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Abstract

Since their discovery in 1996, the two main coreceptors used by human immunodeficiency virus type
1 (HIV-1) to enter human cells (CCR5 and CXCR4) have been the subject of numerous scientific ar-
ticles. A recent search in PubMed (www.pubmed.gov) using “HIV coreceptor” as keywords led to more
than 1100 original research publications and 90 review articles. This number skyrocketed to more than
double if we used “HIV CCR5”. Most of the reviews described in detail several aspects of HIV tropism,
viral entry mechanism, coreceptor usage and its implication on disease progression, antiretroviral
therapy, and vaccine development. A few others centered on the tools utilized to measure the ability
of HIV to use these coreceptors to infect target cells. On the other hand, identification of the HIV
coreceptors renewed the effort and expectation to block HIV replication by targeting viral entry into
the target cells. As with HIV tropism, hundreds of articles have been published addressing this
topic (more than 350 original publications and 50 review articles when using “HIV entry inhibitor” as
a descriptive word). Therefore, in addition to providing a brief update of the most important aspects
described above, we discuss here how an accurate quantification of HIV coreceptor usage is essen-
tial for the successful management of HIV-infected individuals in this new era of entry inhibitors,
mainly CCR5- or CXCR4-antagonists. (AIDS Reviews 2006;8:60-77)
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CCR5 (i.e. RANTES, macrophage inflammatory protein-
10 [MIP-1at], and MIP-1B) could block the infection of
certain HIV-1 strains known as non-syncytium-inducing
(NSI)5. Several elegant studies then lead to the conclu-
sion that HIV requires a second (co-) receptor to enter
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Figure 1. Different possibilities for HIV-1 coreceptor usage (tropism) in vivo.

strains preferentially infect monocyte-derived macro-
phages'’. A new classification based on this tropism
adopted the terms T-tropic (SI) and M-tropic (NSI)"-13,
However, as described above, the current and more fre-
quently used nomenclature was established based on
coreceptor usage'. SI/T-tropic usually utilizes the CXCR4
coreceptor for entry and NSI/M-tropic strains use the
CCR5 coreceptor'*'6. Therefore, CCR5- azd XCR4-
tropic viruses are denomina&)@?\ﬂg&f 1-(40 326
while HIV strains able to use both coreceptors are termed
dual tropic (R5/X4)™ (Fig. 1). @
In vivo findings suggest that R
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HIV isolates may and a rather rapid progression toward AIDS'5:21:2324,

CCRS5 receptors) found embedded in the vaginal mu-
cosa may be the first cell targets for primary hetero-
sexual transmission'®2, In addition, R5 viruses have a
higher affinity for dendritic cells, which transport the
virus past the mucosal layer to the lymph nodes?'.
Although R5 viruses are typically predominant following
HIV transmission, X4 viruses often dominate the viral

asispecies late in disease'®'8??, These changes

faablele ma;yi)ae% of HiV-infected individu-
als and are usually associated with an accelerated
@@@C@p’yﬂ@gls, a burst in plasma viral load,

out-compete X4 variants Wet bt@ejl@rmqgmgz Nm-tﬂﬁglgp[p éﬁa’miﬂg’tgriwdhcoreceptor usage within

For example, humans who are homozygous

uasispecies may occur through intermediary

tion in the CCR5 gene (i.e. lack CCR5 ﬁaﬁhéelb@/g%ﬁgfes, capable of utilizing both CCR5 and
surface) are typically resistant to HIV infection™'® eceptors®. CXCR4-tropic viruses seem to

However, preferential transmission of R5 HIV strains

be more virulent than the initial R5 variants, perhaps
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Table 1. Env protein domains associated with HIV coreceptor usage

Env domain(s) Properties

References

V3 X4 phenotype is linked to positively charged residues (e.g. H, R, or K) in two

34-36,62,221-227

different positions: 11 and 25 (i.e. 306 and 320, HIV-1,,,..)

R5 phenotype is characterized by the absence of positively charged residues
(e.g. negatively charged E, D or uncharged A, Q, S, and G).

V2 Higher net positive charge in X4 than in R5 variants 41,43,44

V2 and V3 Changes in this region and interactions with V4 and V5 may play role in HIV 39,44
tropism

VA S141N amino acid substitution led to a different CD4* tropism 40

C1-v4 Changes in this region affect HIV tropism 42,64

H: histidine; R: arginine; K: lysine; E: glutamic acid; D: aspartic acid; A: alanine; Q: glutamine; S: serine; G: glycine; ASN: asparagine.

CD4+ cells, while CCR5 is present on memory T-cells)?.
However, conclusive differences in transmissibility,
replication, and pathogenicity between R5 and X4 vi-
ruses will require further studies?”?8. Finally, identifica-
tion and even quantification of HIV coreceptor usage
is essential in the clinical setting, particularly for the
design and development of novel antiretroviral drugs
targeting HIV entry (see below).

Regions within the env gene associated
with R5 and X4 phenotypes

Numerous studies have associated different HIV ge-
nomic regions, mainly in the env gene, as determinants
of CCR5 and CXCR4 tropism?3°. For example, the
SI/X4 phenotype seems to be determined by the pre-
sence of a positively charged V3 region of the enve-
lope protein gp120, particularly amino acids in posi-
tions 11 and/or 25 (i.e. positions 306 and/or 320 of
env, based on HIV-1,.., number; http://hiv-web.lanl.
gov/content/index)3'-%8. On the other hand, regions
outside the V3 loop have been shown to be involved
with R5, X4, or R5/X4 phenatypes. The other env hy-
pervariable regions (V1, V2, ,a@@\ﬁ) ) wglﬁl
entire C1-V4 region may also play a role in HIV tro-
pism?>44. Table 1 summarizes|
which have been related with HIV coreceptor usage.

In vitro methodolog\évllxgbg) %th[ebeernRrrileor
HIV coreceptor usage

The determination of coreceptor usage of HIV is be-

sthe U

raction of the virus with CCR5 or CXCR4 receptors. We
now know that the HIV population in patients may con-
tain a heterogeneous swarm (quasispecies) composed
of any combination of X4-, R5- and dual X4/R5-tropic
species. Therefore, HIV-infected individuals exposed
to entry inhibitors need to be monitored during whole
course of therapy for a possible shift in viral coreceptor
usage. It is evident then that a rapid and cost-effective
assay for HIV coreceptor usage is needed to detect
even minor variants within the patient viral population.

