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Abstract

The HIV-1 Gag protein assembles into immature capsids when expressed in human cells. Although
self-assembly of Gag was once thought to be sufficient to explain capsid formation, in the past decade
it has become increasingly apparent that in cells, the pathway from Gag synthesis to assembled
capsids is coordinated and facilitated by host factors. These cellular factors likely direct the traffick-
ing, membrane targeting, and multimerization of Gag, and could also assist with encapsidation of
viral RNA. While some of these factors have been identified, much remains to be learned about the
mechanisms by which they act to promote capsid formation. Moreover, studies suggest that the
amount of intracellular Gag undergoing assembly per se at any given time may be quite low, with
the majority of Gag in some cell types undergoing degradation or representing Gag that remains
cell-associated after assembly. If this model holds true, then defining the Gag subpopulations on
which individual cellular factors act will be important for understanding the role of host factors. To-
wards this end, it will be important to find markers and features that can distinguish subpopulations
of Gag destined for different outcomes so that these populations can be quantified and tracked
separately both at the biochemical and microscopic level. Thus, the challenge for the future will be
to understand which cellular factors act during the pathway from Gag synthesis to assembly, and
exactly where and how they act in this pathway. (AIDS Rev. 2007;9:150-61)
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Gag and its structural components:
different functions at distinct points
in the viral lifecycle

It is well established that Gag is the only HIV-encoded
protein that is.needed.to.make noninfectious. virus-like
particles (VLP) that lack viral RNA. Despite requiring
only one viral protein, the
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production need to be coordinated temporally and spa-
tially within the host cell during VLP formation. These
events include synthesis of the structural proteins Gag
and GagPol, encapsidation of cellular RNA, proper tar-
geting of viral particle components to the site of assem-
bly, multimerization of Gag to form a spherical immature
capsid (which will be referred to here as assembly),
budding of the capsid into a host-derived lipid bilayer,
g)j relefse of VII’US fro the cell (Fig. 1A). The task is
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Figure 1. A. The many subpopulations of HIV Gag in human cells. This diagram illustrates the many different fates and functions of the Gag
cleavage products (early in the lifecycle) and of full-length Gag (late in the viral lifecycle). When the mature virus enters the cell, the cleaved
Gag proteins are released into the cytoplasm upon disassembly of the viral core (1). Matrix (MA) becomes a component of the pre-integration
complex (PIC), which transports the newly reverse-transcribed HIV genome to the nucleus (2). Following HIV integration and nuclear export
of subgenomic transcripts, genomic RNA is exported to the cytoplasm where it is used as a template for translation of full-length Gag (3). A
large fraction of newly synthesized Gag is degraded by the proteasome (4). During immature capsid (CA) assembly, only full-length Gag
polypeptides, and not the cleaved products of Gag, undergo assembly. Gag polypeptides likely undergo oligomerization in the cytoplasm (5)
and then target to the plasma membrane (6) where they undergo higher-order multimerization into completely assembled immature capsids
(7). The completely assembled immature capsids bud out of the plasma membrane (PM) resulting in release of immature virus (8A), which
undergoes maturation at the time of release, leading to cleavage of the Gag polyprotein into the MA, CA, nucleocapsid (NC) and p6 proteins
(8B). Note that in some cell-types, such as macrophages, completed virus can be held in complex cell-associated compartments (8C), or can
be endocytosed (9A) and transported via vesicles to multivesicular bodies (MVB) and/or late endosomes (LE) (9B). It remains to be determined
whether infectious virus within intracellular compartments can be released from the cell via exocytosis (10) or can undergo endolysosomal
fusion resulting in lysosomal degradation (11). As described in the text, some subpopulations and trafficking pathways outlined in this model
are still controversial and will need further validation; furthermore, other populations not shown in this diagram may also exist.B. Structural
and functional domains of HIV Gag. Full-length Gag is composed of structural domains, matrix (MA), capsid (CA), nucleocapsid (NC), and
p6, that are cleaved during maturation, as well as functional domains (M, |, and L) indicated by shading.
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role within full-length Gag during assembly and a dif-
ferent role following cleavage, when each acts as an
independent protein. Within full-length Gag, the MA
domain promotes membrane targeting, CA and NC are
critical for multimerization, and the p6 domain is re-
quired for budding; in contrast, the cleaved Gag do-
main proteins act after virus infection of a target cell
during the post-entry events, which include viral un-
coating and disassembly, interaction with host restric-
tion factors, formation of the pre-integration complex
(PIC), and transport of the PIC from the cytoplasm to
the nucleus (reviewed®39%: partially diagrammed in
Fig. 1A). The dramatically different behavior of full-
length Gag polypeptides during assembly compared
to cleaved Gag domains post-entry most likely reflects
intrinsic differences in the structure of the intact versus
cleaved proteins, disparities in their cytoplasmic con-
centrations, and the interaction of full-length Gag and
the cleaved proteins with different cellular factors. Be-
cause the cleaved Gag domain proteins do not initiate
immature capsid assembly in vivo, studies that rely
exclusively on one or more cleaved Gag domains to
address questions of targeting and assembly, either
recombinantly or in cells, should be interpreted with
caution. While such studies can lead to useful insights,
they also have significant limitations, since only full-
length Gag has all the properties required for targeting
to membranes, assembly into proper immature capsids
in cells, and release.

