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Abstract

Human genetic variation may directly or indirectly influence response to modern antiretroviral therapies for 
HIV. It is already known that some immunogenetic and other human genetic variations affect the natural 
history of HIV disease progression where individuals are untreated, but less information is available as to 
whether these differences are still relevant in the context of HAART. Antiretroviral therapy adds additional 
opportunities for human genetic contributions to affect variable prognosis – in particular for those genes 
which influence pharmacokinetics and/or adverse events. To date, the majority of studies investigating the 
influence of human genetic variation on HIV disease and treatment outcome have focused on single nu-
cleotide polymorphisms or a small number of polymorphisms within a single gene. Reports to date have 
generally described small effect sizes, and have often been contradictory. Thus, while simple genetic mar-
kers relevant to HIV disease or treatment response have indeed been identified (e.g. CCR5∆32 in the context 
of untreated HIV disease, or HLA-B*5701 allele on the abacavir hypersensitivity reaction in the context of 
HAART), it is more likely that HIV disease and treatment outcomes are influenced by a multitude of in-
teracting genotypes and phenotypes, a hypothesis that will become increasingly possible to inves-
tigate as improvements in molecular and computational technologies are made. (AIDS Reviews 2006;8:78-87)
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Introduction

A wide range of inter-individual variability is observed 
with respect to susceptibility to HIV-1 infection and 
subsequent rates of disease progression1. Although 
the median time from infection to AIDS diagnosis in the 
absence of antiretroviral treatment ranges from ap-
proximately five to 11 years, depending, in part, on age 
at seroconversion2, there are individuals who progress 
to AIDS in as little as one year from infection (“fast 

progressors”)3,4, and others who remain asymptomatic, 
with essentially normal CD4 counts and low plasma 
viral loads for 20 years or more (“slow progressors”)5-7. 
Historically, studies of multiply exposed yet uninfected 
individuals helped to identify factors which determine 
“natural” protection from HIV infection8-12, while studies 
comparing characteristics of fast versus slow progres-
sors led to the identification of factors which influence 
the natural course of HIV disease13-16. It is now known 
that host genetic factors significantly influence the risk 
of infection upon exposure to HIV8-12, the rate of dis-
ease progression once infected12,14-16, and the strength 
and diversity of the immune response15,17,18. 

The introduction of HAART in the mid-1990s revolu-
tionized the treatment of HIV/AIDS, at least in areas of 
the world where antiretrovirals were made widely availa-
ble. HAART resulted in reductions in plasma viral load 
to levels undetectable with sensitive assays, increases 
in CD4 counts, improvement of immune function, and 
most importantly, significantly prolonged survival19-22. 
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Despite the successes of HAART, however, many chal-
lenges and outstanding questions remain. For exam-
ple, for reasons that remain incompletely understood, 
a small proportion of individuals fail to respond to 
HAART, despite apparently good adherence and no 
evidence of resistance mutations23. Among those who 
initially respond to HAART, subsequent virologic failure 
rates approach 20% in previously treatment-naive in-
dividuals23 and 30-50% in previously treated indivi-
duals23,24. Even among those who maintain successful 
long-term responses, antiretroviral therapy represents 
a lifelong commitment. In order to maximize the long-
term benefits of HAART, it is of importance to achieve 
a greater understanding of the factors, including ge-
netic factors, which influence response to therapy. 

This review will focus on those specific host genetic 
factors whose potential contributions to HIV clinical 
prognosis have been evaluated in the context of 
modern antiretroviral therapies. Human genetic poly-
morphisms will be classified into three broad catego-
ries based on the manner whereby the individual host 
factor may directly (or indirectly) influence therapeutic 
response. These categories are: 

a) Previously-characterized immunogenetic parame-
ters known to affect the natural history of HIV 
disease, but for which an effect has not yet been 
firmly established in the context of treated infec-
tion;

b) Genes influencing antiretroviral pharmacokinetics 
and thus potentially influencing therapy efficacy;

c) Genes implicated as risk factors for antiretrovi-
ral-associated adverse events. 

For each of these categories, the evidence to date 
supporting (or not supporting) a potential role for these 
polymorphisms in the context of HAART will be sum-
marized.

Immunogenetic parameters known  
to affect the natural history of HIV 
disease: a role in the era of HAART?