Thus far, in vitro assessment of HIV coreceptor usage
can be divided into methods based on (i) HIV isola-
tion and use of cell lines expressing different recep-
tors, and (ii) env recombinant viruses (Table 2). Se-
guence-based HIV coreceptor usage predictions are
described below. Differences in viral phenotype were
recognized long before the discovery of HIV corecep-
tors'345. Infection of MT-2 cells was originally used to
differentiate between NSI and SI HIV variants, which
had been associated with slow and rapid decline of
CD4+ T-cells, respectively*6-48. More recently, several
methods that use HIV-1 isolates to infect reporter cell
ines expressing specific sets of receptors on  their
bﬁ&@“e@@ b%@é\b&ped“&“g. Most of these as-

says use human glioma cell lines (e.g. U87, U373,

o @ermhits[ ph@’g@@@payq [§igply transduced with vectors ex-

pressing CD4 and one or more coreceptors'85031 An-

\\PHIeT frequ é*/rW?Psig ipsrindicator GHOST cell line,

which is derived from human osteosarcoma cells and

I IV-1 tat-inducible GFP gene, CD4 and a
Of the pLE@rueée}j oreceptors®%*, Specific inhibitors of CCR5

and CXCR4 chemokine receptors, such as TAK-779 or
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Table 2. In vitro methods used to determine HIV coreceptor usage

Assay Coreceptor usage Detection References
MT-2 cells Positive: CXCR4 CPE, p24 46,49,228
Negative: CCR5
Infection of PBMC from CCR5 A32 Positive: CXCR4 p24 49
homozygous donor Negative: CCR5
Inhibition with CCR5 and CXCR4 CCR5, CXCR4 p24 55
specific antagonists
GHOST cell line CCR1, CCR2b, CCR3, CCR4, CCRs5, GFP 52
CCR8, CXCR4, V28/CX3CR1, BOB/
GPR15, Bonzo/STRL33
u87 cell lines CCR1, CCR2b, CCR3, CCR5, CXCR4 p24, RT 16
U373-MAGI cell lines CCR5, CXCR4 B-galactosidase 50
NP-2 cell lines CCR1, CCR3, CCR5, CCR8, CXCR4 RT 51
PHENOSCRIPT™ HIV-1 Entry Inhibitor CCR5, CXCR4 B-galactosidase 57,60
PhenoSense™ HIV Coreceptor Tropism CCR5, CXCR4 luciferase 48,229

CPE: cytopathic effect; p24: p24 antigen EIA; GFP: green fluorescent protein; RT: reverse transcriptase assay.

compounds, thereby showing their dependence on a
particular coreceptor®®.

Although widely used, all these methods have a few
important caveats. Most of them need viral isolates from
HIV-infected patients. Standard viral isolation proce-
dures require co-culturing of the patient's HIV-infected
PBMC with PBMC from an HIV-seronegative donor stim-
ulated with phytohemagglutinin or anti-CD3/CD28 anti-
bodies in the presence of interleukin-2. However, long
virus culturing may lead to adaptation of HIV to the new
ex vivo environment, which may not represent the
original in vivo HIV population®¢®7. In addition, small
differences in HIV isolation protocols (e.g. stimula-
tion of PBMC) may alter the level of coreceptor ex-
pression on the cell surface®®. More importantly, the
levels of receptor and coreceptor expression on re-
porter cell lines may also differ from the natural host
cells for HIV. Indeed, cor&@)tpaﬁﬁz@fntrh

influenced by the level of receptor expression and

by the ratio of the coreceptorsﬁﬁe(PrOduced or p)’h

Two HIV tropism assays based on env recombi-

nant| viruses are CU”GW@W ggﬁ@@:}gﬁ ?fi;

The PHENOSCRIPT™ HI

igHoU

(gp120 and the ectodomain of gp41, positions 6480
to 8263), and (ii) RT-PCR env amplicons from HIV-in-
fected plasma samples. Replication-competent env
recombinant viruses are produced by homologous
recombination in the target cells®. This virus is used
to infect indicator U373MG-CD4 cells expressing ei-
ther CCR5 or CXCR4 carrying an HIV-1 LTR-/acZ cas-
sette, which allows the quantification of single cycle
infectivity by a colorimetric assay based on HIV-1
Tat-induced expression of B-galactosidase®”®. The
second assay (PhenoSense™ HIV-coreceptor tropism
assay, Monogram Biosciences, Inc., South San Fran-
cisco, California, USA, formerly ViroLogic Inc.) uses
a similar methodology. The entire envelope coding
region (approximately 2500 bp) is amplified from
plasma samples of HIV-infected individuals. and

loned into an envelope expression vector. This vec-
faﬂ%&mm&y&ezge cells with an HIV ge-
nomic vector carrying a luciferase reporter gene.
sefuset eplication-defective viruses are
used to infect U87 cCells expressing CD4 and either

\/\mffeﬁcp%j‘ﬁﬂggq@ﬁr usage is quantified by

measuring 'luciferase activity after a single round of

Ralliance, Paris, France) permits both tropis 'F(ﬁf@n qu .%Wh”e luciferase production must be inhibi-
ation and assessment of viral susceptibil@ t p gcific coreceptor antagonists*®. Both HIV

entry inhibitors”°, In this assay, env recombinant

recombinant tropism assays presume to provide a
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pends on the reliability of the RT-PCR reactions to
sample the in vivo HIV quasispecies. The limit of de-
tection for minor members of the viral population in
these assays has been reported to be in the 10-20%
range*®. Further studies are necessary to demonstrate
that this level of detection is sufficient to provide
clinically relevant information about HIV coreceptor
usage in patients, particularly in this new era of entry
inhibitors.

