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Abstract

Since their discovery in 1996, the two main coreceptors used by human immunodeficiency virus type 
1 (HIV-1) to enter human cells (CCR5 and CXCR4) have been the subject of numerous scientific ar-
ticles. A recent search in PubMed (www.pubmed.gov) using “HIV coreceptor” as keywords led to more 
than 1100 original research publications and 90 review articles. This number skyrocketed to more than 
double if we used “HIV CCR5”. Most of the reviews described in detail several aspects of HIV tropism, 
viral entry mechanism, coreceptor usage and its implication on disease progression, antiretroviral 
therapy, and vaccine development. A few others centered on the tools utilized to measure the ability 
of HIV to use these coreceptors to infect target cells. On the other hand, identification of the HIV 
coreceptors renewed the effort and expectation to block HIV replication by targeting viral entry into 
the target cells. As with HIV tropism, hundreds of articles have been published addressing this 
topic (more than 350 original publications and 50 review articles when using “HIV entry inhibitor” as 
a descriptive word). Therefore, in addition to providing a brief update of the most important aspects 
described above, we discuss here how an accurate quantification of HIV coreceptor usage is essen-
tial for the successful management of HIV-infected individuals in this new era of entry inhibitors, 
mainly CCR5- or CXCR4-antagonists. (AIDS Reviews 2006;8:60-77)
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Introduction

After the discovery of the CD4 molecule as the major 
cellular receptor for HIV entry1,2, multiple studies sug-
gested the presence of a secondary cellular receptor 
for HIV, e.g. the infection of cells lacking CD43,4. The 
identification of the two major coreceptors was trig-
gered by the initial finding that the natural ligands of 

CCR5 (i.e. RANTES, macrophage inflammatory protein-
1α [MIP-1α], and MIP-1β) could block the infection of 
certain HIV-1 strains known as non-syncytium-inducing 
(NSI)5. Several elegant studies then lead to the conclu-
sion that HIV requires a second (co-) receptor to enter 
target cells, mainly the chemokine receptors CCR5 and 
CXCR46-8. This new information helped to establish a new 
nomenclature defining HIV-1 strains based on their core-
ceptor usage. Original HIV phenotypic classifications 
used the ability of the virus to cause or not syncytia in 
cell cultures, i.e. syncytium-inducing (SI) or NSI9. This 
characteristic was linked to the replication rate of the vi-
rus in peripheral blood mononuclear cells (PBMC), where 
usually a SI virus would replicate rapidly and highly while 
the replication of NSI virus would be slow and low10. In-
terestingly, these viral attributes correlated with the tro-
pism of HIV for certain types of cells: SI/rapid/high vi-
ruses replicate in T-lymphoid cells and NSI/slow/low 
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strains preferentially infect monocyte-derived macro-
phages11. A new classification based on this tropism 
adopted the terms T-tropic (SI) and M-tropic (NSI)11-13. 
However, as described above, the current and more fre-
quently used nomenclature was established based on 
coreceptor usage14. SI/T-tropic usually utilizes the CXCR4 
coreceptor for entry and NSI/M-tropic strains use the 
CCR5 coreceptor14-16. Therefore, CCR5- and CXCR4-
tropic viruses are denominated R5 and X4, respectively; 
while HIV strains able to use both coreceptors are termed 
dual tropic (R5/X4)14 (Fig. 1). 

In vivo findings suggest that R5 HIV isolates may 
out-compete X4 variants at the site of primary infection. 
For example, humans who are homozygous for a dele-
tion in the CCR5 gene (i.e. lack CCR5 on any cell 
surface) are typically resistant to HIV infection17,18. 
However, preferential transmission of R5 HIV strains 
and predominance during the asymptomatic disease 
are not well defined. Langerhans cells (expressing 

CCR5 receptors) found embedded in the vaginal mu-
cosa may be the first cell targets for primary hetero-
sexual transmission19;20. In addition, R5 viruses have a 
higher affinity for dendritic cells, which transport the 
virus past the mucosal layer to the lymph nodes21. 
Although R5 viruses are typically predominant following 
HIV transmission, X4 viruses often dominate the viral 
quasispecies late in disease12,16,22. These changes 
seem to evolve in about 50% of HIV-infected individu-
als and are usually associated with an accelerated 
decline of CD4+ T-cells, a burst in plasma viral load, 
and a rather rapid progression toward AIDS15,21,23,24. 
Interestingly, this switch in coreceptor usage within 
the HIV quasispecies may occur through intermediary 
R5/X4 viruses, capable of utilizing both CCR5 and 
CXCR4 coreceptors25. CXCR4-tropic viruses seem to 
be more virulent than the initial R5 variants, perhaps 
due to their ability to access a larger pool of target cells 
(CXCR4 is expressed on a higher number of naive 

Figure 1. Different possibilities for HIV-1 coreceptor usage (tropism) in vivo.
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CD4+ cells, while CCR5 is present on memory T-cells)26. 
However, conclusive differences in transmissibility, 
replication, and pathogenicity between R5 and X4 vi-
ruses will require further studies27,28. Finally, identifica-
tion and even quantification of HIV coreceptor usage 
is essential in the clinical setting, particularly for the 
design and development of novel antiretroviral drugs 
targeting HIV entry (see below).

Regions within the env gene associated 
with R5 and X4 phenotypes

Numerous studies have associated different HIV ge-
nomic regions, mainly in the env gene, as determinants 
of CCR5 and CXCR4 tropism29,30. For example, the 
SI/X4 phenotype seems to be determined by the pre-
sence of a positively charged V3 region of the enve-
lope protein gp120, particularly amino acids in posi-
tions 11 and/or 25 (i.e. positions 306 and/or 320 of 
env, based on HIV-1HBX2 number; http://hiv-web.lanl.
gov/content/index)31-38. On the other hand, regions 
outside the V3 loop have been shown to be involved 
with R5, X4, or R5/X4 phenotypes. The other env hy-
pervariable regions (V1, V2, V4, and V5) as well as the 
entire C1-V4 region may also play a role in HIV tro-
pism39-44. Table 1 summarizes env protein domains 
which have been related with HIV coreceptor usage.

In vitro methodology used to determine 
HIV coreceptor usage

The determination of coreceptor usage of HIV is be-
coming a crucial step for optimal design and evalua-
tion of clinical trials with drugs aimed to block the inte-

raction of the virus with CCR5 or CXCR4 receptors. We 
now know that the HIV population in patients may con-
tain a heterogeneous swarm (quasispecies) composed 
of any combination of X4-, R5- and dual X4/R5-tropic 
species. Therefore, HIV-infected individuals exposed 
to entry inhibitors need to be monitored during whole 
course of therapy for a possible shift in viral coreceptor 
usage. It is evident then that a rapid and cost-effective 
assay for HIV coreceptor usage is needed to detect 
even minor variants within the patient viral population.