Chemokine receptor polymorphisms  
and the natural history of HIV disease 
progression

In the mid-1990s, the identification of the human 
chemokine receptors CXCR425 and CCR526-29 as core-
ceptors for HIV entry into CD4+ cells led to the disco-
very that genetic variation among chemokine receptor 
genes could directly influence susceptibility to HIV in-
fection, as well as the subsequent rate of disease pro-

gression. The best-studied example of the contribution 
of chemokine receptor variation to HIV disease is 
CCR5∆32, a naturally-occurring 32 base-pair deletion 
in the gene encoding CCR511. Individuals homozygous 
for CCR5∆32 do not express CCR5 and are thus natu-
rally “resistant” to HIV infection11,30-33, although excep-
tions have been documented where CCR5∆32/∆32 
individuals have been infected with CXCR4-using HIV 
variants34,35. Individuals heterozygous for CCR5∆32 
express CCR5 at significantly reduced levels on the 
cell-surface36. Although these individuals are equally 
as susceptible to HIV infection as CCR5 wild-type in-
dividuals, they progress to AIDS at a significantly 
slower rate after infection than those lacking this muta-
tion30-32,37-39. Polymorphisms in the promoter region of 
CCR5, presumably affecting expression of the recep-
tor, have also been shown to influence HIV disease 
progression40-44, as have variations in genes encoding 
the natural chemokine ligands of CCR545,46.

Despite these correlations, CCR5 genetics may at 
most account for only a small proportion of observed 
variation in HIV disease progression on a population 
basis. In fact, several naturally-occurring polymor-
phisms in other minor HIV coreceptors have been re-
ported, including a V62I mutation in the CCR2 gene, 
which has been shown to confer a protective effect 
with respect to progression to AIDS47,48, although not 
in all studies49. The fact that the V62I mutation is in 
complete linkage disequilibrium with the aforemen-
tioned CCR5 promoter polymorphisms48 may explain 
this association. More recently, two common, single 
nucleotide polymorphisms in the CX3CR1 receptor, a 
minor coreceptor for HIV-150, have been identified51. 
HIV-infected individuals homozygous for the CX3CR1 
249I and 280M amino acid substitutions progressed to 
AIDS and death more rapidly than those with other 
haplotypes51,52; however, this observation has been 
somewhat controversial53.

No polymorphisms relevant to HIV transmission or 
pathogenesis have been reported in the highly con-
served CXCR4 gene (encoding the major coreceptor 
for T-cell-tropic, syncytium-inducing strains of HIV), 
although a polymorphism has been reported in the 
3’ untranslated region of the gene encoding its natural 
chemokine ligand, stromal cell-derived factor (SDF)-154. 
It has been postulated that the SDF-1 3’α mutation may 
upregulate SDF-1 expression and thus potentially in-
crease its ability to act as a competitive inhibitor for 
HIV binding to CXCR4-expressing cells14. However, 
the clinical relevance of SDF-1 3’α to untreated HIV 
disease progression is not clear, and reports have 
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ranged from a protective effect54 to no effect47 to a 
detrimental effect55 of this mutation on progression to 
AIDS.

Chemokine receptor polymorphisms  
and their relevance in context of HAART 

Because of the significant effect of HAART on the 
natural history of HIV disease, human genetic polymor-
phisms influencing untreated HIV clinical outcomes 
may, in the context of HAART, exert a proportionally 
smaller effect. It is of importance, therefore, to re-evalu-
ate the relative contributions of known genetic deter-
minants of untreated HIV disease in the context of 
HAART outcomes, as it is not known what residual ef-
fects, if any, these factors may contribute above and 
beyond the effects of treatment56.

CCR5∆32

Studies investigating whether the CCR5∆32 mutation 
retains any protective effect during treatment with 
HAART have reported conflicting results. The hetero-
zygous CCR5wt/∆32 genotype has been significantly 
associated with an increased likelihood of plasma virus 
suppression57-59, improved short-term CD4 respon-
ses59,60, as well as improved six- and 12-month viro-
logic responses to HAART in one study of patients with 
advanced disease61. In contrast, other studies have 
reported no significant correlation between CCR5∆32 
and HAART response62-66. To date, the majority of 
these studies have been limited to the evaluation of the 
effect of CCR5∆32 on shorter-term (< 2-year) clinical 
outcomes.