In silico approaches to estimate HIV
coreceptor usage

Cell-based in vitro methods designed to determine
HIV tropism can be costly and somewhat difficult to
carry out outside research laboratories. Therefore, nu-
merous studies have devoted considerable effort to the
possibility of inferring HIV coreceptor usage based on
env sequences, an attractive, faster, and less expen-
sive alternative. While certainly the final determination
of HIV tropism will remain with the biological assays,
computational approaches are becoming more popu-
lar as more molecular sequence data become avail-
able. Table 3 summarizes different bioinformatics sys-
tems used to infer HIV coreceptor usage. Early attempts
to distinguish between R5 and X4 phenotypes consi-
dered amino acid sequence variability in the V3 region,
with emphasis on positions 11 and/or 25: positively
charged amino acids (i.e. arginine, lysine, or histidine)
in these positions usually indicate X4 tropism, while
other amino acid residues are associated with R5 phe-
notype3>6'63 Although a rather simplistic approach,
this analysis frequently matches in vitro assays. The
problems begin when V3 sequence-based predictions
fail to correlate with biological tests. As described
above, other regions within the env gene may play a
similar role in determining HIV coreceptor usage.

Sequence analyses can be extended beyond the
borders of the V3 region to pinpoint other sites that
may determine HIV coreceptor usa For example,
when the V3 sequence varliﬁ@y p@g@w@J i
with the reminder of the envelope protein, a potenhal
linkage was found with sites in tﬂf@rpfr hé€l
region®. This same region physically interacts Wlth

V36585 However, it is |mwﬁm ?uetmfsh@% ’gﬁ@? V\ﬁqtﬂ‘@@ﬁg

combination between the myriad of membe the

U

mutations at different amino acid sites. One of the
potential caveats of this approach is the possibility of
shared ancestry, where statistical co-variation is due
to shared evolution of a group of sequences that are
descendants of a single ancestral virus. This effect
may be reduced by taking into account the evolution-
ary history of the sequences and by partitioning the
dataset into clades. Uneven sampling of certain groups,
sparsity of the data, and having to select arbitrary
prune-out thresholds may be another source of poten-
tial bias®. Similarly, analyses of amino acid sequence
variability profiles have been used as phenotype clas-
sifiers8264 in particular, a set of amino acid substitu-
tions at sites other than 11 and 25 was identified that
appeared predominantly in X4 phenotypes®.

To analyze the variability of V3 sequences, posi-
tion-specific scoring matrices (PSSM) were constructed
to detect nonrandom distribution of amino acids at the
adjacent sites®7°. Frequently used for motif finding
(e.g. to identify potential epitopes in MHC sequen-
ces’), PSSM has the potential to detect even rela-
tively minor sequence changes that nonetheless may
have biological consequences on HIV coreceptor us-
age. This is because each sequence can be assigned
a score that describes its likelihood of having the target
properties’. For example, Jensen, et al.”” found that
when applied to V3 sequences, PSSM is able to dif-
ferentiate between three different phenotypes: R5 ex-
hibited low scores, X4 had high scores, and intermedia-
te R5/X4 variants had intermediate scores. Thus, they
concluded that R5 to X4 conversion is a gradual pro-
cess that involves multiple amino acid changes. Some
changes, such as those at sites 11 and 25, may have
a large impact on the phenotype, albeit not being ne-
cessary provided that enough smaller changes have
already been accumulated’.

Recently, several machine-learning approaches,
including support vector machines (SVM) have been
successfully implemented’?7#, allowing the incorpora-
bjn of many HIV subtg)es as well as recombinant

Mé@f@l@d’b rﬂ@eYal §YM and PSSM approaches

appear to perform quite well in correctly identifying
rt@{@]py 2972, however, the performance

of these methods parily depends on the data set used
@ pp ulation of more HIV se-

qguence data er |mprovement and development

viral quasispecies may potentially influenc (ifhgh)é Lﬁbﬂg éfdmnve tools will be necessary as they
sults®”. A co-variation approach has been t potential to contribute toward the choice

to identify pairs of sites that display co-varying (inter-

of effective therapy strategies and selection of the
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Table 3. In silico approaches to estimate HIV coreceptor usage.

Analysis steps and selected major findings

References

Information theoretic analysis
(co-variation approach)

Phenetic analysis

Codon usage analysis

Information theoretic analysis
(co-variation approach)

Evolutionary
genetics/phylogenetic
approach

Sequence variability analysis

Regression analysis

Neural networks

Bioinformatics |

Bioinformatics Il

Machine learning |

Machine-learning-l|

Compute mutual information (measure of co-variation of mutations at
different sites) to identify interdependent sites and mutations as coreceptor
usage predictors. Identified multiple pairs of sites that have the highest
most significant mutual information score

Phenetic sorting (clustering) of protein sequences with differential use of
amino acid substitution matrices, to maximize the pair-wise comparison
score among sequences

Presence of positively charged, uncharged or negatively charged codons in
certain positions in the V3 region is taken as indicator of R5 or X4
phenotype

Similar to the co-variation approach of Korber, et al. (1993), improved to
adjust for the possibility of “founder effect”

Estimate rates of synonymous and non-synonymous substitutions.
Substitution rate was found to be higher in X4 than in R5 variants. Positive
selection, possibly due to interactions with the immune system, is operating
at V3 sites within a single host

Analyze distribution of amino acid substitutions by creating sequence
profiles of each phenotype. Uses presence of basic amino acids as
indicators of HIV coreceptor usage. X4 variants tend to have higher
proportion of basic amino acids (reviewed in?%)

Use multiple linear regression to estimate the positive, negative, and net
charge of the V3 loop.

Use of neural networks to discriminate between X4 and R5 phenotypes of
subtype B sequences. Trained neural network (in Matlab) is available from
http://cancer.med.unc.edu/swanstromlab/resources.html

Uses multiple measures of differential sequence composition to discriminate
between HIV phenotypes: (i) diversity of amino acid (D)%, (i) Shannon
entropy (E)?%, and (iii) binomial Z score, Zij, generated by the permutation
procedure. Only part of the V3 variability can be associated with differential
HIV coreceptor usage. An increased positive charge in the V2 region is
also a contributing factor

Use of position-specific scoring matrices (PSSM) to analyze amino acid
variability. Conversion from R5 to X4 viruses seems to be a gradual
process that involves accumulation of multiple amino acid changes in V3

Includes support vector machines (SVM). Available online at
http://genomiac?2.ucsd.edu:8080/wetcat/index.html

Based on mixture of localized rules’. Geno2pheno tool is available online
at http://www.genafor.org/
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Inhibitors of gp120-CD4 interaction