Shifting paradigms: from self-assembly
to assembly facilitated by cellular factors

Two decades ago HIV-1 Gag assembly was viewed
as resulting largely from Gag-Gag interactions, but
evidence increasingly suggests that assembly is in-
stead a product of complex viral-host interactions. This
shift has resulted in part because of data obtained from
new systems for studying assembly. In the mid 1990s,
studies of recombinant Gag in vitro advanced our un-
derstanding of assembly by demonstrating that puri-
fied Gag polypeptides at high concentrations in isola-
tion 'with RNA can asse
structures'™ ™. Although th
information about the intrinsic properties of Gag, they
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vitro. In 1997 our group used such a system to provide
evidence that one or more cellular factors present in a
eukaryotic cellular extract are critical for immature HIV-1
capsid assembly®® and from this system isolated
ABCE11%, g cellular factor that promotes HIV-1 capsid
assembly. Since the identification of ABCE1, newer
technigues like siRNA knockdowns, in combination
with more classical techniques for overexpression of
wild-type and dominant-negative proteins, have led to
identification of a number of additional cellular factors
that appear to be involved in Gag trafficking and/or
assembly, including phosphatidylinositol 4,5-bispho-
sphate (PI(4,5)P,)*’, the & subunit of the adaptor pro-
tein 3 complex (AP-35)%, Staufen1'®3 and others.
While selected factors implicated in the pathway from
Gag synthesis to immature capsid assembly will be
discussed in more detail below, a comprehensive
discussion of cellular factors involved in the entire
retroviral lifecycle has recently been published else-
where?°,

Because of studies such as those referenced above,
it is now generally accepted that cellular factors facilitate
HIV-1 assembly when Gag is expressed in mammalian
cells. However, consensus has not been achieved on
exactly which of these factors are required for HIV
capsid assembly, as well as when, where, and how
they act. Disrupting events such as encapsidation of
RNA or other virus components, targeting Gag to mem-
branes, Gag multimerization, and virion budding will
lead to effects on virus release from cells, an easily
assayed endpoint. Thus, pinpointing the exact mecha-
nism of action of individual cellular factors implicated
in late events of the virus life cycle will require a rigor-
ous assessment of how knockdowns affect each step
in the pathway to virion formation.

Studies in murine cells have highlighted the impor-
tance of host factors acting at one particular step in
the pathway from Gag synthesis to assembly, namely
membrane binding of Gag. While membrane targeting
of wild-type HIV-1 Gag occurs in most eukaryotic cell
lines, targeting and the subsequent events of assembly
fail to occur in some rodent cell lines, even when these
cells are engineered to overcome restrictions in HIV
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cells, further supporting a requirement for a specific
cellular factor(s) in Gag targeting®®.

HIV genomic RNA: at the intersection
of synthesis, packaging, and assembly

Studies of assembly in murine cells have also dem-
onstrated that the pathway used by HIV genomic RNA
during nucleocytoplasmic transport influences later
events of Gag targeting and assembly®. These data
suggest that understanding host factors involved in
HIV genomic RNA trafficking will likely lead to important
insights into the role of cellular factors in assembly. For
this reason, we will discuss selected aspects of RNA
trafficking that pertain to assembly.

