulting antiviral activity and toxicity41. 

Catabolism

NRTIs are catabolized and excreted by diverse mech-
anisms including oxidation, conjugation, and transport 
(also commonly referred to as phase I, II, and III me-
tabolism, respectively). While ddC, 3TC, FTC and TFV 

show minimal biotransformation and a majority of the 
dose is recovered unchanged in the urine, AZT, ABC, 
D4T and ddI show extensive metabolism and excretion 
as catabolites (Table 2). When conducting drug interac-
tion studies with extensively catabolized NRTIs, monitor-
ing the effects of the coadministration of other agents 
on the formation of NRTI breakdown products should be 
considered. For example, ABC is metabolized by alco-
hol dehydrogenase and a drug interaction has been 
observed where coadministration of alcohol increases 
exposure to ABC42. Another catabolic drug-drug inter-
action between TFV and ddI will be described in the 
section on metabolic drug interactions. 

Pathways for the anabolism and catabolism of NRTIs 
are diverse and complex. Often overlapping and poor-
ly understood pathways for NRTI metabolism exist. 
This review focuses on the use of cellular experiments 
to understand the interactions between NRTIs because 
whole cells are the only in vitro system which can 
properly represent enzyme expression, co-substrate 
concentrations, natural nucleotide pool sizes and com-
partmentalization. While enzymatic studies can be in-
formative in the determination of the molecular mecha-

Table 1. Summary of intracellular anabolism of FDA-approved NRTIs

 Active anabolite

NRTI Nucleoside kinase Identity Intracellular  In vivo patient  Other enzymes Ref.
   half-life (hr) PBMC involved
   (cell type) concentration  in anabolism
    (fmol/million)

AZT  TK1 AZTTP 7 (patient PBMC) 10 to 70; 68 TMP kinase [8,32,66-68,138-141]
ddI  IMP phosphotransferase ddATP 24 (patient PBMC) 6 Adenylosuccinate  [22,142]
     synthetase, 
     Adenylosuccinate 
     lyase, Adenylate 
     Kinase
ddC  dCK ddCTP   Creatine Kinase [20,26]
d4T  TK1 D4TTP 7 (patient PBMC) 31 Creatine Kinase [26,27,32,60,64,
      140,142]
3TC  dCK 3TCTP 22 (patient PBMC) 2210 to 7290 3-Phosphoglycerate [8,26,138,141]
     kinase 
ABC  AMP phosphotransferase CBVTP 20.64; 12 to 19  29.6;141; 90 Cytosolic AMP [23,117,143-146]
   (patient PBMC)   deaminase
   3.3 (CEM)
TDF  NA TFVDP ≥ 60 (patient PBMC) 87.2 AK2 [117,147,148]
   12 to 15 (activated 
   PBMC)
   33 to 50 (quiescent 
   PBMC)
FTC  dCK FTCTP 30 (patient PBMC) 200 to 2260 dCMP kinase [14,149-151]

TK1: cytoplasmic thymidine kinase; dCK: deoxycytidine kinase; IMP: inosine-MP; AMP: adenosine-MP; NA: not applicable; CBVTP: carbovir-TP the active 2’-deoxyguanosine-
TP analog metabolite of ABC; ddATP: 2’,3’-dideoxyadenosine-TP the active 2’-deoxyadenosine-TP analog metabolite of ddI; TMP kinase: thymidylate kinase; AK2: adenylate 
kinase 2; dCMP kinase: 2’-deoxycytidine-MP kinase; -MP, DP and TP are added to reflect the mono-, di- and triphosphate forms of NRTIs, respectively.
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nism for observed interactions, in the absence of the 
proper cellular data they can often be misleading. 

Antiviral synergy

The most commonly used method for assessing in-
teractions between NRTIs is the in vitro determination 
of their cell culture anti-HIV activity in combination. The 
most frequently used analytical method for synergy 
experiments is the Loewe additivity model, also known 
as the isobologram (Fig. 3)43. The data for the con-
struction of an isobologram is generated by titrating the 
activity of one NRTI by twofold to fourfold serial dilution 
in the presence of fixed concentrations of the second 
NRTI at or below its effective concentration to cause 
50% viral inhibition (EC50) in 96-well plates. Isobolo-
grams offer a qualitative assessment of drug interac-
tions, but in their original form did not yield quantitative 
values relating to the magnitude of the drug interaction 
or the significance of the results. Methods have been 
introduced to quantitate and statistically assess the 
data generated from isobologram analyses44-46.