As CD4 is essential for HIV entry, many strategies
initially focused on identifying CD4-based anti-HIV
compounds. The first obvious candidate, soluble CD4,
failed to demonstrate strong effect against primary iso-
lates’®. Better results were obtained using CD4-immu-
noglobulin G2 (PRO 542), which is a recombinant,
antibody-like, tetrameric, fusion protein compromised
of human IgG2, where the heavy and the light-chain
variable domains of human IgG2 have been replaced
by the D1 and D2 domains of human CD477. PRO 542
showed potent inhibition of a large panel of primary
HIV-1 isolates including all major clades’ as well as
un-passaged viral isolates from plasma’®. Negative-stain
immunoelectron microscopy demonstrated the ability of
PRO 542 to bind four gp120s, indicating that PRO 542
has considerable potential to cross-link envelope trimers
on the virion surface®. More important, PRO 542 was
well tolerated in phase | clinical trials and decreased
viral load after a single intravenous dose®'. Additional
phase I/ll clinical trials are currently underway. A sec-
ond example of this approach is CD4M33, designed
using structural information on a CD4-gp120-17b anti-
body complex, 27-amino acid peptide mimicking the
gp120-binding CD4 domain D182, Unlike soluble CD4,
CD4M383 inhibited HIV infection by both primary and
laboratory HIV-1 isolates in vitro at nanomolar concen-
trations®. The recently developed TNX 355 exploits the
same strategy. TNX 355 is a humanized IgG4 anti-CD4
monoclonal antibody recognizing epitope in D2 do-
main of CD4%. Results from the phase | clinical trial
showed that single doses of TNX 355 reduced plasma
HIV-1 RNA loads and increased CD4* T-cell counts in
HIV-positive subjects®.

The first interaction between the virus and the host
cell target involves the binding of positively charged
regions of the V3 loop (gp120) to the negatively
charged cell-surface molecules, such as heparan sul-
fate proteoglycans®8o, gaﬁﬁasyl ceramicfsSG, man-
nose receptors® and/or i cﬁarge eEhj
and C-type lectins (i.e., DC-SIGN [ICAM-3]%8, ICAM-18°
and LFA-189). Strongly catiorfie peiatides| (ec]
SPC3, have been shown to disrupt attachment of the

virus to the cell by bindinwietfﬁrqmlytth%ell rrifgft

glycosphingolipids®'. Further studies reveale

p130U

strategies to cationic peptides include polyanionic
compounds that act by shielding off the positively
charged regions of V3 loop, preventing contact be-
tween HIV and the target cells®. The leading com-
pound of this class was dextran sulfate, which inhibits
adsorption of virus to the host cells (i.e. IC, value of
9.1 pg/mi®¥). Unfortunately, despite good absorption
after oral administration in HIV-positive subjects®, dex-
tran sulfate was not very effective in clinical trials®.
Numerous compounds have been shown to inhibit
gp120-CD4 interaction, including polyacid com-
pounds such as polyphosphates, polyphosphonates,
polycarboxylates, polysulfates, and polysulfonates®’-8,
cosalane analogs®, resobene’'®, and a bisazo dye
FP-21399'01 A few of them merit a brief description.
The 17-base G-quartet oligonucleotide Zintevir (AR177,
T30177) stabilized with single phosphorothioate inter-
nucleoside linkages at its 5° and 3’ ends prevents V3
loop-CD4 interaction'. Initially reported to act as inte-
grase inhibitor, Zintevir potently inhibits laboratory and
clinical HIV strains with sub-micromolar IC, values'®,
while resistance mutations have been mapped in the V3
loop'®, Unfortunately, Zintevir was discontinued in
phase II/lll clinical trials. BMS-378806 is a recently dis-
covered small-molecule inhibitor with potent activity
against HIV laboratory strains and clinical isolates0410®,
It targets a specific region within the CD4 binding
pocket of gp120, where two mutations conferring resis-
tance to this inhibitor were found'%, BMS-488043 is an
orally available compound related to BMS-378806, but
with superior pharmacokinetic properties that exhibit
potent and selective antiviral activity'®”. Cyanovirin-N
(CV-N), a monomeric 11 kDa protein isolated from
cyanobacterium Nostoc ellipsosporum, is a highly po-
tent inhibitor of HIV replication in vitro'®. CV-N con-
tains two binding sites for N-linked high mannose oli-
gosaccharides'® and at least two mutations abolishing
glycosylation sites are necessary to confer resistance
to CV-N'0. Finally, cyclotriazadisulfonamide (CADA)

g&? its nagrcr;]s inhibit HIV replication by downregulating
i ablmasynb@rizes the information of the

most promising compounds developed to inhibit

S Y1 PICOBIHG).
Wiiikss

@frgﬂl‘lggrgw coreceptor
ns

r
mteracﬁi

SPC3/inhibits HIV infection likely through its iLE cé) :
with CXCR4%. Moderate effects of free SFQ, eirb i ;bub'hét]%ng of gp120 to CD4 leads to a conforma-

load in phase Il clinical trials led to liposomal encap-

tional change, which results in high and low affinity
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Table 4. Selected compounds inhibiting gp120-CD4 interaction

HIV-1 Tropism and Entry Inhibitors

Entry inhibitor Target Status Developer Reference
PRO 542 gp120 Phase Il Progenics 77-81,237,238
CD4M33 gp120 Preclinical Academic 82
BMS-378806 gp120 Preclinical Bristol-Myers-Squibb 104-106
BMS-488043 gp120/CD4 Phase Il Bristol-Myers-Squibb 239
SPC3 Cell surface Phase | Columbia Research 91-93
glycosphingo- Laboratories
lipids/CXCR4
TNX-355 CD4 Phase Il Tanox/Biogen Idec 83
Dextran sulfate gp120 Discontinued Academic 94,95
Dextrin-2-sulfate gp120 Phase /11l UK Medical Research Council 240,241
Cyanovirin-N gp120 Preclinical Biosyn, Inc. 108-110,213
PRO-2000 gp120 Phase Il Indevus Pharmaceuticals, Inc. 216,217
Cyclotriazadisulfonamide (CADA) CD4 Preclinical Academic 111-113
Zintevir (AR177, T30177) gp120 Discontinued Antigenics (Aronex 102,103,242
Pharmaceuticals)
Cosalane analogs gp120 n.a. n.a. 99
FP-21399 gp120 Discontinued Fuji Pharmaceuticals 101

n.a.: information not available.

tified"® but, as described above, CCR5 and CXCR4
are considered the major HIV-1 coreceptors. The
search for agents blocking the interaction of HIV with
its coreceptors aims at the discovery of drugs that do
not affect the signaling function or induce internaliza-
tion of these receptors'®. This is particularly impor-
tant for CXCR4. Knocking out CXCR4 results in ab-
normal cerebral development and can be the cause
of embryonic lethality in mice'"’, while deletion of
stromal cell-derived factor-1o. (SDF-1a, the only li-
gand of CXCR4) leads to defects in B-cell lymphopoie-
sis and bone marrow myelppoiesis in mice! 8. On the
other hand, deletion of BZWQHQ@r ¢oR

little 'impact on health and A32 allele homozygous
individuals are highly resistant
cording to this, and the fact that R5 variants dominate

early in HIV infection, it rw t
to develop CCR5 antagmts a?a?’r@t %pﬁg@i

dhisdou
et A T

Wit

ing HIV coreceptor interactions. A summary of all
these approaches is included in table 5.