Because Gag is translated in the cytoplasm from
unspliced full-length (genomic) HIV-RNA, the virus re-
quires a means of bypassing the mechanisms that
eukaryotic cells employ to retain unspliced RNA in their
nuclei. In the case of HIV-1 infection in human cells,
the viral Rev protein achieves this by mediating nucle-
ar export of unspliced HIV genomic RNA via the Crm1
export pathway (reviewed?*78), while other retroviruses
utilize different mechanisms and export pathways. No-
tably, a study by Swanson, et al.% demonstrated that
the pathway used for nuclear export dictates the fate
of Gag polypeptides that are translated from these
exported RNA (reviewed®). When murine cells were
transfected with an HIV-RNA construct that used the
Crm1 pathway for nuclear export, Gag synthesis oc-
curred but membrane targeting and assembly failed.
In contrast, when the native Rev-response element in
HIV genomic RNA construct was replaced with an RNA
element from Mason-Pfizer monkey virus (the constitu-
tive transport element) that mediates nuclear export via
the NXF1/Tap pathway, Gag synthesis occurred at
equivalent levels and, surprisingly, Gag was also able
to bind to membranes, assemble, and release mature
virus®. The authors of this study proposed that nucle-
ar export pathways “mark” RNA differently. Proper
marking of genomic RNA during export could lead
either 1o trafficking of genomic RNA to a specific cyto-
plasmic microdomain for translation, and/or to recruit-
ment to genomic RNA of sp&@c@a&Bﬂ,Qfﬁi
act directly or indirectly to facilitate assembly of newly

synthesized Gag. It should be nﬂ?ﬂq@ n@'@ @quj digr

not assess whether restoration o eting, assembly,
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port may specify a series of events that ultimately influ-
ence events of immature capsid assembly.

Once in the cytoplasm, retroviral genomic RNA acts
both as a template for translation of the Gag and Gag-
Pol proteins and as a source of genomic RNA for
packaging into newly formed viral capsids. Studies of
murine leukemia virus (MLV) and other retroviruses
demonstrated that the genomic RNA of these viruses
are present in two distinct cytoplasmic pools, one that
undergoes translation and another that is packaged.
In contrast, studies of HIV-1 suggest that one pool of
HIV-1 genomic RNA is available both for packaging
and translation (reviewed'"). In the case of HIV-2, Gag
appears to preferentially associate with the genomic
RNA template used for its translation*®, and this may
occur before Gag is transported to the site of assem-
bly. However, such a requirement for translation from
an mRNA prior to packaging of that RNA has not been
demonstrated for HIV-1'2. Thus, HIV-1 may employ
another mechanism to ensure that enough Gag is syn-
thesized and that genomic RNA is accessible for pack-
aging, both of which are required for efficient virion
production. One such mechanism could involve pref-
erential use of viral RNA as a template for translation
when concentrations of Gag are low, followed by inhi-
bition of translation at higher Gag concentrations in
order to make genomic RNA available for packaging.
Consistent with this model, recent studies in a cell-free
system showed that when Gag concentrations reach
an upper threshold, protein synthesis from a reporter
construct containing the HIV-1 5’-untranslated region
(UTR) was inhibited, and this inhibition was dependent
on the presence of the packaging signal in the RNA
and RNA binding regions in Gag?. Additionally, a pre-
vious study found that a glutathione S-transferase-ma-
trix (GST-MA) construct inhibited cell-free translation of
a reporter construct containing the HIV-1 leader se-
quence?®'. Thus, Gag itself might help regulate how
HIV-1 genomic RNA is utilized. However, additional
studies in cellular systems will be needed to determine
if negative feedback on Gag translation is important for
packaging or assembly during HIV infection.
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that Gag is targeted posttranslationally to a distinct
cellular location for proper encapsidation of the HIV-1
genomic RNA. A study by Poole, et al. showed that
upon overexpression, both Gag and genomic RNA
were present at the pericentriolar region of the cell™.
Because pericentriolar localization of Gag preceded
membrane binding of Gag to some extent and was also
influenced by the presence of a packaging signal in
the genomic RNA, the authors proposed that the peri-
centriolar region might be the site at which Gag selec-
tively associates with HIV-1 genomic RNA. Trafficking
of genomic RNA to the pericentriolar region may also
be dependent on heterogeneous nuclear ribonucleo-
protein A2 (HNRNP A2), which belongs to a family of
proteins that coat mMRNA and are involved in many
posttranscriptional events including RNA trafficking
and enhancement of translation (reviewed®). The HIV-
1 contains two HNRNP A2 response elements®® that
appear to be important for trafficking genomic RNA into
and/or from the pericentriolar region, and also for spe-
cific packaging of HIV genomic RNA®%*, While all these
findings raise the possibility that cellular factors may
direct HIV-1 genomic RNA to a specific microdomain
for RNA encapsidation, more will need to be done to
test this model. For example, it will be important to dem-
onstrate that the Gag and RNA transported to the peri-
centriolar region undergo assembly and encapsida-
tion, and do not represent pools of Gag or genomic
RNA that are slated for degradation or other fates.