Isobolograms only reflect one measure of activity (for 
example, antiviral EC50) as apposed to a continuous 
range. If the continuous effect level is plotted against 
the concentration of the two compounds being tested, 

Table 2. Summary of the catabolism and elimination of FDA-approved NRTIs

NRTI Plasma  % Urinary  Urinary metabolites Other known Enzymes involved Ref.
 half-life (hr) recovery (% recovered) catabolites in catabolism
  of parent

AZT  0.5 to 3 14 3’-azido-3’-deoxy-5’-O-β-D- 3’-amino-3’- UGT, CYP3A4 [152]
   glucopyranuronosylthymidine deoxythymidine
   (74%)
 
ddI  1.5 ± 0.4 18 ± 8  Hypoxanthine, Uric acid,  PNP [22,71,153]
    ddR-1-OH, ddR-1-
    phosphate
ddC  1 to 3 80 ddU (<15%) ddCDP-choline  Cytidine deaminase,  [11,12,20,154]
    and -ethanolamine Choline-
     phosphotransferase  
D4T  1.2 ± 0.4 39 ± 23 Unidentified Thymidine,    [155-157] 
    β-aminoisobutyric acid, 
    unidentified sugar
3TC  5 to 7 71 ± 16 trans-sulfoxide   FMO [158]
   (5.2% ± 1.4%)
ABC  1.45 1.2 5’-carboxylic acid (30%),   ADH, aldehyde  [42]
   5’-glucuronide (36%),   dehydrogenase, 
   unidentified (15%)  UGT
TFV  ~17 70-80     [83, 159] 
FTC ~10 86 3’sulfoxide diastereomers   FMO, UGT [160-162]
   (~9%), 2’-O-glucoronide (~4%)

ddU: 2’,3’-dideoxyuridine; ddR: 2’,3’-dideoxyribose; UGT: UDP-glucuronosyltransferase; CYP3A4: cytochrome P450 3A4; PNP: purine nucleoside phosphorylase; FMO: flavin-containing 
monooxygenase; ADH: alcohol dehydrogenase.

a three-dimensional surface (response surface) is ob-
tained47. A cross-section of the dose plane of this sur-
face reveals the familiar isobologram plot described in 
the previous paragraph48. Response surfaces offer the 
advantage over isobolograms of assessing synergy 
over a wider concentration range. For these analyses, 
activity is often measured for fixed ratios of two com-
pounds and then plotted to determine whether the ob-
tained points lie above or below a calculated additivity 
surface. Methods for analyzing drug synergy data, in-
cluding isobolograms and response surfaces, are de-
scribed in detail in a book by Tallarida49.

There are many factors one should consider when 
designing and interpreting data from synergy experi-
ments. Since NRTIs are activated by cellular enzymes 
by potentially overlapping metabolic pathways and com-
pete with natural dNTP pools, studies in different cell 
types and activation states may yield different conclu-
sions. While synergy with respect to antiviral activity is 
typically reported, synergy should also be assessed for 
markers of toxicity (for instance cytotoxicity, mtDNA con-
tent and lactic acid production). The therapeutic window 
for a combination that is synergistic with respect to both 
antiviral activity and toxicity may not allow for any thera-
peutic advantage. Interestingly, along with showing syn-
ergism with respect to antiviral activity, some L-analogs 
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have been noted to reduce the mtDNA depletion caused 
by some D-analogs50,51. While experimentally NRTI com-
binations have shown synergistic activity, the underlying 
mechanism(s) is poorly understood52,53 and may not be 
physiologically relevant. Antiviral synergy assays also 
appear to be somewhat insensitive to antagonistic drug 
interactions. The combinations of AZT/d4T and ddC/3TC 
both are additive in antiviral synergy experiments, de-
spite negative metabolic interaction with respect to phos-
phorylation (further discussed in the next section). 