Thus far, in vitro assessment of HIV coreceptor usage 
can be divided into methods based on (i) HIV isola-
tion and use of cell lines expressing different recep-
tors, and (ii) env recombinant viruses (Table 2). Se-
quence-based HIV coreceptor usage predictions are 
described below. Differences in viral phenotype were 
recognized long before the discovery of HIV corecep-
tors13,45. Infection of MT-2 cells was originally used to 
differentiate between NSI and SI HIV variants, which 
had been associated with slow and rapid decline of 
CD4+ T-cells, respectively46-48. More recently, several 
methods that use HIV-1 isolates to infect reporter cell 
lines expressing specific sets of receptors on their 
surface have been developed48,49. Most of these as-
says use human glioma cell lines (e.g. U87, U373, 
NP-2) which were stably transduced with vectors ex-
pressing CD4 and one or more coreceptors16,50,51. An-
other frequently used is the indicator GHOST cell line, 
which is derived from human osteosarcoma cells and 
carries an HIV-1 tat-inducible GFP gene, CD4 and a 
variety of coreceptors52-54. Specific inhibitors of CCR5 
and CXCR4 chemokine receptors, such as TAK-779 or 
AMD-3100, respectively, are often used to detect the 
susceptibility of HIV-1 variants to inhibition by these 

Table 1. Env protein domains associated with HIV coreceptor usage

Env domain(s) Properties References  

V3 X4 phenotype is linked to positively charged residues (e.g. H, R, or K) in two 
different positions: 11 and 25 (i.e. 306 and 320, HIV-1HXB2)

R5 phenotype is characterized by the absence of positively charged residues 
(e.g. negatively charged E, D or uncharged A, Q, S, and G).

34-36,62,221-227

V2 Higher net positive charge in X4 than in R5 variants 41,43,44

V2 and V3 Changes in this region and interactions with V4 and V5 may play role in HIV 
tropism

39,44

V1 S141N amino acid substitution led to a different CD4+ tropism 40

C1-V4 Changes in this region affect HIV tropism 42,64

H: histidine; R: arginine; K: lysine; E: glutamic acid; D: aspartic acid; A: alanine; Q: glutamine; S: serine; G: glycine; ASN: asparagine.
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compounds, thereby showing their dependence on a 
particular coreceptor55. 

Although widely used, all these methods have a few 
important caveats. Most of them need viral isolates from 
HIV-infected patients. Standard viral isolation proce-
dures require co-culturing of the patient’s HIV-infected 
PBMC with PBMC from an HIV-seronegative donor stim-
ulated with phytohemagglutinin or anti-CD3/CD28 anti-
bodies in the presence of interleukin-2. However, long 
virus culturing may lead to adaptation of HIV to the new 
ex vivo environment, which may not represent the 
original in vivo HIV population56,57. In addition, small 
differences in HIV isolation protocols (e.g. stimula-
tion of PBMC) may alter the level of coreceptor ex-
pression on the cell surface58. More importantly, the 
levels of receptor and coreceptor expression on re-
porter cell lines may also differ from the natural host 
cells for HIV. Indeed, coreceptor utilization may be 
influenced by the level of receptor expression and 
by the ratio of the coreceptors59.

Two HIV tropism assays based on env recombi-
nant viruses are currently commercially available. 
The PHENOSCRIPT™ HIV-1 entry inhibitor assay (VI-
Ralliance, Paris, France) permits both tropism determin-
ation and assessment of viral susceptibility to HIV-1 
entry inhibitors57,60. In this assay, env recombinant 
viruses are produced by co-transfection of 293T cells 
with (i) a linear pNL4-3 plasmid lacking the env gene 

(gp120 and the ectodomain of gp41, positions 6480 
to 8263), and (ii) RT-PCR env amplicons from HIV-in-
fected plasma samples. Replication-competent env 
recombinant viruses are produced by homologous 
recombination in the target cells60. This virus is used 
to infect indicator U373MG-CD4 cells expressing ei-
ther CCR5 or CXCR4 carrying an HIV-1 LTR-lacZ cas-
sette, which allows the quantification of single cycle 
infectivity by a colorimetric assay based on HIV-1 
Tat-induced expression of ß-galactosidase57,60. The 
second assay (PhenoSense™ HIV-coreceptor tropism 
assay, Monogram Biosciences, Inc., South San Fran-
cisco, California, USA, formerly ViroLogic Inc.) uses 
a similar methodology. The entire envelope coding 
region (approximately 2500 bp) is amplified from 
plasma samples of HIV-infected individuals and 
cloned into an envelope expression vector. This vec-
tor is co-transfected into 293 cells with an HIV ge-
nomic vector carrying a luciferase reporter gene. 
These pseudo-typed, replication-defective viruses are 
used to infect U87 cells expressing CD4 and either 
CCR5 or CXCR4. Coreceptor usage is quantified by 
measuring luciferase activity after a single round of 
infection, while luciferase production must be inhibi-
ted by specific coreceptor antagonists48. Both HIV 
recombinant tropism assays presume to provide a 
rapid and accurate representation of the patient’s 
plasma virus population. However, the final result de-

Table 2. In vitro methods used to determine HIV coreceptor usage

Assay Coreceptor usage Detection References

MT-2 cells Positive: CXCR4
Negative: CCR5

CPE, p24 46,49,228

Infection of PBMC from CCR5 ∆32 
homozygous donor 

Positive: CXCR4
Negative: CCR5

p24 49

Inhibition with CCR5 and CXCR4 
specific antagonists

CCR5, CXCR4 p24 55

GHOST cell line CCR1, CCR2b, CCR3, CCR4, CCR5, 
CCR8, CXCR4, V28/CX3CR1, BOB/
GPR15, Bonzo/STRL33

GFP 52

U87 cell lines CCR1, CCR2b, CCR3, CCR5, CXCR4 p24, RT 16

U373-MAGI cell lines CCR5, CXCR4 β-galactosidase 50

NP-2 cell lines CCR1, CCR3, CCR5, CCR8, CXCR4 RT 51

PHENOSCRIPT™ HIV-1 Entry Inhibitor CCR5, CXCR4 β-galactosidase 57,60

PhenoSense™ HIV Coreceptor Tropism CCR5, CXCR4 luciferase 48,229

CPE: cytopathic effect; p24: p24 antigen EIA; GFP: green fluorescent protein; RT: reverse transcriptase assay.
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pends on the reliability of the RT-PCR reactions to 
sample the in vivo HIV quasispecies. The limit of de-
tection for minor members of the viral population in 
these assays has been reported to be in the 10-20% 
range48. Further studies are necessary to demonstrate 
that this level of detection is sufficient to provide 
clinically relevant information about HIV coreceptor 
usage in patients, particularly in this new era of entry 
inhibitors.