Another HNRNP was recently shown to play a role in
trafficking HIV-1 RNA out of the nucleus. Dominant-
negative constructs of HNRNP U eliminated cytoplas-
mic accumulation of HIV transcripts and gene expres-
sion'®. However, because Gag translation was also
eliminated by the dominant-negative constructs, it was
not possible to assess whether HnRNP U also has ef-
fects on assembly.

Additionally, the host protein Staufen1 has been im-
plicated in HIV genomic RNA trafficking and packag-
ing®. Staufent is an RNA binding protein that is pres-
ent in RNA granules and is important for RNA
trafficking in drosophila and human neuronal cellg344%49
(reviewed®). Staufeni specifically associates with ge-

acts specifically during HIV packaging or multimeriza-
tion, or instead acts during maintenance and turnover
of HIV genomic RNA.

Membrane targeting of Gag is influenced
by Gag multimerization and one or more
cellular factors

After its synthesis, Gag traffics from the cytoplasm
to membranes and also undergoes multimerization.
Taken together, most studies support a model in which
some degree of lower-order Gag oligomerization oc-
curs in the cytoplasm before Gag targets to membrane
sites of assembly, where more extensive higher-order
Gag multimerization occurs?868.72.7688100  Twgo recent
studies that used novel approaches to monitor Gag
multimerization (epitope masking” and fluorescence
resonance energy transfer of tagged Gag polypep-
tides?®) confirmed that extensive Gag multimerization
occurs at membranes. As discussed below, cytoplas-
mic oligomerization of Gag followed by multimerization
at membranes is also the basis for the myristoylation
switch model of membrane targeting.

Targeting of Gag from the cytoplasm to the cytoplas-
mic face of a host membrane requires a bipartite motif
in the M domain, consisting of an N-terminal myristate
(C-14 fatty acid) and a cluster of basic residues at the
N-terminus of MA. The myristate is thought to insert into
the lipid bilayer, while the positive charge stabilizes as-
sociation with the membrane via electrostatic interac-
tions with the negatively charged phosphate backbone
of lipids in the membrane. Mutations that disrupt either
of these features impair membrane binding and assem-
bly103841,97,101106,107 - Ag described above, the MA do-
main serves multiple functions throughout the HIV-1 life
cycle. When MA is part of full-length Gag during the late
part of the viral lifecycle, it directs Gag from the cyto-
plasm to host membranes at the onset of assembly. In
contrast, during the post-entry phase of the lifecycle,
cleaved MA is part of the pre-integration complex that
transports the newly reverse-transcribed viral DNA from
the cytoplasm to the nucleus. A decade ago, the myris-
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Thus, these data support the notion that oligomerization
is required for membrane binding of Gag and acts by
promoting exposure of the myristate that is largely con-
cealed in the context of monomeric Gag.