Metabolic interaction studies

Antiviral synergy studies have many limitations: (i) 
Concentrations are limited to the linear range of HIV 
inhibition; (ii) No information is given explaining the 
potential underlying mechanism(s) for the changes in 
antiviral activity; (iii) Studies are confined to cells that 
can be efficiently infected with HIV in vitro. Direct mea-
surements of metabolites after co-incubations in tissue 
culture can give important information for understand-
ing the metabolism of NRTIs. Of most importance, in-
cubations can be done at pharmacologically relevant 
concentrations. When deciding on an incubation con-
centration, it should be noted that intracellular accumula-
tion is expected due to the long intracellular half-life of 
many phosphorylated NRTIs. The fold accumulation at 

steady-state of intracellular nucleotide reached after mul-
tiple dosing can be estimated from the equation: relative 
accumulation = 1/(1-e-kI), where k is the elimination rate 
(k = ln 2/half-life) and I is the dosing interval. Calculations 
based on values given in table 1 would suggest that a 
twofold to fourfold accumulation should occur for NRTIs. 
As a result, incubation concentration should be adjusted 
accordingly to achieve appropriate pharmacologically 
relevant intracellular levels. Suprapharmacologic con-
centrations can also be used to determine if there is any 
evidence for overlapping anabolic pathways. When a 
drug-drug interaction is observed, determining concen-
trations of intermediate phosphorylation products and 
the kinetics of their appearance allows for an under-
standing of the step(s) inhibited and potentially the 
enzyme(s) affected.

When 3TC and ddC are coadministered at pharma-
cologically relevant concentrations in tissue culture, 3TC 
decreases the formation of ddCTP while ddC does not 
affect the formation of phosphorylated 3TC metabo-
lites54,55. Evidence suggests that the source of this drug-
drug interaction is ddC and 3TC’s overlapping meta-
bolic profiles including dependence on cytoplasmic 
deoxycytidine kinase (dCK). While ddC is a poor sub-
strate for dCK56,57, its reliance on the enzyme for acti-
vation has been established by its lack of activity in 
dCK-deficient cells12. Unlike ddC, 3TC is an excellent 
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Figure 3. The isobologram depicts the fraction effective concentration to inhibit HIV replication by 50% (FEC50) for the first NRTI plotted 
against the FEC50 of the second. If the points fall on a line connecting the activity of each molecule on its own (coordinates 1,0 and 0,1, 
respectively) the combination is considered additive. If points deviate significantly below or above the line of additivity, the combination is 
considered to be synergistic or antagonistic, respectively.
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substrate for dCK58,59 and its tight binding interaction 
may effectively compete with the weaker interaction of 
ddC with the enzyme, thus limiting ddC activation. 

Similar to the combination of ddC and 3TC, when d4T 
and AZT are incubated in combination, the formation of 
d4TTP is reduced while AZT phosphorylation is unaf-
fected55,60-62. Based on both AZT and d4T being thymi-
dine analogs, one might surmise that, similar to the two 
cytidine NRTIs, the inhibition of thymidine phosphorylat-
ing enzymes by AZT may be the cause of the decrease 
in d4T anabolism. In contrast to AZT, in enzymatic as-
says d4T has been shown to be poorly phosphorylat-
ed60,63 or not phosphorylated at all32 by TK1. Somewhat 
conflicting results have been found for the dependence 
of d4T on TK1 for phosphorylation in cells deficient in 
TK activity (reviewed by Hitchcock64). While only a 
slight decrease in d4T phosphorylation was observed 
in cells with reduced TK activity caused by continuous 
passage in the presence of increasing levels of AZT65 
or a TK-mutant cell line66, in TK-minus mouse cells it 
was found that neither d4T nor AZT were phosphory-
lated64. Inefficient phosphorylation by TK1 60,63 is con-
sistent with the poor intracellular phosphorylation ob-
served for d4T27,60. Therefore, these data may not 
necessarily indicate the contribution of another enzyme 
as has been suggested32,66. Taken together, phosphor-
ylation of d4T seems to be at least in part dependent 
on TK1, and inhibition of this enzyme by AZT is a likely 
reason for the observed decrease in d4T phosphoryla-
tion. Another candidate for a molecular site of the inter-
action is thymidylate kinase (TMP kinase). Furman and 
colleagues have shown that AZTMP binds to TMP ki-
nase more tightly than the natural substrate (TMP), but 
is only very slowly phosphorylated67. AZTMP is also 
found to accumulate to high intracellular levels60,66,68. 
The tight binding interaction of AZTMP with TMP kinase 
and its high intracellular levels make it a likely com-
petitive inhibitor of d4TMP phosphorylation. These data 
suggest that both TK1 and TMP kinase may be respon-
sible for the observed drug-drug interaction.