In a recent large study investigating the effect of 
CCR5∆32 on short- and long-term treatment responses 
in > 1000 HIV-infected individuals initiating HAART, 
individuals heterozygous for the CCR5∆32 deletion ex-
perienced significantly more rapid initial suppression 
of plasma HIV-RNA below 400 copies/ml, an observa-
tion which remained significant after adjustment for 
baseline sociodemographic and clinical parameters67. 
However, there was no observed association between 
CCR5∆32 and the subsequent duration of viral sup-
pression, or immunologic response as measured by 
the time to a decline of CD4 count to below pretreat-
ment levels. A trend toward improved > 5-year sur-
vival post-HAART in CCR5wt/∆32 individuals was ob-
served; however, this association did not remain 
significant after controlling for antiretroviral prescription 
refill percentage67 (a surrogate of adherence), sug-

gesting that the observed association was likely due to 
a residual “natural history effect” driven by nonadhe-
rent individuals in the cohort.

Taken together, these results suggest that any protec-
tive effect conferred by CCR5∆32 in the context of HAART 
may not be clinically significant on an individual patient 
management basis. These results also emphasize the 
need to include data on therapy adherence in studies 
evaluating the effects of potential prognostic markers on 
treatment response, and may partially explain the con-
trasting reports on the relevance of CCR5∆32 to treat-
ment outcomes thus far. Currently available data, there-
fore, do not support the utility of the CCR5∆32 genotype 
as an independent clinical prognostic marker for HAART 
response; however the potential clinical utility of CCR5 
genotypes evaluated in context with other host factors46,68 
remains to be determined.

CX3CR1 

There have been a relatively small number of studies 
investigating the relevance of other chemokine recep-
tor and/or ligand polymorphisms in the context of 
HAART. A study of 461 antiretroviral-naive individuals 
initiating HAART reported a statistically significant 
trend to earlier immunologic failure in individuals with 
the CX3CR1 I249 polymorphism69. Similarly, HIV-in-
fected children participating in randomized clinical trials 
of mono and dual therapy also showed a significant 
independent association of CX3CR1 I249 with more 
rapid virologic and immunologic disease progression, 
even after adjustment for baseline CD4 count and viral 
load70. Somewhat in contrast, a study of 169 indivi-
duals reported improved CD4 responses after one year 
of HAART among individuals with the homozygous 
CX3CR1 280M genotype, although no association was 
reported with variation at codon 24965. Although available 
data suggest that polymorphisms in CX3CR1 may be 
useful prognostic indicators of HIV clinical status, further 
studies will be required in order to confirm this observa-
tion and clarify the mechanism whereby these polymor-
phisms contribute to HIV disease progression in the 
context of untreated as well as treated infection. 

Other chemokine receptor and/or ligand 
polymorphisms

Limited studies of the CCR2-64I polymorphism have 
reported no association of CCR2-64I with short-term 
virologic and immunologic responses to combination 
therapy57,64,65, although a recent study reports a more 
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favorable viral-load response in individuals carrying 
CCR2-64I66. Similarly, some evidence suggests that 
polymorphisms in the CCR5 promoter region do not 
significantly influence response to HAART63,66, although 
one study reported that CCR5 promoter genotype, 
evaluated in combination with both CCR5∆32 and 
CCR2 genotypes, were predictive of short-term viral-
load response to antiretroviral therapy71. An earlier 
study reported an association between the homozy-
gous SDF-1 3’α variant and more rapid disease pro-
gression while undergoing nucleoside therapy72. More 
recently, however, this SDF-1 3’α allele has been linked 
to increased likelihood of plasma viral suppression to 
undetectable levels after initiation of HAART65, although 
in one study this did not achieve statistical signifi-
cance57. Similarly, significant associations between 
SDF1-3’α and improved CD4 responses following 
HAART initiation have also been reported65,66.

Overall, studies to date appear to indicate that host 
chemokine genetic factors may contribute to disease 
progression and treatment response in the context of 
HAART, although in most cases this contribution is 
likely to be small and potentially confounded by a 
“natural history” effect in those with partial or complete 
nonadherence. Further research will be needed in or-
der to determine the potential clinical utility of host 
chemokine receptor genotyping in the HAART era.