A role for the cellular phosphoinositide PI(4,5)P, in
promoting myristoylation exposure is also supported
by a recent NMR study. Saad, et al. demonstrated that
a soluble, truncated form of PI(4,5)P, binds specifi-
cally to a hydrophobic cleft in MA and triggers a con-
formation change exposing the myristate moiety®. The
early experiments that initially led to interest in PI(4,5)P,
found that in the presence of inositol phosphate (a
phosphoinositide that is structurally related to PI(4,5)P,),
recombinant Gag forms spherical particles that have
the same radius of curvature and size as capsids pro-
duced in cells™ rather than the inappropriately small
particles produced by recombinant Gag in the pres-
ence of RNA alone'™. A region in MA is important for
this size change, suggesting that inositol phosphates
interact with the MA domain'®. Subsequently, Ono, et
al. found that altering levels and localization of PI(4,5)P,,
which is a component of the cytoplasmic leaflet of the
plasma membrane (PM), can redirect the subcellular
localization of Gag®’. Overproduction of PI(4,5)P, in
cells resulted in enrichment of PI(4,5)P, at CD63-con-
taining intracellular vesicles, with consequent localiza-
tion and assembly of Gag at these intracellular vesicles,
and failure of virus to be released®. These data dem-
onstrated that PI(4,5)P, can direct the subcellular tar-
geting of assembling Gag. Additionally, the finding that
Gag can be engineered to largely bypass the need for
PI(4,5)P, using a myristoylation signal from Fyn in place
of the myristoylation signal from Gag suggested that
PI(4,5)P, acts on targeting of wild-type Gag®” and most
likely does not act directly on Gag multimerization.
Notably, while subsequent structural studies separate-
ly showed that both Gag multimerization'™ and PI(4,5)P,
binding® are important for myristate exposure of MA,
their relative contributions to myristate exposure remain
unknown. Specifically, do multimerization and PI(4,5)P,
act additively or cooperatively on myristate exposure
of Gag? And can they substitute for each other in a
cellular context?
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esis studies identified a mutation in the N-terminus of
the MA domain that increases basic charge but elimi-
nates membrane binding (Val to Arg substitution at
position 6; 6VR®), suggesting the presence of an add-
itional determinant of membrane binding within MA.
Second site compensatory mutations in MA were found
to restore membrane binding of 6VRGag* 7!, Sur-
prisingly, a very recent structural study of recombinant
MA constructs found that binding of a soluble, trun-
cated form of PI(4,5)P, did not cause myristate expo-
sure in either the 6VR-containing MA mutant, which
fails to bind membranes, or in a second site compen-
satory mutant that restores membrane binding®. These
authors noted that the MA constructs encoding the
compensatory mutations bound the soluble, truncated
form of PI(4,5)P, with twofold higher affinity than the
nonbinding mutants, raising the possibility that PI(4,5)P,
binding in the absence of myristate exposure may be
sufficient to target Gag to membranes®. Notably, all
the structural studies of myristate exposure have been
performed on wild-type or mutant MA polypeptides
using a soluble form of PI(4,5)P,. Whether the myristate
moiety remains concealed during assembly when the
compensatory mutations are expressed in the context
of full-length Gag in cells is not known and warrants
examination, given these surprising results obtained
with MA constructs and soluble, truncated PI(4,5)P,.
Together, these data raise additional questions about
how Gag binds to membranes. Specifically, is PI(4,5)P,
binding necessary and/or sufficient for exposure of the
myristate within full-length Gag? Is myristate exposure
an absolute requirement for membrane binding? And
do additional factor(s) influence membrane binding of
Gag and/or myristate exposure in infected cells? If
other factors are involved, the compensatory mutations
that enable 6VRGag to target to membranes could act
by restoring recruitment of these unidentified cellular
factor(s), which in turn rescues membrane binding.
The possibility that other cellular factors in addition
to PI(4,5)P, are required for the proper membrane tar-
geting of Gag during assembly is supported by data
obtained using murine cells. As described above, a
defect in targeting and assembly of Gag expressed in
come by redirecting genomic
ﬁw alternate nuclear export
pathway99 suggestmg that factors acquired during
ectly or through recruitment of
te Gag targeting. Notably, mu-

b& rﬂ;gel in which tan;gf constructs: contalnmg a deletion or alteration
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phob|c myristate are not defective for targeting and
ISI yin murine cells'®#3#1. This finding would
make sense if the unidentified factors that are absent
r defective in murine cells facilitate exposure of the
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lar head. Thus, existing data on membrane targeting
can be reconciled by a model in which exposure of the
concealed myristate is promoted by multimerization of
Gag, PI(4,5)P, at the PM, and other unidentified cellular
factors, possibly acting in concert.

Other specific factors besides PI(4,5)P, have already
been implicated in facilitating Gag targeting to mem-
branes. A recent study demonstrated that the  subunit
of the AP-3 complex is important for Gag targeting in
human cells®. The AP-3 complex is known to mediate
the sorting of intracellular cargo®482  including Lamp-
1, Lamp-2, and CD63 to the lysosome and late endo-
somes 25265183 Dong, et al. hypothesized that AP-38
acts in an analogous manner on Gag, transporting it to
the late endosomal compartment. However, AP-3%
knockdowns and dominant-negative inhibitors ap-
peared to eliminate Gag targeting to all membranes in
this study, suggesting that the AP-3 complex may have
a more general role in membrane targeting®. Thus,
while it is clear that AP-38 binds to the MA region of
Gag®, exactly how and when AP-38 acts on Gag re-
mains unanswered. Other groups have reported similar
effects on Gag targeting and assembly upon disrupt-
ing the function of the Golgi-associated ubiquitin ligase
named hPOSH', and annexin 28, However, as in the
case of AP-39, more studies will be required to deter-
mine how and where these factors act in the pathway
from Gag synthesis to capsid assembly, especially in
light of recent advances in our understanding of Gag
trafficking, described below.