TFV and ddI are both activated to dATP analogs. Initial 
studies on the phosphorylation of ddI and TFV showed 

that neither affects the other’s phosphorylation at phar-
macologically relevant concentrations in quiescent or 
stimulated peripheral blood mononuclear cells (PBMC)69. 
This result is consistent with the reported slightly syner-
gistic antiviral activity of the combination of ddI and TFV 
in cell culture70. Later studies have shown that TFV can 
inhibit the intracellular degradation of ddI71. Enzymatic 
experiments illustrate that acyclic nucleotides, including 
the anabolites of TFV, can inhibit purine nucleoside phos-
phorylase (PNP)71-76, an enzyme associated with the ca-
tabolism of ddI (see further discussion below)22,77.

As discussed below, the anabolic drug-drug interac-
tion between AZT and d4T and the catabolic drug-drug 
interaction between TFV and ddI have manifested them-
selves clinically. While not discussed in this manuscript, 
combination studies of HIV NRTIs with nucleos(t)ide 
therapies used for other indications are also important. 
For example, a number of drug-drug interactions be-
tween ribavirin, a nucleoside analog used in the treat-
ment of hepatitis C virus, and HIV NRTIs have been 
reported62,78-81.

Clinical Relevance

Table 3 summarizes the results of studies on the 
metabolic and antiviral synergy interactions between 
selected NRTIs. The in vitro observed antagonism of 
AZT to d4T phosphorylation is likely the cause of the 
poor efficacy of AZT/d4T combination therapy in pa-
tients82. The inhibition of ddI catabolism by the enzyme 
PNP caused by the phosphorylated metabolites of TFV 
is likely the mechanism for the 44% to 60% increase in 
the plasma exposure to ddI during ddI/TDF coadminis-
tration in patients71,83. While in vitro results for AZT/d4T 
and ddI/TFV yielded data consistent with clinical find-
ings, one should be cautious when interpreting the 
pharmacologic relevance of in vitro drug-interaction 
studies. For example, incubations of AZT and 3TC have 
shown that the presence of AZT can cause a slight but 
significant decrease in the formation of 3TCTP84. This 
interaction likely has little relevance as the combination 
of AZT and 3TC has shown clinical efficacy85,86.

Table 3: Results of antiviral and metabolic drug interaction studies for select NRTI combinations

NRTI Co-incubated Intracellular metabolism Antiviral synergy Ref.

3TC AZT ↓3TCTP Synergistic [50,84,163,164]
d4T AZT ↓d4TTP Additive [55,61,62]
ddC 3TC ↓ddCTP Additive [54,55,165]
ddI TFV ↑ddI, ↓ddI catabolites, � ddATP Minor Synergy [69-71]
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Proactive determination of the potential for pharma-
cologically relevant interactions between preclinical 
NRTI candidates and the FDA-approved NRTIs that 
they may be coadministered with is an important part 
of defining the most efficacious combinations for clini-
cal assessment. A study illustrating the utility of pre-
clinical in vitro experiments included the deoxycytidine 
analog SPD754. Similar to ddC, SPD754 was found to 
be additive with 3TC in anti-HIV synergy assays, while 
the intracellular formation of SPD754TP was inhibited 
by co-incubation with 3TC in metabolic studies. In HIV-
infected patients there was no observation of a plasma 
drug interaction. However, similar to results from in vitro 
metabolic studies, PBMC levels of SPD754TP were re-
duced when SPD754 was coadministered with 3TC87.

Nucleotide pools

The antiviral activity of NRTIs is dependent on both 
the levels of their 5’-triphosphates formed and the in-
tracellular concentrations of endogenous dNTPs that 
they compete with for incorporation into proviral DNA30. 
It is therefore critical to determine the amount of active 
nucleotide analog formed relative to its corresponding 
natural dNTP. A complete metabolic interaction study 
should not only include the impact of coadministration 
on nucleoside-triphosphate analog concentrations, but 
also their respective competing dNTPs. The impor-
tance of nucleotide pools is clear from the effects of 
antimetabolite agents that modulate nucleotide pool 
sizes on the antiviral activity of NRTIs56,88,89. 