Genes that affect pharmacokinetics  
of antiretroviral agents

The second broad category of human genes that may 
affect HAART response includes those genetic para-
meters which are likely of little relevance in context of 
untreated HIV infection, but likely are of direct relevance 
in the context of antiretroviral treatment. These include 
polymorphisms in genes which regulate drug absorp-
tion, distribution, metabolism and excretion. A wide 
range of variability in the pharmacokinetics of antiretro-
viral agents is observed between individuals, and this 
variability may be attributed in part to differences in host 
genetics73. Although clinical treatment outcomes are 
undeniably influenced by variation in antiretroviral me-
tabolism, an in-depth summary of all human genetic 
polymorphisms implicated in antiretroviral-associated 
pharmacokinetic variation to date is beyond the scope 
of this review (for an excellent review on this subject 
please see Rodriguez-Novoa, et al.73 ). Rather, the follow-
ing section will focus mainly on specific genes involved 
in antiretroviral pharmacokinetics which have been inves-
tigated in the context of longitudinal HAART outcomes.

MDR-1

The human multidrug resistance (MDR)-1 gene is 
implicated in the development of resistance to a variety 
of chemotherapeutic agents74,75. MDR-1 encodes the 
P-glycoprotein (P-gp) membrane efflux transporter, 
which is expressed on a variety of cell types including 
CD4+ lymphocytes76. P-gp possesses a broad subs-
trate specificity77-81 that includes HIV protease inhibi-
tors (PI)82,83. A single, synonymous C3435T polymor-
phism in exon 26 of MDR-1 affects membrane 
expression and activity of P-gp84, an observation which 
may have consequences for the bioavailability of PI in 
different body compartments73,85, and thus potential 
consequences for treatment response. However, re-
ports to date regarding the effect of MDR-1 C3435T on 
antiretroviral pharmacokinetics have yielded conflicting 
results. Indeed, in some studies, the homozygous 
MDR-1 C3435T polymorphism has been associated 
with significantly reduced P-gp expression and activity 
in the gastrointestinal tract84, reduced P-gp function 
and expression in immune cells86,87, significantly re-
duced plasma levels87

, and significantly increased intra-
cellular concentrations88,89 of the PI nelfinavir. However, 
other studies report no association between MDR-1 
C3435T and P-gp mRNA expression in peripheral 
blood lymphocytes (PBL)90. Yet others report no as-
sociation between the MDR-1 C3435T and pharmaco-
kinetics of various compounds91-93.

Based on the conflicting data surrounding the effect 
of the MDR-1 C3435T polymorphism on antiretroviral 
pharmacokinetics, it is not surprising that no clear con-
sensus has yet emerged regarding associations of 
MDR-1 C3435T to treatment response. Since Fellay, 
et al. reported a significant association between the 
homozygous 3435T/T genotype and improved CD4 
response to PI-containing regimens87, there has been 
a number of studies attempting to address this issue, 
the majority of which have failed to support this ob-
servation. A recent study of 384 antiretroviral-naive 
individuals randomized to receive two nucleoside 
analogs plus efavirenz and/or nevirapine reported a 
decreased likelihood of virologic failure as well as a de-
creased emergence of efavirenz-resistant virus in indi-
viduals with the homozygous 3435T/T genotype receiving 
efavirenz94. Similarly, a previous study of 461 antiretrovi-
ral-naive individuals initiating first HAART reported a 
trend to earlier virologic failure in those individuals with 
the MDR-1 3435C/C genotype69, although no correla-
tion between MDR-1 genotype and development of 
PI-resistance mutations was observed in a small study 
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subset69. Other smaller studies have reported no cor-
relation between MDR-1 C3435T polymorphism and 
initial virologic and/or immunologic response to com-
bination therapy among previously antiretroviral-naive 
individuals92,95,96 as well as individuals with previous 
antiretroviral exposure88,92. Recently, HIV-1 infected 
children with the heterozygous MDR-1 3435C/T geno-
type had higher plasma nelfinavir levels and improved 
virologic responses to HAART when compared to those 
with the 3435C/C genotype97. 