In silico approaches to estimate HIV 
coreceptor usage

Cell-based in vitro methods designed to determine 
HIV tropism can be costly and somewhat difficult to 
carry out outside research laboratories. Therefore, nu-
merous studies have devoted considerable effort to the 
possibility of inferring HIV coreceptor usage based on 
env sequences, an attractive, faster, and less expen-
sive alternative. While certainly the final determination 
of HIV tropism will remain with the biological assays, 
computational approaches are becoming more popu-
lar as more molecular sequence data become avail-
able. Table 3 summarizes different bioinformatics sys-
tems used to infer HIV coreceptor usage. Early attempts 
to distinguish between R5 and X4 phenotypes consi-
dered amino acid sequence variability in the V3 region, 
with emphasis on positions 11 and/or 25: positively 
charged amino acids (i.e. arginine, lysine, or histidine) 
in these positions usually indicate X4 tropism, while 
other amino acid residues are associated with R5 phe-
notype35,61-63. Although a rather simplistic approach, 
this analysis frequently matches in vitro assays. The 
problems begin when V3 sequence-based predictions 
fail to correlate with biological tests. As described 
above, other regions within the env gene may play a 
similar role in determining HIV coreceptor usage. 

Sequence analyses can be extended beyond the 
borders of the V3 region to pinpoint other sites that 
may determine HIV coreceptor usage. For example, 
when the V3 sequence variability profile was correlated 
with the reminder of the envelope protein, a potential 
linkage was found with sites in the more conserved C4 
region64. This same region physically interacts with 
V365,66. However, it is important to remember that re-
combination between the myriad of members in the 
viral quasispecies may potentially influence these re-
sults67. A co-variation approach has been used to try 
to identify pairs of sites that display co-varying (inter-
dependent) mutations68,69. The so-called “mutual” in-
formation is used as a measure of co-variation of 

mutations at different amino acid sites. One of the 
potential caveats of this approach is the possibility of 
shared ancestry, where statistical co-variation is due 
to shared evolution of a group of sequences that are 
descendants of a single ancestral virus. This effect 
may be reduced by taking into account the evolution-
ary history of the sequences and by partitioning the 
dataset into clades. Uneven sampling of certain groups, 
sparsity of the data, and having to select arbitrary 
prune-out thresholds may be another source of poten-
tial bias69. Similarly, analyses of amino acid sequence 
variability profiles have been used as phenotype clas-
sifiers62,64; in particular, a set of amino acid substitu-
tions at sites other than 11 and 25 was identified that 
appeared predominantly in X4 phenotypes64.

To analyze the variability of V3 sequences, posi-
tion-specific scoring matrices (PSSM) were constructed 
to detect nonrandom distribution of amino acids at the 
adjacent sites29,70. Frequently used for motif finding 
(e.g. to identify potential epitopes in MHC sequen-
ces71), PSSM has the potential to detect even rela-
tively minor sequence changes that nonetheless may 
have biological consequences on HIV coreceptor us-
age. This is because each sequence can be assigned 
a score that describes its likelihood of having the target 
properties70. For example, Jensen, et al.70 found that 
when applied to V3 sequences, PSSM is able to dif-
ferentiate between three different phenotypes: R5 ex-
hibited low scores, X4 had high scores, and intermedia-
te R5/X4 variants had intermediate scores. Thus, they 
concluded that R5 to X4 conversion is a gradual pro-
cess that involves multiple amino acid changes. Some 
changes, such as those at sites 11 and 25, may have 
a large impact on the phenotype, albeit not being ne-
cessary provided that enough smaller changes have 
already been accumulated70. 

Recently, several machine-learning approaches, 
including support vector machines (SVM) have been 
successfully implemented72-74, allowing the incorpora-
tion of many HIV subtypes as well as recombinant 
forms (Table 3). Overall, SVM and PSSM approaches 
appear to perform quite well in correctly identifying 
R5 and X4 phenotypes29,72; however, the performance 
of these methods partly depends on the data set used 
for training29. With the accumulation of more HIV se-
quence data, further improvement and development 
of such predictive tools will be necessary as they 
have a great potential to contribute toward the choice 
of effective therapy strategies and selection of the 
drug regimens based on the viral sequences from 
individual patients. 
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Antiretroviral strategies targeting HIV entry

HIV entry into target cells is a complex, multistage 
process involving the gp120 and gp41 subunits of the 
envelope glycoprotein, primary cellular receptor CD4, 
and at least two main cellular coreceptors, CCR5 and 
CXCR475. This crucial step in the viral life-cycle was one 
of the first targeted after the discovery of the virus3. 

Later on, the identification in the mid 1990s of two HIV 
coreceptors led to the rapid development of several 
drugs that blocked this interaction. Since then, the search 
for inhibitors of HIV entry has focused on three major 
stages: (i) attachment of the virus to the target cells 
through gp120-CD4 interaction; (ii) interaction of gp120 
with cellular coreceptors (mainly CCR5 or CXCR4); and 
(iii) fusion of the virus and host cell membranes.

Table 3. In silico approaches to estimate HIV coreceptor usage. 

Approach Analysis steps and selected major findings References

Information theoretic analysis 
(co-variation approach) 

Compute mutual information (measure of co-variation of mutations at 
different sites) to identify interdependent sites and mutations as coreceptor 
usage predictors. Identified multiple pairs of sites that have the highest 
most significant mutual information score

68

Phenetic analysis Phenetic sorting (clustering) of protein sequences with differential use of 
amino acid substitution matrices, to maximize the pair-wise comparison 
score among sequences

230

Codon usage analysis Presence of positively charged, uncharged or negatively charged codons in 
certain positions in the V3 region is taken as indicator of R5 or X4 
phenotype

63,223

Information theoretic analysis 
(co-variation approach)

Similar to the co-variation approach of Korber, et al. (1993), improved to 
adjust for the possibility of “founder effect”

69

Evolutionary  
genetics/phylogenetic 
approach

Estimate rates of synonymous and non-synonymous substitutions. 
Substitution rate was found to be higher in X4 than in R5 variants. Positive 
selection, possibly due to interactions with the immune system, is operating 
at V3 sites within a single host

231

Sequence variability analysis Analyze distribution of amino acid substitutions by creating sequence 
profiles of each phenotype. Uses presence of basic amino acids as 
indicators of HIV coreceptor usage. X4 variants tend to have higher 
proportion of basic amino acids (reviewed in232)

62,64

Regression analysis Use multiple linear regression to estimate the positive, negative, and net 
charge of the V3 loop.