Inhibitors of gp120-CXCR4 interactions

Initial strategies to block coreceptor engagement
were based on the capacity of the CXCR4-natural li-
gand (SDF-1a) to inhibit X4 viruses'®. A 10-residue
peptide from the N-terminus of SDF-1a showed antivi-
ral activity (low micromolar range) without interfering
with CXCR4 signaling function'’. This independence

tween . transduction ;and antiviral led to further
E’j\lgl@)trh&nomae%cbﬁe derived peptides with a

hly polar cationic character'?#'2. T22, an 18-mer pep-
p:?a‘@jvm@@ip er analogs T134 and T140'%81%0,
inhibit selectively theTeplication of X4 viruses through

é&'ﬁlfp @?W%%qpl ﬁXCR4 coreceptor. Further

opme ts bio-stable analogs, such

there is always the possibility that treatwijhleéb Eghéﬂ resulted in a novel, more potent, less
with these drugs would favor the selectio ri L’@ d more bio-stable CXCR4 antagonist, 4F-

ants ( coreceptor switch”), which has been associ-

benzoyl-TE14011-Me'®". Another strong cationic oligo-
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Table 5. Selected compounds inhibiting gp120-coreceptor interaction

Entry inhibitor Target Status Developer Reference
AMD3100 CXCR4 Discontinued AnorMED 97,98,140,141,143,144
AMD3465 CXCR4 Preclinical AnorMED 145
AMDO070 CXCR4 Phase Ib/lla AnorMED 107
KRH-1636 CXCR4 Preclinical Kureha 147
KRH-2731 CXCR4 Preclinical Kureha 243
KRH-3955 CXCR4 Preclinical Kureha 244
KRH-3140 CXCR4 Preclinical Kureha 244
CGP64222 CXCR4 Novartis 138,139
ALX40-4C CXCR4 Discontinued NPS Pharmaceuticals 132-135
(Allelix Pharmaceuticals)
T-22 CXCR4 n.a. Academic 126,127
T-134 CXCR4 n.a. Academic 128,129
T-140 CXCR4 n.a. Academic 130,131
TF14013 (4F-benzoyl-TE14011-Me) CXCR4 n.a. Academic 131
p3bv CXCR4 n.a. Academic 137
PRO 140 CCR5 Phase | Progenics 180
NNY-RANTES CCR5 n.a. Academic 154
MET-RANTES CCR5 n.a. Academic 155
AOP-RANTES CCR5 n.a. Academic 154,245
PSC-RANTES CCR5 Preclinical Academic 160
TAK-779 CCR5 Discontinued Takeda 162,163
TAK-220 CCR5 Preclinical Takeda 164,166,167
TAK-652 CCR5 Preclinical Takeda 165
SCH-C (SCH-351125) CCR5 Discontinued Schering-Plough 168-170
SCH-350581 (AD101) CCR5 Preclinical Schering-Plough 173
Vicriviroc (SCH-417690, SCH-D) CCR5 Phase 11 Schering-Plough 172
AMD 887 %CESS ‘Preclinjcal . | gﬁno Med 107
No part of thisPlblicalloi’ may be

Maraviroc (UK-427857) CCR5 Phase I/l Pfizer 175177
Aplaviroc (GSK873140, ng7314qtepr®@|su ce dis@rﬁmph OtosaiRg 178,179
ONO4128, AK602) phase /11l
ClapD167 withoutdtree preemarittempermission s
NSC651016 CCR5, Discontinued . Pfizer 182,183

ocmyt the publishfesmese & veiom

CCRT;
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tracellular loop of CXCR4132133 Interestingly, ALX40-4C
directly binds to and prevents the use of APJ receptor
as HIV-1 coreceptor'. Because APJ receptor is abun-
dantly expressed in central nervous system-based
cells, ALX40-4C may help to elucidate HIV-1 infection
and pathogenesis in the brain'341%, Several secreted
phospholipases A, from bee and snake venoms have
potent anti-HIV-1 activity™. Interestingly, p3bv, a pep-
tide derived from bee venom phospholipases A, (ami-
no acids 21-35) was able to inhibit X4, but not R5 virus
strains'’. Finally, the peptoid CGP64222 inhibits the
HIV Tat/transactivation response element complex for-
mation'® and blocks HIV-1 replication through a selec-
tive interaction with the CXCR4 coreceptor'®.

Perhaps some of the best known, more potent and
specific CXCR4 antagonists are the bicyclam deriva-
tives AMD3100, AMD3465 and AMDQ7(Q%798.140.141,
AMD3100 is a low molecular weight bicyclam analog
that has an IC,, value in the low nanomolar concentra-
tions (~1.4 nM) and does not induce receptor signal-
ing'1142. AMD3100 was the first chemokine receptor
antagonist to enter clinical trials as a therapeutic can-
didate for the treatment of HIV-1 infection™3. In phase
I clinical trials, AMD3100 suppressed infection by X4
strains in most subjects; however its development as
an anti-HIV-1 drug was discontinued due to pharma-
cologic properties, negligible oral bioavailability, and
cardiac side effects™. Compared to AMD3100, the
N-pyridinylmethylene cyclam AMD3465 is tenfold more
effective as a CXCR4 antagonist'®. However, despite a
decreased molecular charge when compared to the
bicyclams, AMD3465 still lacks oral bioavailability. Fur-
ther decreasing of molecular weight led to the first
orally bioavailable AMD derivative, AMDO70 (also known
as AMD11070). AMDO70 is highly potent and specific
for CXCR4, with binding site similar to AMD3100'%6.
AMDO70 is currently in phase /Il clinical trials.