An understanding of the effects of single NRTIs and 
their combinations on dNTP pools could be an important 
factor in understanding their interactions. It is not im-
plausible that NRTIs could affect dNTP pools: (i) NRTIs 
may directly inhibit nucleos(t)ide metabolizing enzymes; 
(ii) NRTIs may perturb allosteric interactions responsible 
for regulating cellular dNTP pools by enzymes including 
ribonucleotide diphosphate reductase 90,91; (iii) It may 
also be possible for NRTIs to alter the expression of 
nucleos(t)ide metabolizing enzymes21,65,92-97. Although 
dNTP pool sizes could be affected by NRTIs, it has not 
been firmly established if, at pharmacologically relevant 
levels, currently approved NRTIs can alter dNTP levels 
in patients. Recent studies have lead McKee and col-
leagues to suggest that the association of AZT with 
mitochondrial toxicity is due to depletion of mitochon-
drial TTP pools due to the inhibition of mitochondrial 
thymidine kinase (TK2) and TMP kinase by AZT and 
AZTMP, respectively98. Similarly, whole cell TTP levels 
have previously been reported to be decreased by 

AZT67,99.While requiring further study, these results may 
help to explain the clinical observation of symptoms 
often associated with mitochondrial damage during AZT 
therapy100-103 despite AZTTP being a weak inhibitor of 
mtDNA polymerase gamma104,105.

The finding that phosphorylated metabolites of TFV 
inhibit PNP71, an enzyme important for the regulation 
of nucleotide pools, led Kukuda, Anderson and Becker 
to hypothesize that inhibition of this enzyme might be 
responsible for CD4+ cell decreases noted when non-
dose adjusted ddI and TDF are combined106,107 and for 
the observation of high rates of treatment failure, NRTI-
resistance mutations, and virologic nonresponse in 
patients treated with triple-NRTI regimens including 
TDF and ABC108-111. This hypothesis is based on data 
showing that potent inhibitors of PNP can inhibit T-cell 
division112 by increasing intracellular levels of guanine 
nucleotides113, potentially explaining the decrease in 
CD4+ cells observed with TDF/ddI and the reduced 
antiviral effect of ABC (metabolized to an analog of 
dGTP) when administered with TDF in triple-NRTI com-
binations. However, in order to cause physiologically 
relevant effects with a PNP inhibitor requires nearly 
complete enzyme inhibition114, and molecules far more 
potent than the metabolites of TFV with higher circulat-
ing levels have failed to show any immunosuppression 
in vivo115. If PNP inhibition by TFV metabolites was 
responsible for decreased CD4+ cells in TDF/ddI-
treated patients, it would be expected that CD4+ de-
clines would happen with therapies not including ddI. 
However, a wealth of clinical experience with TDF 
shows an increase in CD4+ cells, including the well-
controlled studies 903 and 934 looking at the combina-
tion of TDF/efavirenz with 3TC and FTC, respectively. 
The presence of a drug-drug interaction between TFV 
and ABC is also not supported by the current data: (i) 
There is no systemic drug interaction in plasma116; (ii) 
No evidence for an intracellular antagonism of phos-
phorylation in patients treated with TFV and ABC117; 
and (iii) No intracellular antagonism of phosphorylation 
detected at concentrations up to 100 µM nor any effect 
of TFV, ABC or their combination on dATP or dGTP 
pools in cultured cells118.  

Analytical methods 

The understanding of the intracellular pharmacology 
of NRTIs has been limited to some extent by the diffi-
culties in detecting nucleotides. Nucleotides are read-
ily separated by anion exchange or reversed phase 
ion-pairing liquid chromatography (LC) methods. While 
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the heterocyclic bases absorb ultraviolet (UV) light, in 
most cases interference from endogenous nucleotides 
makes UV quantitation inaccurate. The limitations of UV 
analysis have made radiolabeled NRTIs the most com-
monly used method for quantitation of in vitro studies, 
despite the expense and difficulty of synthesizing la-
beled material. Depending on the type and position of 
the labeling, the radiolabel may also be unstable, caus-
ing contaminant peaks. Reincorporation of label into 
natural nucleotide pools can be especially problem-
atic because of the similarities in analytical behavior of 
phosphorylated NRTIs and natural nucleotides22,71,119. 