233

Neural networks Use of neural networks to discriminate between X4 and R5 phenotypes of 
subtype B sequences. Trained neural network (in Matlab) is available from 
http://cancer.med.unc.edu/swanstromlab/resources.html

234

Bioinformatics I Uses multiple measures of differential sequence composition to discriminate 
between HIV phenotypes: (i) diversity of amino acid (D)235, (ii) Shannon 
entropy (E)236, and (iii) binomial Z score, Zij, generated by the permutation 
procedure. Only part of the V3 variability can be associated with differential 
HIV coreceptor usage. An increased positive charge in the V2 region is 
also a contributing factor

44

Bioinformatics II Use of position-specific scoring matrices (PSSM) to analyze amino acid 
variability. Conversion from R5 to X4 viruses seems to be a gradual 
process that involves accumulation of multiple amino acid changes in V3

29,70

Machine learning I Includes support vector machines (SVM). Available online at  
http://genomiac2.ucsd.edu:8080/wetcat/index.html

74

Machine learning II Based on mixture of localized rules73. Geno2pheno tool is available online 
at http://www.genafor.org/ 

72,73
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Inhibitors of gp120-CD4 interaction

As CD4 is essential for HIV entry, many strategies 
initially focused on identifying CD4-based anti-HIV 
compounds. The first obvious candidate, soluble CD4, 
failed to demonstrate strong effect against primary iso-
lates76. Better results were obtained using CD4-immu-
noglobulin G2 (PRO 542), which is a recombinant, 
antibody-like, tetrameric, fusion protein compromised 
of human IgG2, where the heavy and the light-chain 
variable domains of human IgG2 have been replaced 
by the D1 and D2 domains of human CD477. PRO 542 
showed potent inhibition of a large panel of primary 
HIV-1 isolates including all major clades78 as well as 
un-passaged viral isolates from plasma79. Negative-stain 
immunoelectron microscopy demonstrated the ability of 
PRO 542 to bind four gp120s, indicating that PRO 542 
has considerable potential to cross-link envelope trimers 
on the virion surface80. More important, PRO 542 was 
well tolerated in phase I clinical trials and decreased 
viral load after a single intravenous dose81. Additional 
phase I/II clinical trials are currently underway. A sec-
ond example of this approach is CD4M33, designed 
using structural information on a CD4-gp120-17b anti-
body complex, 27-amino acid peptide mimicking the 
gp120-binding CD4 domain D182. Unlike soluble CD4, 
CD4M33 inhibited HIV infection by both primary and 
laboratory HIV-1 isolates in vitro at nanomolar concen-
trations82. The recently developed TNX 355 exploits the 
same strategy. TNX 355 is a humanized IgG4 anti-CD4 
monoclonal antibody recognizing epitope in D2 do-
main of CD483. Results from the phase I clinical trial 
showed that single doses of TNX 355 reduced plasma 
HIV-1 RNA loads and increased CD4+ T-cell counts in 
HIV-positive subjects83.

The first interaction between the virus and the host 
cell target involves the binding of positively charged 
regions of the V3 loop (gp120) to the negatively 
charged cell-surface molecules, such as heparan sul-
fate proteoglycans84,85, galactosyl ceramides86, man-
nose receptors87 and/or interaction between gp120 
and C-type lectins (i.e., DC-SIGN [ICAM-3]88, ICAM-189 
and LFA-189,90). Strongly cationic peptides, such as 
SPC3, have been shown to disrupt attachment of the 
virus to the cell by binding preferentially to cell surface 
glycosphingolipids91. Further studies revealed that 
SPC3 inhibits HIV infection likely through its interaction 
with CXCR492. Moderate effects of free SPC3 on viral 
load in phase II clinical trials led to liposomal encap-
sulation of this peptide, which resulted in a tenfold 
improvement of antiviral efficacy in vitro93. Alternative 

strategies to cationic peptides include polyanionic 
compounds that act by shielding off the positively 
charged regions of V3 loop, preventing contact be-
tween HIV and the target cells85. The leading com-
pound of this class was dextran sulfate, which inhibits 
adsorption of virus to the host cells (i.e. IC50 value of 
9.1 µg/ml94). Unfortunately, despite good absorption 
after oral administration in HIV-positive subjects95, dex-
tran sulfate was not very effective in clinical trials96.

Numerous compounds have been shown to inhibit 
gp120-CD4 interaction, including polyacid com-
pounds such as polyphosphates, polyphosphonates, 
polycarboxylates, polysulfates, and polysulfonates97,98, 
cosalane analogs99, resobene100, and a bisazo dye 
FP-21399101. A few of them merit a brief description. 
The 17-base G-quartet oligonucleotide Zintevir (AR177, 
T30177) stabilized with single phosphorothioate inter-
nucleoside linkages at its 5’ and 3’ ends prevents V3 
loop-CD4 interaction102. Initially reported to act as inte-
grase inhibitor, Zintevir potently inhibits laboratory and 
clinical HIV strains with sub-micromolar IC50 values102, 
while resistance mutations have been mapped in the V3 
loop103. Unfortunately, Zintevir was discontinued in 
phase II/III clinical trials. BMS-378806 is a recently dis-
covered small-molecule inhibitor with potent activity 
against HIV laboratory strains and clinical isolates104,105. 
It targets a specific region within the CD4 binding 
pocket of gp120, where two mutations conferring resis-
tance to this inhibitor were found106. BMS-488043 is an 
orally available compound related to BMS-378806, but 
with superior pharmacokinetic properties that exhibit 
potent and selective antiviral activity107. Cyanovirin-N 
(CV-N), a monomeric 11 kDa protein isolated from 
cyanobacterium Nostoc ellipsosporum, is a highly po-
tent inhibitor of HIV replication in vitro108. CV-N con-
tains two binding sites for N-linked high mannose oli-
gosaccharides109 and at least two mutations abolishing 
glycosylation sites are necessary to confer resistance 
to CV-N110. Finally, cyclotriazadisulfonamide (CADA) 
and its analogs inhibit HIV replication by downregulating 
CD4111-113. Table 4 summarizes the information of the 
most promising compounds developed to inhibit 
gp120-CD4 interaction.