The cytochrome P450 system

The cytochromes-P450 (CYP) are a superfamily of 
heme-containing enzymes present in the liver and gut 
wall which are involved in the metabolism of a diverse 
range of compounds, which include all presently avail-
able PI as well as nonnucleoside reverse transcriptase 
inhibitors (NNRTI)98. The CYP3A isoenzyme of the CYP 
system (comprising major isoforms CYP3A4 and CYP3A5) 
is the chief metabolizer of all currently available PI and 
NNRTI98,100. In addition, the NNRTI nevirapine and efavi-
renz are metabolized by the CYP2B6 isoenzyme99, while 
other PI, including nelfinavir, are metabolized by 
CYP2C19100. Other CYP isoenzymes also likely play a 
role in antiretroviral metabolism101. The genes encoding 
the individual CYP isoenzymes exhibit a relatively high 
level of polymorphism, and the elucidation of the effects 
of CYP polymorphism on antiretroviral pharmacokinetics 
is currently an intense area of focus73.

Data on the effects of CYP polymorphisms on clinical 
HAART responses is also emerging. The CYP2B6 G516T 
polymorphism has been associated with increased 
plasma94,102 and intracellular102 concentrations of efavi-
renz, as well as increased plasma concentrations of 
nevirapine102, although this mutation did not influence 
treatment outcomes in 384 previously antiretroviral-naive 
individuals initiating nevirapine-containing therapy94. In 
the same study group, the CYP2C19 G681A polymor-
phism was associated with increased plasma nelfinavir 
levels as well as a trend toward decreased virologic 
failure in individuals receiving nelfinavir94.

Currently available evidence is not sufficient to draw 
firm conclusions regarding the effects of MDR-1 and/or 
CYP polymorphisms on antiretroviral treatment re-
sponse. The lack of consistency among reports to date 
is perhaps not surprising given the fact that a single 
nucleotide polymorphism in a single human gene, 
however relevant, can realistically only account for a 
small portion of the interindividual differences in ob-
served pharmacokinetic profiles and treatment re-

sponses. This is especially true in the case of a poly-
morphism such as MDR-1 C3435T, a synonymous 
substitution that does not affect the amino acid se-
quence of the protein and thus most likely confers a 
protective effect indirectly, possibly through linkage 
with polymorphisms at other sites. In fact, the MDR-1 
C3435T polymorphism is known to be in linkage dis-
equilibrium with the MDR-1 G2677T substitution in 
exon 21103, among others104-106, and thus it has been 
suggested that MDR-1 haplotype analysis may be su-
perior to analysis of single nucleotide polymorphisms 
(SNP) in predicting pharmacokinetics104 and treatment 
response. However, a recent study taking into con-
sideration both the MDR-1 G2677T and C3435T re-
ported no association between combined MDR-1 
genotype and virologic or immunologic response to 
therapy in the first 48 weeks of treatment96, while an-
other independent study reported no improvement 
over single-SNP predictive values when haplotypic 
analysis of MDR-1 was used89. It remains to be deter-
mined whether comprehensive CYP polymorphism 
analysis will be superior to evaluation of SNP in predict-
ing pharmacokinetic profiles. Realistically, as the contri-
bution of individual SNP to antiretroviral pharmacokine-
tics is likely to be minor, definitive conclusions regarding 
the influence of genetic variability on HAART clinical 
outcomes will therefore require larger studies with 
greater power to detect significant associations107.

Emerging toxicities of HAART:  
human genes as risk factors for 
antiretroviral-associated adverse events 

Despite the unprecedented benefits associated with 
HAART, emerging toxicities associated with long-term 
antiretroviral therapy represent major challenges to 
treatment success, due in large part to their implica-
tions for medication adherence. Adverse effects in-
clude, but are not limited to, lipid abnormalities and 
other metabolic effects108-113, as well as side effects 
due to mitochondrial114, cardiovascular110,115, renal116, 
hepatic117,118

, and other119,120 toxicities. As the nature 
and severity of adverse reactions to antiretroviral 
agents varies among individuals, it is likely that ge-
netic variation plays at least some role in mediating 
adverse reactions to HAART121.

Antiretroviral hypersensitivity reactions

The highly polymorphic human leukocyte antigen 
(HLA) region plays a significant role in the immune control 
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of HIV. Genetic variation within the HLA region influences 
the natural course of HIV disease progression through 
allele frequency mediated effects122-125, as well as 
through allele-specific effects126-132. At present, it is not 
known whether HLA alleles associated with differential 
prognosis during untreated infection are also associa-
ted with clinical treatment outcomes. One recent report 
suggests that specific HLA polymorphisms may influence 
CD4 response following initiation of HAART133, although 
others have observed no correlation between specific 
HLA class I alletes and HAART outcome134.