Defining the route: does newly
synthesized Gag target only
to the plasma membrane?

Although it is clear that membrane targeting of Gag
is critical for proper assembly, the identity of the target
membranes has been controversial. Electron micro-
graphs produced over decades of studying HIV have
documented electron-dense capsid structures assem-
bling and releasing from the PM, and led to the notion
that HIV targets to the PM for assembly. Hovvever in

A number of models were proposed to explain ac-
cumulation of virus at the MVBJ/LE. In one possibility,
the membrane at which Gag assembles could differ
depending on cell-type, with PM being the target in
T-cells and MVBJ/LE being the predominant target
in macrophages. The finding that Gag targeting, and
therefore the site of assembly, could be altered by
mutations in Gag’® supported the plausibility of this
model. Such differential targeting could be achieved
by expression of different cellular adaptors or recep-
tors in specific cell types that would direct Gag either
to the PM or to the MVB/LE. While evidence indicates
that cellular factors play a role in Gag targeting, to date
there is no definitive evidence in support of a model in
which specific cellular factors direct Gag to specific
membranes.

A second model proposed that Gag might first tar-
get to the MVB/LE in all cells. This model was attrac-
tive given that ESCRT proteins, which act on and are
located at the MVBJ/LE, are required for retroviral
budding. In this model, Gag could take advantage of
ESCRT proteins present at the MVB and would not
need to recruit them to other cellular sites. This mod-
el was supported by immunofluorescence and elec-
tron microscopic studies demonstrating assembling
HIV at MVB/LE even in epithelial-derived cell lines
and in T-cells that were thought to solely support
assembly and budding at the PM#26692 Notably, as-
sembly and budding were seen both at the PM and
MVBJ/LE in many of these studies. A more recent
study that used biarsenical/tetracysteine labeling to
follow newly-synthesized Gag microscopically over
time also supported a version of this model””. Taken
together, data in support of this model suggested
that in all cell types, Gag initially targets to the
MVBJ/LE. In some cell types, such as macrophages,
Gag could assemble and bud at the MVB/LE, while
in T-cells and other cell types, it could traffic on
vesicles to the PM for assembly and budding. How-
ever, studies to date have not shown direct targeting
of newly syntehsized Gag to the MVB for productive
assembly, or subsequent trafficking of Gag from the
MVB/LE to the PM for assembly in some cell types.
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assembles exclusively at the PM, with subsequent vir-
ion release. In contrast, Gag constructs that were ra-
tionally engineered to target to intracellular sites as-
sembled at the MVB/LE even in the presence of
endocytosis inhibitors, but failed to undergo release.
Thus, this study argues that in all cells, Gag initially
targets to the PM, and that cells proficient in phagocy-
tosis and endocytosis, such as macrophages (but not
T-cells), subsequently internalize assembling or as-
sembled virions from the PM*. This results in the ap-
pearance of all stages of virus assembly and budding
at the limiting membrane and within the lumen of intra-
cellular vesicles. If the rate of assembly and release at
the PM is slower than the rate of endocytosis, as might
be expected in phagocytic cells, then internalization of
assembling Gag from the PM into the endocytic path-
way will be favored over release of assembling Gag
from the PM. Moreover, point mutations previously
thought to alter the site of assembly™ could be ex-
plained if they simply delay assembly so that Gag re-
mains at the PM longer. This would cause the rate of
assembly and release to be slower than the rate of en-
docytosis, thereby favoring the appearance of these
Gag mutants at MVBJ/LE.

Two very recent studies have convincingly sup-
ported the notion that assembly occurs at the PM in
macrophages®”-1%4, which were previously thought to
support assembly primarily at MVB-like structures.
Both of these studies used markers that are endocy-
tosed by live cells to label the MVB/LE compartments,
and separately labeled the entire PM?7:1%4 Their re-
sults demonstrate that the PM of macrophages is a
complex, interconnected system, with adjacent mem-
branes closely apposed so that virions that assemble
at the PM can become sequestered in surface-con-
nected, intracellular compartments that resemble the
MVB/LE morphologically but in fact are extensions of
the PM (Fig. 1A). In macrophages, virus accumulates
at these compartments, suggesting that in these cells
assembly does indeed occur at the PM not at the
MVBJ/LE. However, contrary to the findings of Jou-
venet, et al.* these studies found little or no accu-
mulation of Gag at the MVB?"1%, raising questions

about whether endocytosis, pf Ga%octourji% macro-
phages. Nevertheless, tobfx@e ¢ rddant t}h@ieﬁu

suggest that wild-type HIV-1 assembles and releases

at the PM in macrophages, arr(eggr@@mi[ @jo@r

types. Additional studies will be neéded to resolve the
question of whether Gag can be endocytosed from
the PM in macrophages%NFﬂ.]OUt fﬁe p”or