Inhibitors of gp120-HIV coreceptor 
interactions

The binding of gp120 to CD4 leads to a conforma-
tional change, which results in high and low affinity 
interactions of the virus with HIV coreceptors114. So 
far, 17 potential coreceptors for HIV have been iden-
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tified115 but, as described above, CCR5 and CXCR4 
are considered the major HIV-1 coreceptors. The 
search for agents blocking the interaction of HIV with 
its coreceptors aims at the discovery of drugs that do 
not affect the signaling function or induce internaliza-
tion of these receptors116. This is particularly impor-
tant for CXCR4. Knocking out CXCR4 results in ab-
normal cerebral development and can be the cause 
of embryonic lethality in mice117, while deletion of 
stromal cell-derived factor-1α (SDF-1α, the only li-
gand of CXCR4) leads to defects in B-cell lymphopoie-
sis and bone marrow myelopoiesis in mice118. On the 
other hand, deletion of 32 bp in the CCR5 gene has 
little impact on health and ∆32 allele homozygous 
individuals are highly resistant to HIV infection119. Ac-
cording to this, and the fact that R5 variants dominate 
early in HIV infection, it would seem more important 
to develop CCR5 antagonists against HIV. However, 
there is always the possibility that treating patients 
with these drugs would favor the selection of X4 vari-
ants (“coreceptor switch”), which has been associ-
ated with rapid progression to AIDS (see above). Here 
we list a series of strategies to develop drugs block-

ing HIV coreceptor interactions. A summary of all 
these approaches is included in table 5.

Inhibitors of gp120-CXCR4 interactions

Initial strategies to block coreceptor engagement 
were based on the capacity of the CXCR4-natural li-
gand (SDF-1α) to inhibit X4 viruses120. A 10-residue 
peptide from the N-terminus of SDF-1α showed antivi-
ral activity (low micromolar range) without interfering 
with CXCR4 signaling function121. This independence 
between transduction and antiviral led to further 
development of chemokine-derived peptides with a 
highly polar cationic character122-125. T22, an 18-mer pep-
tide126,127, and its shorter analogs T134 and T140128-130, 
inhibit selectively the replication of X4 viruses through 
their specific binding to the CXCR4 coreceptor. Further 
development of T140 and its bio-stable analogs, such 
as TE14011, resulted in a novel, more potent, less 
cytotoxic and more bio-stable CXCR4 antagonist, 4F-
benzoyl-TE14011-Me131. Another strong cationic oligo-
peptide consisting of 9 arginine residues (ALX40-4C) 
inhibits X4 viruses by interacting with the second ex-

Table 4. Selected compounds inhibiting gp120-CD4 interaction

Entry inhibitor Target Status Developer Reference

PRO 542 gp120 Phase II Progenics 77-81,237,238

CD4M33 gp120 Preclinical Academic 82

BMS-378806 gp120 Preclinical Bristol-Myers-Squibb 104-106

BMS-488043 gp120/CD4 Phase II Bristol-Myers-Squibb 239 

SPC3 Cell surface 
glycosphingo-
lipids/CXCR4

Phase I Columbia Research 
Laboratories

91-93

TNX-355 CD4 Phase II Tanox/Biogen Idec 83

Dextran sulfate gp120 Discontinued Academic 94,95

Dextrin-2-sulfate gp120 Phase II/III UK Medical Research Council 240,241

Cyanovirin-N gp120 Preclinical Biosyn, Inc. 108-110,213

PRO-2000 gp120 Phase III Indevus Pharmaceuticals, Inc. 216,217

Cyclotriazadisulfonamide (CADA) CD4 Preclinical Academic 111-113

Zintevir (AR177, T30177) gp120 Discontinued Antigenics (Aronex 
Pharmaceuticals)

102,103,242

Cosalane analogs gp120 n.a. n.a. 99

FP-21399 gp120 Discontinued Fuji Pharmaceuticals 101

n.a.: information not available.
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Table 5. Selected compounds inhibiting gp120-coreceptor interaction

Entry inhibitor Target Status Developer Reference

AMD3100 CXCR4 Discontinued AnorMED 97,98,140,141,143,144

AMD3465 CXCR4 Preclinical AnorMED 145

AMD070 CXCR4 Phase Ib/IIa AnorMED 107

KRH-1636 CXCR4 Preclinical Kureha 147

KRH-2731 CXCR4 Preclinical Kureha 243

KRH-3955 CXCR4 Preclinical Kureha 244

KRH-3140 CXCR4 Preclinical Kureha 244

CGP64222 CXCR4 Novartis 138,139

ALX40-4C CXCR4 Discontinued NPS Pharmaceuticals  
(Allelix Pharmaceuticals)

132-135

T-22 CXCR4 n.a. Academic 126,127

T-134 CXCR4 n.a. Academic 128,129

T-140 CXCR4 n.a. Academic 130,131

TF14013 (4F-benzoyl-TE14011-Me) CXCR4 n.a. Academic 131

p3bv CXCR4 n.a. Academic 137

PRO 140 CCR5 Phase I Progenics 180

NNY-RANTES CCR5 n.a. Academic 154

MET-RANTES CCR5 n.a. Academic 155

AOP-RANTES CCR5 n.a. Academic 154,245

PSC-RANTES CCR5 Preclinical Academic 160

TAK-779 CCR5 Discontinued Takeda 162,163

TAK-220 CCR5 Preclinical Takeda 164,166,167

TAK-652 CCR5 Preclinical Takeda 165

SCH-C (SCH-351125) CCR5 Discontinued Schering-Plough 168-170

SCH-350581 (AD101) CCR5 Preclinical Schering-Plough 173

Vicriviroc (SCH-417690, SCH-D) CCR5 Phase II Schering-Plough 172

AMD 887 CCR5 Preclinical AnorMed 107

Maraviroc (UK-427857) CCR5 Phase II/III Pfizer 175-177

Aplaviroc (GSK873140, GW873140, 
ONO4128, AK602)

CCR5 Discontinued 
phase II/III

GlaxoSmithKline 178,179

CMPD167 CCR5 Preclinical Merck 184,185,246

NSC651016 CCR5, 
CXCR4, 
CCR1, 
CCR3

Discontinued Pfizer  
(Pharmacia & Upjohn)

182,183

n.a.: information not available.
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tracellular loop of CXCR4132,133. Interestingly, ALX40-4C 
directly binds to and prevents the use of APJ receptor 
as HIV-1 coreceptor134. Because APJ receptor is abun-
dantly expressed in central nervous system-based 
cells, ALX40-4C may help to elucidate HIV-1 infection 
and pathogenesis in the brain134,135. Several secreted 
phospholipases A2 from bee and snake venoms have 
potent anti-HIV-1 activity136. Interestingly, p3bv, a pep-
tide derived from bee venom phospholipases A2 (ami-
no acids 21-35) was able to inhibit X4, but not R5 virus 
strains137. Finally, the peptoid CGP64222 inhibits the 
HIV Tat/transactivation response element complex for-
mation138 and blocks HIV-1 replication through a selec-
tive interaction with the CXCR4 coreceptor139.