Finally, the screening of a chemical library and further
optimization of a lead compound resulted in the discov-
ery of a very potent arginipe-base CXCR4-a
KRH-1636'*". This compouRonFa@eﬁ |
replication of X4 viruses at a concentration as low as 0.06
UM. This antiviral effect was reprf
PBL/PBMC animal model™’. Absorption into the blood
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transmission and at early stages of infection estab-
lished CCR5 coreceptor as a prime target for new
therapeutic strategies. Initial strategies focused on the
evaluation of the inhibitory potency of natural f-chemo-
kines ligands (both full-length and small-peptide che-
mokine derivatives'#®14%). The natural B-chemokines
ligand RANTES (regulated on activation, normal T-cell
expressed and secreted), MIP-1o. and MIP-1B inhibit
HIV-1 replication®®%.15" These ligands block CCR5-me-
diated HIV-1 infection directly by competing with gp120
for coreceptor binding, by downregulating the core-
ceptor expression, and/or by inducing signaling events
that result in changes in cell differentiation and suscep-
tibility to HIV-1152, Since the latter two inhibition mecha-
nisms may have significant undesirable effects in pa-
tients, non-agonistic CCR5 chemokine derivatives, small
molecule inhibitors, and CCR5-binding antibodies are
the most valuable strategies for new therapeutics.
Amino-terminal modifications of RANTES such as ami-
nooxypentane (AOP)-RANTES, N-nonanoyl (NNY)-RAN-
TES, and methionylated (Met)-RANTES are potent in-
hibitors of R5 viruses, with IC,, in the nanomolar to
sub-nanomolar values'31%6  but maintaining the ability
to trigger CCR5-mediated signaling’’. C1-C5-RANTES
was the first RANTES derivative without agonistic func-
tions on both CCR3 and CCR5, maintaining high anti-HIV
potency'®. Two RANTES mutants, P1 and P2, are potent
inhibitors of R5 viruses while retaining only trace levels of
signaling activity via CCR1 and CCR3™%; however, the
most promising RANTES derivative, PSC-RANTES, is be-
ing developed as a potential microbicide'®. A more
recent approach to block HIV infection includes bifunc-
tional inhibitors to simultaneously target the receptor
(CD4) and coreceptor (CCR5) of HIV R5 strains. A
molecule consisting of RANTES/CCL5 and a single-
chain Fv Ab fragment against CD4, bound to both re-
ceptors, competed with RANTES/CCL5 binding, and
induced down-modulation of CCR5'".
As mentioned before, the most promising inhibitors
R5 viruses are low molecular weight compounds that
O\bteout triggering downregula-
tion and signaling. The first small molecule reported as
hg{@i@@:@%ﬂ TAK-779'62, a non-peptide or-

ganic compound that binds within a cavity formed by

after intraduodenal aquNFHaTdurPtsth@oﬁs tv\gﬁ; réeg r]. 2 3, and 7 of CCR5183,
this promising compound may be orally bioavailabl Qf 1’?9 is potent (Ig?antagonist preventing che-

ced signaling at nanomolar concentrations
Inhibitors of gp120-CCR5 mterac@cfnghe pLﬂEﬂ %m n-modulating CCR5 expression'®2163, How-

ever, TAK-779 has poor oral bioavailability, and its de-

<O R SR yEr RUBIES oS 26 e

69



70

AIDS Reviews 2006;8

available derivative of TAK-779, has been recently
proposed as a novel entry inhibitor of HIV-1165_ |t is
active against a multitude of R5 viruses from different
subtypes and clinical isolates containing reverse tran-
scriptase and protease inhibitor-resistant mutations'®®,
A single oral administration of TAK-652 up to 100 mg
was safe and well tolerated in humans and the com-
pound displayed favorable pharmacokinetics'®®. Chem-
ically unrelated to TAK-779, TAK-220 is another CCR5
inhibitor that has shown some promise in vitro'64166.167,

A few years ago, high-throughput screening tech-
niques led to the discovery of a large series of piperi-
dine and piperazine derivatives with potent CCR5 an-
tagonistic activity'®®'%?. One of these compounds,
SCH-C (SCH 351125), has broad and potent antiviral
activity in vitro against primary HIV-1 isolates (mean
IC,, range 0.4-9 nM) and strongly inhibits the replica-
tion of R5 viruses in SCID-hu Thy/Liv mice'’°. The com-
pound is highly bioavailable, but further development has
been halted, in part due to prolonged heart-rate rhythm
at the higher doses'". Vicriviroc (formerly SCH-D or
SCH-417690) is a second-generation compound with
improved antiviral activity and pharmacokinetic proper-
ties compared to those of SCH-C'?. Vicriviroc showed
potent, broad-spectrum activity against genetically di-
verse and drug-resistant HIV-1 isolates'”? and is antici-
pated to start phase Il clinical trials shortly. Interestingly,
viruses resistant to SCH-C, SCH-D, and SCH-350581
(AD101) retained the R5 phenotype!”3174, In the case
of SCH-D, resistance mapped outside of the V3 region,
particularly in the V2, C3 and V4 regions'”*. Maraviroc
(UK-427857) is a selective CCR5 antagonist with po-
tent antiviral activity (mean 90% IC., of 2.0 nM) against
R5 viruses of different subtypes'”® 176, Ten days mono-
therapy in HIV-infected individuals harboring R5 vi-
ruses reduced viral load up to 1.6 log,, with maximum
reduction in viral load at a median of 10-15 days'”’.
These promising results justify further phase II/11l clini-
cal trials of Maraviroc as a potential therapeutic for
HIV-1 infection. A spirod

presents another promising group of anti-HIV compounds

that specifically binds CCRS”?I’/@JQVI@dQ}@@@{ POH [@

tent activity (IC,, values of 0.1-0.6 nM) against a wide

spectrum of laboratory ar‘ﬂ/‘)th@qupﬂ-ﬁ\g @?&QF

including multidrug-resistant viruses in vitro ru-

topiperazine derivative,
Aplaviroc (GW873140, for @ H%Z@f&lﬂ’ﬁ)iﬁ rpu

HIV-1 entry at concentrations that do not affect CCR5-
induced signaling'®. Certain analogs of the antibiotic
distamycin have been described to antagonize several
chemokine receptors'’. NSC651016 inhibits chemo-
kine binding, Ca?*-signaling and chemotaxis mediated
by CCR5, CXCR4, CCR1 and CCR3, but does not af-
fect the function of CXCR2 or CCR2b'®, As described
below, NSC651016 and related compounds could be
used as topical microbicides to prevent the sexual trans-
mission of HIV-1'83, Finally, a CCR5-specific small mole-
cule, CMPD 167, has shown potent antiviral activity in
vitro and has been evaluated in SIV-infected rhesus ma-
caques as a potential microbicide8*85,