Notably, if endocytosis of Gag is prominent in many

for HIV-1, although investigators have raised the pos-
sibility that HIV Gag could be transported on endo-
somal vesicles before or during assembly””. However,
the recent data discussed above demonstrating en-
docytosis of assembling or assembled HIV Gag from
the PM* support a model in which HIV-1 Gag is
transported on endosomal vesicles after, rather than
before, targeting and initiation of assembly at the PM
(Fig. 1A). Experiments in which HIV-1 Gag is followed
over time in the presence of endocytosis inhibitors
will be needed to clarify whether the putative vesicu-
lar population of Gag originates before or after as-
sembly.

Regardless of how virus arrives at the MVB/LE or
surface-connected compartments, such cell-associated
virus accumulations could have important implications
for cell-to-cell spread of HIV if exocytic release of virus
from intracellular sites can occur (Fig. 1A). Macrophages
are antigen-presenting cells that intimately interact with
T-cells, delivering co-stimulatory signals. A macro-
phage capable of mobilizing virus accumulated in in-
ternal compartments upon contacting a T lymphocyte
could deliver a large dose of infectious virus to the
susceptible target cell, ensuring a protected and high-
ly efficient means of virus spread'. However, whether
such a mode of delivery occurs during infection in vivo
remains unclear. Moreover, it has not yet been shown
even in cultured cells that compartments containing
virus within macrophages can migrate to the cell sur-
face, fuse with the PM, and release infectious virus.
Such a possibility is supported by the demonstration
that HIV was transmitted from macrophages to periph-
eral blood mononuclear cells (PBMC) in trans weeks
after macrophages were treated with indinavir to pre-
vent de novo production of infectious virus®'. Further-
more, whether intracellular virus in macrophages un-
dergoes exocytosis or degradation (Fig. 1A) could
depend on signaling pathways or other modulators that
have yet to be identified. While Ca*2 ionophores have
been used to ask whether signaling pathways can
promote virus release from MVB in epithelial cell lines’”,
it will be necessary to perform studies in macrophages
using physiologically relevant stimuli to demonstrate a
ole for,signaling pathways in exocytotic release of
br‘d&&ﬁléﬂt Fgﬂréys&éssible that cell-associated

virus in macrophages is relevant for spread of infection
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techniques alone. Fluorescence microscopy has been
used by a variety of groups to follow Gag traffick-
ing“%7” and fluorescence resonance energy transfer
assays have been used to study Gag multimeriza-
tion?®. However, tracking the pool of Gag that is un-
dergoing productive assembly is complicated by the
possibility that most intracellular Gag polypeptides
may not be part of the assembling pool. For example,
as described above, much of the intracellular Gag in
some cells may represent Gag that has been endo-
cytosed or that remains stably associated with the PM
after assembly#4. Even more problematic is the finding
that a very large fraction (30-80%) of newly synthe-
sized Gag undergoes rapid degradation in transfect-
ed cells3390.102 |mportantly, it remains to be deter-
mined whether similar rates of degradation are seen
in other cell types and in infected cells. Moreover,
while much of the degradation is likely to be proea-
someal, a role for lysosmal degradation has not yet
been ruled out (Fig. 1A). Interestingly, a recent report
found that rhesus tripartite motif-5a. (TRIM5a), but not
human TRIM5c, promotes degradation of newly syn-
thesized Gag and inhibits particle production®”. Al-
though currently there is no evidence that human
TRIM proteins promote degradation of Gag, these find-
ings raise the possibility that some mechanisms of Gag
degradation during virus production could be cell-type
specific. Nevertheless, considerable Gag degradation
may occur in most cell types, given that degradation
could constitute a host defense against the virus that
offers the added benefit of priming the immune sys-
tem through generation of peptides for major histo-
compatibility complex presentation. While the exact
numbers need to be determined in specific cell types,
the presence of Gag populations undergoing degra-
dation or accumulated in cellular compartments after
assembly suggests that the pool of assembling Gag
that is present in cells at any one time may be rela-
tively small. Tracking a small number of assembling
Gag polypeptides against a large background of Gag
that is slated for degradation or remains cell-associ-
ated after assembly poses a difficult technical chal-
lenge for investigators.