Perhaps some of the best known, more potent and 
specific CXCR4 antagonists are the bicyclam deriva-
tives AMD3100, AMD3465 and AMD07097,98,140,141. 
AMD3100 is a low molecular weight bicyclam analog 
that has an IC50 value in the low nanomolar concentra-
tions (~1.4 nM) and does not induce receptor signal-
ing141,142. AMD3100 was the first chemokine receptor 
antagonist to enter clinical trials as a therapeutic can-
didate for the treatment of HIV-1 infection143. In phase 
II clinical trials, AMD3100 suppressed infection by X4 
strains in most subjects; however its development as 
an anti-HIV-1 drug was discontinued due to pharma-
cologic properties, negligible oral bioavailability, and 
cardiac side effects144. Compared to AMD3100, the 
N-pyridinylmethylene cyclam AMD3465 is tenfold more 
effective as a CXCR4 antagonist145. However, despite a 
decreased molecular charge when compared to the 
bicyclams, AMD3465 still lacks oral bioavailability. Fur-
ther decreasing of molecular weight led to the first 
orally bioavailable AMD derivative, AMD070 (also known 
as AMD11070). AMD070 is highly potent and specific 
for CXCR4, with binding site similar to AMD3100146. 
AMD070 is currently in phase I/II clinical trials.

Finally, the screening of a chemical library and further 
optimization of a lead compound resulted in the discov-
ery of a very potent arginine-base CXCR4 antagonist 
KRH-1636147. This compound completely inhibited the 
replication of X4 viruses at a concentration as low as 0.06 
µM. This antiviral effect was reproduced in the SCID-hu 
PBL/PBMC animal model147. Absorption into the blood 
after intraduodenal administration in rats indicates that 
this promising compound may be orally bioavailable147.

Inhibitors of gp120-CCR5 interactions

As described above, the dispensability of CCR5 co-
receptor and the predominance of R5 viruses in HIV 

transmission and at early stages of infection estab-
lished CCR5 coreceptor as a prime target for new 
therapeutic strategies. Initial strategies focused on the 
evaluation of the inhibitory potency of natural β-chemo-
kines ligands (both full-length and small-peptide che-
mokine derivatives148,149). The natural β-chemokines 
ligand RANTES (regulated on activation, normal T-cell 
expressed and secreted), MIP-1α and MIP-1β inhibit 
HIV-1 replication5,150,151. These ligands block CCR5-me-
diated HIV-1 infection directly by competing with gp120 
for coreceptor binding, by downregulating the core-
ceptor expression, and/or by inducing signaling events 
that result in changes in cell differentiation and suscep-
tibility to HIV-1152. Since the latter two inhibition mecha-
nisms may have significant undesirable effects in pa-
tients, non-agonistic CCR5 chemokine derivatives, small 
molecule inhibitors, and CCR5-binding antibodies are 
the most valuable strategies for new therapeutics.

Amino-terminal modifications of RANTES such as ami-
nooxypentane (AOP)-RANTES, N-nonanoyl (NNY)-RAN-
TES, and methionylated (Met)-RANTES are potent in-
hibitors of R5 viruses, with IC50 in the nanomolar to 
sub-nanomolar values153-156, but maintaining the ability 
to trigger CCR5-mediated signaling157. C1·C5-RANTES 
was the first RANTES derivative without agonistic func-
tions on both CCR3 and CCR5, maintaining high anti-HIV 
potency158. Two RANTES mutants, P1 and P2, are potent 
inhibitors of R5 viruses while retaining only trace levels of 
signaling activity via CCR1 and CCR3159; however, the 
most promising RANTES derivative, PSC-RANTES, is be-
ing developed as a potential microbicide160. A more 
recent approach to block HIV infection includes bifunc-
tional inhibitors to simultaneously target the receptor 
(CD4) and coreceptor (CCR5) of HIV R5 strains. A 
molecule consisting of RANTES/CCL5 and a single-
chain Fv Ab fragment against CD4, bound to both re-
ceptors, competed with RANTES/CCL5 binding, and 
induced down-modulation of CCR5161.

As mentioned before, the most promising inhibitors 
of R5 viruses are low molecular weight compounds that 
bind directly to CCR5 without triggering downregula-
tion and signaling. The first small molecule reported as 
a CCR5 inhibitor was TAK-779162, a non-peptide or-
ganic compound that binds within a cavity formed by 
the transmembrane helices 1, 2, 3, and 7 of CCR5163. 
TAK-779 is a potent CCR5 antagonist preventing che-
mokine-induced signaling at nanomolar concentrations 
without down-modulating CCR5 expression162,163. How-
ever, TAK-779 has poor oral bioavailability, and its de-
velopment was discontinued because of unfavorable 
effects at the injection sites164. TAK-652, an orally bio-
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available derivative of TAK-779, has been recently 
proposed as a novel entry inhibitor of HIV-1165. It is 
active against a multitude of R5 viruses from different 
subtypes and clinical isolates containing reverse tran-
scriptase and protease inhibitor-resistant mutations165. 
A single oral administration of TAK-652 up to 100 mg 
was safe and well tolerated in humans and the com-
pound displayed favorable pharmacokinetics165. Chem-
ically unrelated to TAK-779, TAK-220 is another CCR5 
inhibitor that has shown some promise in vitro164,166,167.