The HLA region is known to contain specific genetic 
risk factors for HAART-associated adverse events. 
Specifically, the HLA-B*5701 allele (and its associated 
ancestral haplotype) is associated with an up to tenfold 
increased risk of a dramatic and potentially life-threate-
ning hypersensitivity reaction to the nucleoside analog 
reverse transcriptase inhibitor (NRTI) abacavir135,136. 
However, the strength of this association may vary 
based on ethnicity137, and variation at other loci may 
also contribute to the hypersensitive phenotype138. Due 
to the clinical implications of this reaction, studies have 
begun to evaluate the clinical utility of skin “patch-test-
ing” for abacavir hypersensitivity139,140, and it is likely 
that genetic screening programs for HLA-B*5701 will 
be useful in the clinical setting140-143.

The HLA region has also been implicated in a hyper-
sensitivity reaction to the NNRTI nevirapine, which is 
characterized by hepatic toxicity as well as fever and 
rash118. This reaction occurs in approximately 5% of 
exposed individuals, although it has been observed 
more frequently and severely in individuals with higher 
CD4 counts144,145. A recent analysis of 235 individuals 
in the Western Australian HIV cohort identified the HLA 
class II allele DRB1*0101 as a genetic risk factor for 
hepatic/systemic nevirapine-associated hypersensi-
tivity reactions, although this association was only 
significant in individuals with a higher CD4+ T-cell 
percentage (> 25%)146. Of note, absolute CD4 count 
was not a significant risk factor when observed in 
combination with DRB1*0101, and no HLA associa-
tions were detected for isolated rash in the absence 
of hepatic toxicity146. Taken together, these data 
suggest that the combination of CD4 status and ex-
pression of HLA-DRB1*0101 influences the occur-
rence of nevirapine hypersensitivity, an observation 
that is consistent with a CD4 T-cell-dependent immune 
response to nevirapine-specific antigens146. Prospec-
tive screening for HLA-DRB1*0101, aimed at decreas-
ing or eliminating incidence of the nevirapine-induced 
adverse events may also be of clinical utility143.

Lipid-associated adverse events

Naturally-occurring genetic variants have been impli-
cated as potential risk factors for a variety of lipid-as-
sociated toxicities. Single-nucleotide polymorphisms at 
positions –308 and –238 within the promoter region of 
tumor necrosis factor-alpha (TNF-α), a cytokine in-
volved in adipocyte lipid metabolism and other func-
tions147, have been linked to differential TNF-α produc-
tion148 and have been hypothesized to play a role in 
treatment-related lipid abnormalities. Some studies 
support an association between the TNF-α –G238A al-
lele (but not differences at position –308) and an in-
creased risk of lipodystrophy149,150, although this asso-
ciation was not confirmed in a larger study151. Variant 
alleles in other genes involved in adipocyte metabolism, 
namely apolipoprotein C-III (ApoC3) and apolipoprotein 
E (ApoE), have been shown to contribute to an unfavor-
able lipid profile in HIV-infected patients receiving rito-
navir151,152, although a recent study reports that differ-
ences in the influence of ApoC3 on the development of 
PI-related hypertriglyceridemia may be heavily influ-
enced by ethnicity153. In addition, the MDR-1 3435C 
allele has been associated with significant elevations of 
HDL-cholesterol in patients receiving efavirenz154.

Protease inhibitor-induced unconjugated 
hyperbilirubinemia and associated jaundice

The HIV PI atazanavir and indinavir have been associa-
ted with asymptomatic unconjugated hyperbilirubinemia 
in up to > 40% of individuals receiving these agents155-157, 
an adverse event associated with the development of 
clinical jaundice in some individuals158. A polymorphism 
in the promoter region of the gene encoding the bilirubin-
specific isoform of the enzyme UDP-glucuronosyltransfer-
ase (UGT-1A1), the enzyme responsible for conjugating 
and clearing bilirubin from plasma, has recently been 
implicated as a risk factor for PI-associated hyperbiliru-
binemia157. In this study, 67% of individuals homozygous 
for the UGT1A1*28 allele receiving atazanavir or indinavir 
had ≥ 2 episodes of hyperbilirubinemia in the jaundice 
range, compared to 7% of individuals lacking this geno-
type157, again supporting a potential role for genetic 
screening for specific allelic variants prior to initiation of 
antiretroviral therapy.