For these and other rea ns, new ferﬁ) E_Is will
be needed to distinguish b i i At&)f{@u

of intracellular Gag based on their fates One method
for doing this involves deﬂnmgr

mark specific functional pools of Gag and then using

@ @geasiar p

how they promote HIV assembly has not been per-
formed yet. However, our group has identified one
cellular protein associated with Gag in high molecular
weight assembly intermediates, the ATPase ABCE1
(ATP-binding cassette protein in the E subfamily), and
demonstrated that it appears to be critical for assem-
bly3233199 In primate cells expressing the HIV provirus,
we have demonstrated that Gag progresses through a
pathway of ABCE1-containing intermediates, culminat-
ing in formation of the 7508, fully assembled immature
capsid3"3356.109 \We have used a variety of approach-
es to demonstrate that the pool of Gag present in
ABCE1-containing assembly intermediates, while small,
represents intracellular Gag that is actively undergoing
assembly. These include pulse-chase analyses in cells,
showing ABCE1 associates with Gag as it assembles
and dissociates from Gag at the onset of budding®?,
mutational analyses showing that ABCE1 fails to associ-
ate with assembly incompetent Gag constructs®!:33.55.109,
and a morphologic approach demonstrating recruitment
of ABCE1 to sites of Gag assembly at the PM using
quantitative double immuno-gold electron microsco-
py33. Thus, in addition to playing a role in capsid as-
sembly, ABCE1 appears to be a marker for the pool of
intracellular Gag that is undergoing assembly into im-
mature capsids.

In uninfected eukaryotic cells, ABCE1 (previously
referred to as RNase L inhibitor and HP68) is important
for nucleocytoplasmic export of ribosomes and as-
sembly of the ribosome pre-initiation complex2%.29.48.105,
In mammalian cells, ABCE1 also appears to act as an
RNase L inhibitor that can protect viral RNA from deg-
radation”9%6% Qur group has demonstrated that ABCE1
is required posttranslationally in a cell-free system dur-
ing HIV Gag multimerization to form a protease-resis-
tant, completely assembled immature capsid'®, but
the exact mechanism by which ABCE1 acts during this
process and how this function relates to the normal
cellular function of ABCE1 remain unclear. Unfortu-
nately, siRNA knockdowns cannot be used to identify
the exact role of ABCE1 since depleting ABCE1 results
in rapid cell death?>%. Ultimately, a mechanistic under-
standing of how different domains of ABCE1 act in all
& these cellular roces es will be required for a com-
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cytoplasm to the PM, which may be marked by unique
cellular factors. It would also be useful to identify spe-
cific cellular factors that mark Gag destined for degra-
dation or endocytosis. When additional markers or
antibodies specific for each intracellular Gag pool have
been identified and validated, it should be possible to
distinguish between separate Gag subpopulations that
are simultaneously undergoing degradation, assembly,
or endocytosis. This would allow half-lives, trafficking,
and the final destination of each subpopulation to be
tracked in parallel, biochemically. Moreover, such bio-
chemical markers could ultimately be used in fluores-
cence microscopy studies to track specific subpopula-
tions of Gag in real time.

Gag targeting and assembly:
unanswered questions and future
directions

Studies in recent years have altered our view of in-
tracellular Gag considerably. It is increasingly evident
that Gag consists of different subpopulations that co-
exist in the cell but are destined for very different fates,
including proteasomal degradation, capsid assembly,
and endocytosis. A lack of adequate tools for distin-
guishing each of these subpopulations biochemically
and microscopically and tracking them over time has
led to limitations in our understanding of late events in
the virus lifecycle as well as misperceptions of the
subcellular site where assembly occurs. Recent data
suggest that Gag is targeted to and assembles at the
PM?27:44104 * Given new awareness of the many sub-
populations of intracellular Gag, it will be important for
investigators in the future to define the exact popula-
tion of Gag that they are studying, especially when
studying the function of cellular factors that influence
assembly and release.

Additionally, the exact role of specific cellular factors
in the process of targeting and assembly needs to be
addressed. To date, manipulation of a number of cel-
lular factors has been found to have effects on assem-
bly. Identifying the exact step(s) at which these host
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