A few years ago, high-throughput screening tech-
niques led to the discovery of a large series of piperi-
dine and piperazine derivatives with potent CCR5 an-
tagonistic activity168,169. One of these compounds, 
SCH-C (SCH 351125), has broad and potent antiviral 
activity in vitro against primary HIV-1 isolates (mean 
IC50 range 0.4-9 nM) and strongly inhibits the replica-
tion of R5 viruses in SCID-hu Thy/Liv mice170. The com-
pound is highly bioavailable, but further development has 
been halted, in part due to prolonged heart-rate rhythm 
at the higher doses171. Vicriviroc (formerly SCH-D or 
SCH-417690) is a second-generation compound with 
improved antiviral activity and pharmacokinetic proper-
ties compared to those of SCH-C172. Vicriviroc showed 
potent, broad-spectrum activity against genetically di-
verse and drug-resistant HIV-1 isolates172 and is antici-
pated to start phase III clinical trials shortly. Interestingly, 
viruses resistant to SCH-C, SCH-D, and SCH-350581 
(AD101) retained the R5 phenotype173,174. In the case 
of SCH-D, resistance mapped outside of the V3 region, 
particularly in the V2, C3 and V4 regions174. Maraviroc 
(UK-427857) is a selective CCR5 antagonist with po-
tent antiviral activity (mean 90% IC50 of 2.0 nM) against 
R5 viruses of different subtypes175,176. Ten days mono-
therapy in HIV-infected individuals harboring R5 vi-
ruses reduced viral load up to 1.6 log10 with maximum 
reduction in viral load at a median of 10-15 days177. 
These promising results justify further phase II/III clini-
cal trials of Maraviroc as a potential therapeutic for 
HIV-1 infection. A spirodiketopiperazine derivative, 
Aplaviroc (GW873140, formerly ONO4128, AK602) re-
presents another promising group of anti-HIV compounds 
that specifically binds CCR5178. Aplaviroc exerted po-
tent activity (IC50 values of 0.1-0.6 nM) against a wide 
spectrum of laboratory and primary R5 HIV-1 isolates, 

including multidrug-resistant viruses in vitro179. Unfortu-
nately, recently phase II/III clinical trials of Aplaviroc 
were terminated due to cases of severe hepatotoxicity.

Several other promising compounds are at different 
stages of development. PRO 140 (PA14) is a murine 
anti-CCR5 monoclonal antibody that potently inhibits 

HIV-1 entry at concentrations that do not affect CCR5-
induced signaling180. Certain analogs of the antibiotic 
distamycin have been described to antagonize several 
chemokine receptors181. NSC651016 inhibits chemo-
kine binding, Ca2+-signaling and chemotaxis mediated 
by CCR5, CXCR4, CCR1 and CCR3, but does not af-
fect the function of CXCR2 or CCR2b182. As described 
below, NSC651016 and related compounds could be 
used as topical microbicides to prevent the sexual trans-
mission of HIV-1183. Finally, a CCR5-specific small mole-
cule, CMPD 167, has shown potent antiviral activity in 
vitro and has been evaluated in SIV-infected rhesus ma-
caques as a potential microbicide184,185.

Inhibitors of viral fusion

To date, the most successful class of entry inhibitors 
was designed to block virus-cell fusion and target con-
served fusion domains in gp41 (Table 6). The binding 
of gp120 to CD4 and coreceptor triggers conforma-
tional changes in gp41, which lead to the fusion of the 
viral and the host cell membrane114. Crystal structures 
revealed that the gp41 is characterized by the forma-
tion of a 6-helix bundle, consisting of N- and C-terminal 
helical heptad repeats186,187. The 36-amino acid pep-
tide T-20 (formerly DP178) is identical to amino acid 
residues 127 to 162 of the HR2 in C-terminal helices 
of gp41, and by binding to the N-terminal helices pre-
vents the transition into 6-helix bundle conformation188. 
Although T-20 effectively blocked both laboratory-
adapted and primary HIV-1 isolates188, inhibitor-naive 
primary HIV-1 isolates exhibited a wide range of sus-
ceptibilities to this peptide60. Nevertheless, T-20 was 
safe and showed potent antiviral effects in early clinical 
trials189. Further phase II/III clinical trials proved its long-
term safety and antiviral potency190-192. Thus, the FDA 
approved T-20 in 2003 for therapeutic use in the treat-
ment of AIDS under the name enfuvirtide (Fuzeon®). 

In addition to enfuvirtide, included in this class of 
inhibitors are T-1249, C34, 5-helix, and IQN-17186,193,194. 
T-1249 is a second-generation fusion inhibitor shown 
to preserve antiretroviral activity in vitro against HIV-1 
isolates that have decreased susceptibility to enfu-
virtide195. T-1249 is a 39-amino acid peptide derived 
from HR2 region and is ten times more potent in vitro 
than enfuvirtide196. However, the clinical development 
of T-1249 was put on hold in 2004 due to challenges 
in achieving the desired technical profile of the current 
formulation197. Recent data on two new fusion inhibitors, 
TRI-999 and TRI-1144, indicate that these compounds 
have potent antiviral activity and durable control of HIV 
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replication in vitro, with desirable pharmacokinetic 
properties in vivo198.

Other molecules designed as fusion inhibitors 
have been described. 5-helix, a chimeric gp41 mole-
cule consisting of three N and two C-terminal helices 
of gp41 connected with a linker, strongly binds the 
C-peptide region of gp41 and displays potent inhibi-
tory activity against various HIV-1 isolates187. Optimiza-
tion in binding affinity may lead to the development of 
an improved drug199. Other small compounds acting 
as fusion inhibitors include compounds targeting pro-
tein disulfide isomerase (PDI)200, betulinic acid deriva-
tives (RPR103611 and IC9564)201-203, Tannin204, sifu-
virtide205, ADS-J1206 and its analogs207. A recent study, 
however, suggested that ADS-J1 acts prior to gp41-de-
pendent fusion, probably through binding of the HIV-1 
coreceptor site208.

Microbicides

HIV transmission through unprotected sex is the pre-
dominant mode of the AIDS pandemic spread. There-
fore, topical microbicides are, in the absence of an 
effective prophylactic anti-HIV therapy or vaccine, the 
most attractive therapeutic approach for preventing 
HIV infection209-212. According to the Alliance for Micro-
bicide Development (Siver Spring, MD, USA), 20 clini-
cal trials are currently being conducted with 15 unique 
compounds, although many more products are in the 
preclinical stage of development (Table 7, http://www.
microbicide.org/publications/digest/Microbicide.
Clinical.Trials.Summary.Table.December.2005.pdf). 
Microbicidal strategies against HIV can be divided 

according to the mechanisms of action: (i) products 
maintaining and/or enhancing normal vaginal defense 
(e.g. acidic pH, local immune response); (ii) direct 
inactivation by nonspecific, surface-acting agents; (iii) 
products inhibiting entry/fusion; and (iv) inhibitors of 
post-entry viral life steps. In keeping with the scope 
of this review we will discuss only compounds directly 
disrupting viral envelope or inhibiting entry/fusion.