Inhibitors of viral fusion

To date, the most successful class of entry inhibitors
was designed to block virus-cell fusion and target con-
served fusion domains in gp41 (Table 6). The binding
of gp120 to CD4 and coreceptor triggers conforma-
tional changes in gp41, which lead to the fusion of the
viral and the host cell membrane'"*. Crystal structures
revealed that the gp41 is characterized by the forma-
tion of a 6-helix bundle, consisting of N- and C-terminal
helical heptad repeats'®'8”. The 36-amino acid pep-
tide T-20 (formerly DP178) is identical to amino acid
residues 127 to 162 of the HR2 in C-terminal helices
of gp41, and by binding to the N-terminal helices pre-
vents the transition into 6-helix bundle conformation?€,
Although T-20 effectively blocked both laboratory-
adapted and primary HIV-1 isolates'™®, inhibitor-naive
primary HIV-1 isolates exhibited a wide range of sus-
ceptibilities to this peptide®. Nevertheless, T-20 was
safe and showed potent antiviral effects in early clinical
trials'®. Further phase II/Ill clinical trials proved its long-
term safety and antiviral potency'®1%2, Thus, the FDA
approved T-20 in 2003 for therapeutic use in the treat-
ment of AIDS under the name enfuvirtide (Fuzeon®).

In addition to enfuvirtide, included in this class of
Bmi.bitor are T-1249, C34, 5-helix, and IQN-17186.195,194,

b@@ﬁ@@bd@@&e fation fusion inhibitor shown

to preserve antiretroviral activity in vitro against HIV-1

JSI@EO@@ H’rgcreased susceptibility to enfu-

virtide™. T-1249 is a 39-amino acid peptide derived

Wmﬁ-@cﬁ reg psg it@nimes more potent in vitro
than en uvi%ﬁmHowever, the clinical development

nately, recently phase II/lll clinical trials @jmé?b%ng as put on hold in 2004 due to challenges
were terminated due to cases of severe hepatotoxicity (l %g the desired technical profile of the current

Several other promising compounds are at different

formulation®”. Recent data on two new fusion inhibitors,
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Table 6. Selected compounds inhibiting viral-cellular membrane fusion

Entry inhibitor Target Status Developer Reference

Enfuvirtide (Fuzeon®, T-20) gp41 Commercially available Trimeris/Roche 60,188-191,247,248

T-1249 gp41 Discontinued phase /Il Trimeris/Roche 195,196

TRI-999 (TR-290999) gp4 Preclinical Trimeris/Roche 198

TRI-1144 (TR-291144) gp4i Preclinical Trimeris/Roche 198

Sifuvirtide gp4i Phase | (China) FusoGen 205
Pharmaceuticals

5-helix gp41 Preclinical Howard Hughes 187,199
Medical Institute

ADS-J1 gp4i/gp120 Preclinical Academic 206,208

RPR103611 gp41 n.a. n.a. 201,202

n.a.: information not available.

replication in vitro, with desirable pharmacokinetic
properties in vivo'®.

Other molecules designed as fusion inhibitors
have been described. 5-helix, a chimeric gp41 mole-
cule consisting of three N and two C-terminal helices
of gp41 connected with a linker, strongly binds the
C-peptide region of gp41 and displays potent inhibi-
tory activity against various HIV-1 isolates'®”. Optimiza-
tion in binding affinity may lead to the development of
an improved drug'®. Other small compounds acting
as fusion inhibitors include compounds targeting pro-
tein disulfide isomerase (PDI)2%, betulinic acid deriva-
tives (RPR103611 and 1C9564)%912% Tannin®%, sifu-
virtide®%, ADS-J1%% and its analogs®”’. A recent studly,
however, suggested that ADS-J1 acts prior to gp41-de-
pendent fusion, probably through binding of the HIV-1
coreceptor site?%,

Microbicides

HIV transmission through unprotected sex is the pre-
dominant mode of the AID There-

andemic spread
fore, topical microbicides @irpaﬂa@iixhb‘ﬁdau d(@ﬂ@ﬁom@ye

effective prophylactic anti-HIV therapy or vaccine, the

most attractive therapeutic apm@@ﬁ(j@] (9te
HIV infection?%9-212, According to the Alliance for Micro-

bicide Development (Sive‘y\ﬁptrh? Ml@ﬂﬁ»é)

cal trials are currently being conducted with 15 unique

tiegr O

according to the mechanisms of action: (i) products
maintaining and/or enhancing normal vaginal defense
(e.g. acidic pH, local immune response); (ii) direct
inactivation by nonspecific, surface-acting agents; (iii)
products inhibiting entry/fusion; and (iv) inhibitors of
post-entry viral life steps. In keeping with the scope
of this review we will discuss only compounds directly
disrupting viral envelope or inhibiting entry/fusion.
Specific topical microbicides include cyclodextrins,
polyanionic dendrimers SPL7013, CV-N, CCR5-inhibitors
(e.g., AOP-RANTES and PSC-RANTES), and gp41-fu-
sion inhibitors?9®212213 Recombinant CV-N effectively
blocked infection of human ectocervical explants by
the RS virus HIV-1,_, . Interestingly, vaginal application
of a CV-N gel protected 15 of 18 SHIV,, ,.-challenged
macaques while showing no evidence of cytotoxic or
clinical adverse effects®!4. Another promising CCR5-in-
hibitor, PSC-RANTES, blocked viral replication after
intravaginal challenge with SHIV-SF162 in 12 of 15 ma-
caques that had been pretreated with progesterone to
thin the genital epithelium™. Similarly, a SPL7013 gel
revented vaginal transmission of SHIVy, . in ma-
rb)@nt manner?'s,
Sulfated/sulfonated polyanionic polymers represent
(mons yﬂim gwtry microbicides, including car-

rageenan, cellulose sulfate, dextrin-2 sulfate and naph-

R whiere

ul Wf? ! ﬁRO-QOOOZOg. These com-
pounds [jn tro@x4 an gﬁrjnonomerio gp120 with similar

compounds, although many more product@iriméh?)dﬁﬂgadé}g affinities, inhibiting R5, X4 and X4/R5 vi-
preclinical stage of development (Table 7, http: W T A'PRO-2000 double-blind, placebo-controlled

microbicide.org/publications/digest/Microbicide.