Mass spectrometry (MS) allows for the sensitivity and 
specificity needed for performing intracellular mea-
surements; however, it is not compatible with LC meth-
ods normally used for the separation of nucleotides. 

Both ion pairing and strong anion exchange chroma-
tography typically use buffer systems with high ionic 
strength and containing nonvolatile components known 
to suppress the MS signal. One way to avoid the in-
compatibility between nucleotide analytical methods 
and MS detection is to pre-fractionate the sample, take 
the fractions containing the nucleotide of interest (for 
example the triphosphate) and dephosphorylate it to 
the nucleoside level using phosphatase. Detection of 
nucleosides by LC/MS is not problematic and this 
methodology has been used for clinical samples con-
taining AZTTP, 3TCTP, and d4TTP120,121.

In order to avoid radiolabeled synthesis or cumber-
some sample preparation, a direct detection method 
for nucleotides using LC/MS is desirable. There is one 
report of the use of weak anion exchange LC coupled 
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Figure 4. Separation of tenofovir metabolites found after a 24 hour incubation at 10 µM in stimulated peripheral blood mononuclear cells by 
LC/MS/MS. One-million cells were isolated from media and extracellular drug by spinning through oil71 and lysed by incubating in 70% methanol 
at -20 ºC overnight. Cellular debris was removed by centrifugation and the supernatant dried under vacuum. Dried cell extract was then re-
suspended in 20 µL 10 mM tetrabutylammonium hydroxide (TBAH) and 10 mM ammonium phosphate (pH 7.0) per million cells. Extract from 
one-million cells was then injected on to a 1.0 x 100 mm 3.5 µm microbore reverse phase column. Separation of TFV metabolites was achieved 
by applying a step gradient from 6% to 20% acetonitrile in 0.25 mM TBAH, 4 mM phosphate (pH 6.5) at a flow rate of 40 µl/min. Analytes were 
detected by an Applied Biosystems/MDS Sciex API-4000 triple quadrupole mass spectrometer with an electrospray source running in positive 
mode. The retention times for TFV, TFV-MP, and TFV-DP were 7.6, 14.2, and 17.2 minutes respectively. The determined concentration from a 
standard curve showed approximately 7, 3, and 7 µM intracellular concentrations of TFV, TFV-MP, and TFV-DP, respectively.
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to triple quadrupole mass spectrometry (MS/MS). Using 
a pH gradient, the authors were able to avoid the pres-
ence of high concentrations of salt normally necessary 
for anion exchange chromatography to detect the tri-
phosphate of a clinical NRTI candidate122. The major-
ity of methods use ion-pairing reversed phase LC to 
facilitate analytical separation using tetra-alkyl ammo-
nium salts123,124 or N, N-dimethyl-hexylamine125-130. 
One major advantage of ion-pairing techniques is the 
potential to develop single analytical methods capable 
of detecting the parent NRTI and all of its phosphory-
lated metabolites. Ion-pairing methods capable of de-
tecting ABC and TFV in all their phosphorylated forms 
have been described118,126 (Fig. 4). The most common 
way for accurately determining intracellular nucleotide 
levels in patients has been the time-consuming method 
of dephosphorylation followed by radioimmunoas-
say131-137. The development of effective and convenient 
LC/MS/MS methods promises to facilitate studies lead-
ing to the understanding of the intracellular pharmacol-
ogy of NRTIs both in vitro and in vivo. 

Conclusions

The use of in vitro antiviral synergy and metabolic 
drug interaction studies have helped in predicting 
pharmacologically relevant drug-drug interactions be-
tween NRTIs. The development of improved detection 
methods for NRTIs and their metabolites, including LC/
MS/MS, should facilitate studies to further understand 
the intracellular pharmacology of NRTIs. The elucida-
tion of the interactions between NRTIs is critical in 
understanding current HIV therapies and optimizing 
combinations for more efficacious future regimens.
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