Specific topical microbicides include cyclodextrins, 
polyanionic dendrimers SPL7013, CV-N, CCR5-inhibitors 
(e.g., AOP-RANTES and PSC-RANTES), and gp41-fu-
sion inhibitors209,212,213. Recombinant CV-N effectively 
blocked infection of human ectocervical explants by 
the R5 virus HIV-1Ba-L. Interestingly, vaginal application 
of a CV-N gel protected 15 of 18 SHIV89.6P-challenged 
macaques while showing no evidence of cytotoxic or 
clinical adverse effects214. Another promising CCR5-in-
hibitor, PSC-RANTES, blocked viral replication after 
intravaginal challenge with SHIV-SF162 in 12 of 15 ma-
caques that had been pretreated with progesterone to 
thin the genital epithelium160. Similarly, a SPL7013 gel 
prevented vaginal transmission of SHIV89.6P in ma-
caques in a dose-dependent manner215.

Sulfated/sulfonated polyanionic polymers represent 
most of nonspecific entry microbicides, including car-
rageenan, cellulose sulfate, dextrin-2 sulfate and naph-
thalene sulfonate polymer PRO-2000209. These com-
pounds bind to X4 and R5 monomeric gp120 with similar 
high binding affinities, inhibiting R5, X4 and X4/R5 vi-
ruses216. A PRO-2000 double-blind, placebo-controlled 
trial demonstrated sufficient bioavailability and anti-HIV 
activity in cervicovaginal lavage samples after intrava-
ginal application of 0.5% PRO-2000 gel217. Sodium do-

Table 6. Selected compounds inhibiting viral-cellular membrane fusion

Entry inhibitor Target Status Developer Reference

Enfuvirtide (Fuzeon®, T-20) gp41 Commercially available Trimeris/Roche 60,188-191,247,248

T-1249 gp41 Discontinued phase I/II Trimeris/Roche 195,196

TRI-999 (TR-290999) gp41 Preclinical Trimeris/Roche 198

TRI-1144 (TR-291144) gp41 Preclinical Trimeris/Roche 198

Sifuvirtide gp41 Phase I (China) FusoGen 
Pharmaceuticals

205

5-helix gp41 Preclinical Howard Hughes 
Medical Institute

187,199

ADS-J1 gp41/gp120 Preclinical Academic 206,208

RPR103611 gp41 n.a. n.a. 201,202

n.a.: information not available.
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decyl sulfate (SDS) is a prototype of alkyl sulfates (ano-
ther example of surface-acting agents), which is effective 
against both enveloped and non-enveloped viruses211. 
Low concentrations of SDS (i.e. 0.1-1%) effectively in-
activated high concentrations of purified HIV-1 in breast 
milk218. However, the major problem with using surfac-
tants is their usually detergent-type effect on epithelial 
cells and normal vaginal flora, which could cause vagi-
nal infection, irritation or ulceration210. For example, de-
spite showing anti-HIV-1 activity in vitro, the spermicidal 
antimicrobial compound nonoxynol-9 (N-9) did not show 
protective effect on HIV-1 transmission in high-risk 
women219. More importantly, frequent use of nonoxynol-
9 may cause toxic effects enhancing HIV-1 infection219. 
On the other side of the spectrum, an amphoteric com-
pound containing myristamine oxide and cetyl betaine 
(C31G)220 is the most advance surfactant currently en-
tering phase III clinical trials212. 

Conclusions

The success story of enfuvirtide helped the esta-
blishment of entry inhibitors as a valid new class of 
antiretroviral drugs. With more entry inhibitors in diffe-

rent stages of clinical trials, the expectations are that 
the clinicians will have a significantly higher number of 
possible combinations of drugs for therapy of both 
treatment-naive and treatment-experienced patients. 
Several promising compounds are in various stages of 
preclinical and clinical development for every step in 
HIV entry process. Agents targeting gp120/CD4 bind-
ing or the fusion of the viral and cellular membranes 
have been shown to be effective against HIV-1 strains 
with different tropism (i.e. R5, X4, and R5/X4 variants). 
On the other hand, the intrinsic nature of potential 
drugs directed to block the interaction of the virus with 
CCR5 or CXCR4 receptors make them “phenotype 
specific”, i.e. CCR5 and CXCR4 coreceptor antago-
nists block the replication of R5 and X4 viruses, res-
pectively. However, HIV-infected individuals can har-
bor R5, X4, R5/X4 or a mixture of R5 and X4 variants 
within the viral quasispecies. Therefore, it is evident 
that HIV coreceptor usage of the predominant viral 
population (i.e. tropism, phenotype) needs to be ana-
lyzed before initiating, and closely monitored during, 
treatment with CCR5 or CXCR4 antagonists. Neverthe-
less, the main obstacle for the successful management 
of patients treated with these entry inhibitors is the lack 

Table 7. Topical microbicide blocking entry/fusion of HIV-1

Microbicide Developer Phase of development

Cyanovirin-N Biosyn, Inc. Preclinical

Antibodies and fusion proteins  
(HIV, HSV, HPV), tobacco-derived

Mapp Biopharmaceutical, Inc. Preclinical

Cellulose acetate 1,2-benzenedicarboxylate 
(cellavefate/CAP)

Lindsey F. Kimball Research Institute, Dow Pharmac Phase I clinical trial

Anti-ICAM-1 antibody Johns Hopkins University Preclinical

Mandelic acid condensation polymer 
(SAMMA)

Mount Sinai Medical School Preclinical

Novaflux proprietary product Pennsylvania State University College of Medicine Preclinical

Porphyrins Emory University Preclinical

PRO-2000 Indevus Pharmaceuticals, Inc. Phase III clinical trial

C85FL Weill Medical College of Cornell University Preclinical

VivaGelTM (SPL7013 gel) Starpharma Ltd. Phase I clinical trial

Invisible Condom Laval University (Division of Microbiology) Phase I/II clinical trial

K5-N, OS(H) San Raffaele Scientific Institute Lab Preclinical

Cellulose sulfate gel Global Microbicide Project Phase III clinical trial

Carraguard® Population Council Phase III clinical trial

Betacyclodextrin Johns Hopkins University School of Medicine Preclinical

Adapted from the Alliance for Microbicide Development database, March 2006 (http://www.microbicide.org/). 
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of an assay to accurately quantify HIV coreceptor usage. 
The methods described here, although the most 
advanced up to date, (i) are not fully quantitative, (ii) 
do not provide a relative ratio of R5 or X4 viruses in 
the viral quasispecies, and (iii) are not able to differ-
entiate between dual tropic (R5/X4) or a mixture of R5 
and X4 viruses. Further studies aimed to the develop-
ment of novel methods able to address these problems 
are essential for the success of entry inhibitors, par-
ticularly CCR5 or CXCR4 antagonists. 
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