trial demonstrated sufficient bioavailability and anti-HIV
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Table 7. Topical microbicide blocking entry/fusion of HIV-1

Microbicide Developer Phase of development
Cyanovirin-N Biosyn, Inc. Preclinical
Antibodies and fusion proteins Mapp Biopharmaceutical, Inc. Preclinical

(HIV, HSV, HPV), tobacco-derived

Cellulose acetate 1,2-benzenedicarboxylate
(cellavefate/CAP)

Lindsey F. Kimball Research Institute, Dow Pharmac

Phase | clinical trial

Anti-ICAM-1 antibody Johns Hopkins University Preclinical

Mandelic acid condensation polymer Mount Sinai Medical School Preclinical

(SAMMA)

Novaflux proprietary product Pennsylvania State University College of Medicine Preclinical
Porphyrins Emory University Preclinical
PRO-2000 Indevus Pharmaceuticals, Inc. Phase llI clinical trial
C85FL Weill Medical College of Cornell University Preclinical

VivaGe™ (SPL7013 gel)
Invisible Condom

K5-N, OS(H)

Cellulose sulfate gel
Carraguard®

Betacyclodextrin

Starpharma Ltd.

Laval University (Division of Microbiology)
San Raffaele Scientific Institute Lab
Global Microbicide Project

Population Council

Johns Hopkins University School of Medicine

Phase | clinical trial
Phase I/Il clinical trial
Preclinical

Phase llI clinical trial
Phase Il clinical trial

Preclinical

Adapted from the Alliance for Microbicide Development database, March 2006 (http.//www.microbicide.orgy/).

decyl sulfate (SDS) is a prototype of alkyl sulfates (ano-
ther example of surface-acting agents), which is effective
against both enveloped and non-enveloped viruses?!".
Low concentrations of SDS (i.e. 0.1-1%) effectively in-
activated high concentrations of purified HIV-1 in breast
milk?'8, However, the major problem with using surfac-
tants is their usually detergent-type effect on epithelial
cells and normal vaginal flora, which could cause vagi-
nal infection, irritation or ulceration®'°. For example, de-
spite showing anti-HIV-1 activity in vitro, the spermicidal
antimicrobial compound nonoxynol-9 (N-9) did not show
protective effect on HIV-1 transmission in high-risk
women?'®. More importantly, frequent use of ho

9 may cause toxic effects er&oFa@ﬁV@ﬂf
On the other side of the spectrum, an amphoteric com-

pound containing myristamine og@@qﬁ@dm@qﬂa@r

(C31G)?% is the most advance surfactant currently en-

zﬁﬁ%u
pRDED (O

rent stages of clinical trials, the expectations are that
the clinicians will have a significantly higher number of
possible combinations of drugs for therapy of both
treatment-naive and treatment-experienced patients.
Several promising compounds are in various stages of
preclinical and clinical development for every step in
HIV entry process. Agents targeting gp120/CD4 bind-
ing or the fusion of the viral and cellular membranes
have been shown to be effective against HIV-1 strains
with different tropism (i.e. R5, X4, and R5/X4 variants).
On the other hand, the intrinsic nature of potential
drugs directed to block the interaction of the virus with

R5 or. CXCR4 receptors make them “phenotype
@Qﬁumd@%%n €XCR4 coreceptor antago-
nists block the replication of RS and X4 viruses, res-
éf) glv-im‘ected individuals can har-

bor R5, X4, R5/X4 or a mixture of R5 and X4 variants

tering phase I clinical triwfhout the prior V\{ﬂt’fgﬁig@ HWF?@?@‘?“T Therefore, it is evident

Conclusions

The success story of enfuvirtide helped the esta-

eceptor usage of the predominant viral

ion (i.e. tropism, phenotype) needs to be ana-
Of the pdﬁijﬁhéé initiating, and closely monitored during,

treatment with CCR5 or CXCR4 antagonists. Neverthe-
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of an assay to accurately quantify HIV coreceptor usage. ~ 18. Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1

infection and progression to AIDS by a deletion allele of the CKR5

The methods described here, although the most structural gene. Hemophilia Growth and Development Study, Multi-
advanced up to date (I) are not fully quantitative (”) centerAIDS.Cohort Study, Multicenter Hemophilia Cohort Study, San

Francisco City Cohort, ALIVE Study. Science 1996;273:1856-62.

do not provide a relative ratio of R5 or X4 viruses in  19. Blauvelt A, Glushakova S, Margolis LB. HIV-infected human Lang-

erhans cells transmit infection to human lymphoid tissue ex vivo.

the viral quasispecies, and (iii) are not able to differ- AIDS 2000;14:647-51.
entiate between dual tropic (R5/X4) or a mixture of R5  20. Soto-Ramirez L, Renjifo B, McLane M, et al. HIV-1 Langerhans cell

tropism associated with heterosexual transmission of HIV. Science

and X4 viruses. Further studies aimed to the develop- 1996:271:1291-3.
ment of novel methods able to address these problems 21. Van Opiinen T, Berkhout B. The host environment drives HIV-1 fit-

ness. Rev Med Virol 2005;15:219-33.

are essential for the success of entry inhibitors, par-  22. Asjo B, Morfeldt-Manson L, Albert J, et al. Replicative capacity of

. . HIV from patients with varying severity of HIV infection. Lancet
ticularly CCR5 or CXCR4 antagonists. 1986:2:660-662.
23. Connor R, Ho D. HIV-1 variants with increased replicative capacity
develop during the asymptomatic stage before disease progres-
Acknowledgements sion. J Virol 1994;68:4400-08.
24, Richman D, Bozzette S. The impact of the syncytium-inducing
henotype of HIV on disease progression. J Infect Dis 1994;
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