Mitochondrial toxicity

The NRTI stavudine (d4T) and didanosine (ddI) are 
known to cause peripheral neuropathy, a common 
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manifestation of NRTI-associated mitochondrial toxici-
ty114. Hulgan, et al. reported that among 137 Cauca-
sian individuals randomized to receive d4T and ddI, 
21% of those who developed peripheral neuropathy 
exhibited a specific mitochondrial genotype (haplotype 
“T”), compared to 4.5% of control subjects, an obser-
vation which remained statistically significant after ad-
justing for demographic, clinical, and treatment parame-
ters159, indicating that naturally occurring genetic 
variation within the human mitochondrial genome may 
also contribute to HAART-associated adverse events.

Concluding remarks

Evidence from clinical trials and observational, popu-
lation-based studies conducted since the introduction 
of combination antiretroviral therapy indicate that ge-
netic variation likely remains a relevant parameter in 
today’s era of HAART, although in general, the contri-
bution of individual genetic polymorphisms to treat-
ment outcome is likely to be small and thus difficult to 
consistently detect. Available evidence suggests that 
immunogenetic parameters previously associated with 
untreated HIV/AIDS outcomes may still exert a small 
but measurable residual effect on HIV clinical progno-
sis in the context of antiretroviral treatment, and that 
variation in genes involved in antiretroviral metabolism 
and transport also likely contribute to treatment out-
come. In neither case, however, is the strength of the 
association large enough (or evidence conclusive 
enough) to justify the incorporation of chemokine re-
ceptor, MDR-1 or CYP genotypes into HIV clinical prac-
tice at the present time. The most compelling evidence 
supporting the potential incorporation of human ge-
netic screening as a clinical management tool lies in 
the area of genetic risk factors for HAART-associated 
adverse events – namely, the recommendation and 
initiation of HLA-B*5701 screening procedures prior to 
the administration of abacavir-containing regimens in 
order to reduce the incidence of associated hypersen-
sitivity reactions140-143. Further analysis of large, obser-
vational cohort studies will increase our power to de-
tect significant genetic associations in cases where the 
prevalence of polymorphisms is low and the magnitude 
of individual effects is small107.

The impact of human genetic variation on HIV patho-
genesis and treatment response is a complex, multi-
factorial phenomenon. To date, the majority of studies 
investigating the influence of human genetic variation 
on HIV disease and treatment outcomes have focused 
on SNP or, at most, combinations of a small number of 

polymorphisms within a single gene, and thus it is 
perhaps not surprising that reports to date have been 
somewhat controversial. Although simple genetic mar-
kers relevant to HIV disease and treatment response 
have indeed been identified (as evidenced by the ef-
fect of CCR5∆32 on untreated HIV disease progression 
and the HLA-B*5701 allele on abacavir hypersensi-
tivity reaction), it is more likely that HIV disease and 
treatment outcome are influenced by a multitude of 
interacting genotypes and phenotypes160. Improve-
ments in DNA sequencing technologies161, computer 
processing and bioinformatics will result in increas-
ing potential to generate, store and manipulate large 
sets of sequence data, while an improved under-
standing of the results of the human genome162 and 
HapMap163 projects will facilitate the analysis of 
complex genotypic profiles on disease outcome. In 
fact, an increasing number of studies indicate that 
analysis of combined host genetic profiles (when 
compared to single markers alone) may be superior 
in predicting HIV clinical outcome in the context of 
untreated infection13,46,68,164-166. Thus, it remains to 
be determined whether host genetic profiling may be 
of relevance in predicting response to HAART on a 
population basis, and more importantly, whether 
there will ever be enough evidence to justify the in-
corporation of comprehensive host-genetic profiling 
into individual HIV clinical practice. The future of HIV 
research will therefore undoubtedly include a focus 
on the role of human immunogenetic and pharmaco-
genetic variation on HIV disease progression in the 
context of modern and future combination antiretro-
viral therapies. 
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