

Ritonavir-Boosted Protease Inhibitor Monotherapy for the Treatment of HIV-1 Infection

Sabrinel Sahali¹, Marie-Laure Chaix², Jean-François Delfraissy¹ and Jade Ghosn^{1,2}

¹AP-HP, Bicêtre University Hospital, Department of Internal Medicine and Infectious Diseases, Paris-Sud University, Le Kremlin-Bicêtre, France; ²AP-HP, Necker University Hospital, Department of Virology, EA MRT 3620, Paris Descartes University, Paris, France

Abstract

Guidelines for the use of antiretrovirals for HIV-1 infection recommend combining at least three agents. Toxicities, cost, and the complexity of such regimens warrant the search for other options. Boosted protease inhibitor monotherapy is one of the appealing options being investigated. Herein we review uncontrolled and controlled clinical trials evaluating boosted protease inhibitor monotherapy in several clinical settings: maintenance therapy, induction-maintenance strategies, and first-line treatment. Boosted lopinavir monotherapy has been largely investigated in maintenance and induction-maintenance strategies, showing its ability to maintain viral suppression in the majority of participants. The major concern is the higher proportion of patients experiencing transient episodes of low-level viremia (HIV-RNA 50-500 copies/ml) when compared to classical triple regimens. No protease inhibitor-associated resistance mutation was detected in patients who failed on boosted lopinavir monotherapy. Three uncontrolled maintenance strategy studies with boosted atazanavir monotherapy showed conflicting results. Thus, the reassuring results obtained with lopinavir might not be extended to the whole protease inhibitor class, warranting further studies with new generation protease inhibitors such as darunavir. Finally, one controlled trial comparing first-line boosted lopinavir monotherapy to a standard triple combination showed that the latter outperformed the boosted protease inhibitor monotherapy in this clinical setting. In summary, a boosted protease inhibitor single-agent strategy can maintain continuous plasma HIV-RNA suppression in a large proportion of patients already suppressed on a standard triple combination. The more frequent occurrence of low-level viremia, however, does not allow the widespread use of such a strategy outside of clinical studies at this time. (AIDS Rev. 2008;10:4-14)

Corresponding author: Jade Ghosn, jade.ghosn@bct.aphp.fr

Key words

Protease inhibitors. Lopinavir. Monotherapy. Drug resistance. HIV-1.

Introduction

Currently, gold-standard regimens for treatment of HIV-1 infection comprise three drugs, usually called highly active antiretroviral therapy (HAART), and include two nucleoside or nucleotide reverse transcriptase inhibitors (NRTI), to-

gether with either a protease inhibitor (PI) or a nonnucleoside reverse transcriptase inhibitor (NNRTI). While HAART has dramatically reduced AIDS-related morbidity and mortality¹, the absence of HIV eradication with those drugs requires their prolonged use for a lifetime, making long-term toxicity a critical issue in the management of HIV-infected patients. Mitochondrial toxicity and lipoatrophy are well-documented adverse effects of NRTI²⁻⁶. Facial lipoatrophy is the most common and distressing side effect for patients receiving anti-HIV therapy, and may lead to a reduction in patient adherence to therapy⁷. Studies evaluating structured treatment interruptions to limit exposure to anti-HIV drugs showed an increased risk in disease progression and mortality⁸. Thus, other strategies such as simplified maintenance therapy have to be evaluated.

Correspondence to:

Jade Ghosn

Département de Médecine Interne et Maladies Infectieuses

Centre Hospitalier Universitaire de Bicêtre

78 Rue du Général Leclerc

94275 Le Kremlin-Bicêtre, France

E-mail: jade.ghosn@bct.aphp.fr

It has been shown that combining a PI to a backbone of two NRTI leads to a dramatically faster fat loss and increases the risk of lipodystrophy in comparison to what was seen with dual-NRTI therapy alone⁵. Conversely, antiretroviral therapy with PI alone appears rarely to cause lipodystrophy⁹. Moreover, discontinuation of the NRTI backbone may improve lipoatrophy¹⁰, whereas PI withdrawal or substitution with a NNRTI has not proved helpful in correcting lipodystrophy¹¹⁻¹⁴. Thus, one approach to improve lipoatrophy was to discontinue the NRTI backbone while maintaining a dual therapy with one ritonavir-boosted PI (PI/r) and one NNRTI in patients with full viral suppression on a classical triple combination with two NRTI and one PI/r¹⁵. However, many patients receiving a classical triple combination with a backbone of two NRTI and one PI/r cannot be switched to a NNRTI-based regimen for a variety of reasons (central nervous system side effects, risk of unplanned pregnancy, already resistant to NNRTI). Moreover, these regimens are not easy to manage because of potential deleterious drug-drug interactions. Interestingly, boosting second generation PI with ritonavir allowed revisiting the notion that using three drugs is a prerequisite for successful anti-HIV therapy. Indeed, ritonavir increases trough concentrations and half-lives of second generation PI, and these pharmacokinetic properties, along with the intrinsic antiviral potency of these second-generation PI, yield a high genetic barrier against viral resistance¹⁶⁻¹⁸. Thus, another approach to improve lipoatrophy was to discontinue the NRTI backbone while maintaining PI/r alone in patients with full viral suppression on a classical triple combination with two NRTI and one PI/r. Theoretically, the concept of boosted PI monotherapy is attractive as it would be expected to be less toxic, easier to use, and less costly than a triple combination. Here we review trials evaluating boosted PI monotherapy in several clinical settings: maintenance strategy, induction-maintenance strategy, and first-line treatment.

Results of principal trials (Table 1)

Maintenance strategy: for HIV-1 infected patients with undetectable plasma HIV-RNA on a standard triple combination

Pilot studies

Kahlert study¹⁹

This pilot non-comparative study evaluated the potential of ritonavir-boosted indinavir monotherapy to maintain HIV-1 RNA suppression for 48 weeks duration.

Patients on indinavir/ritonavir-based triple therapy were eligible for enrolment if their HIV-RNA load was < 50 copies/ml for at least three months, with no previous treatment failure.

Twelve patients were recruited; the dose of indinavir was adapted to achieve trough concentrations ranging between 500-2000 ng/ml: 400 mg twice a day (n = 1), 600 mg twice a day (n = 4), 800 twice a day (n = 7).

At baseline, all NRTI were stopped and only indinavir/ritonavir monotherapy was maintained.

The primary endpoint was a treatment failure defined as one confirmed HIV-RNA level > 400 copies/ml or three consecutive values > 200 copies/ml. Eleven patients completed the 48-week study period, and no patient reached a predefined primary endpoint. After completion of the study at week 48, all 11 patients opted to remain on the study treatment and remained suppressed for a median of 78 weeks.

ATARITMO study²⁰

This non-comparative, 24-week, pilot trial evaluated the possibility of a simplified maintenance strategy with ritonavir-boosted atazanavir to maintain viral suppression.

Patients on conventional HAART for at least six months (stable HAART during at least three months), or who previously participated in the indinavir/ritonavir monotherapy¹⁹ study were eligible for this study.

The primary endpoint of this trial was defined as two consecutive HIV-RNA values > 400 copies/ml, or three consecutive HIV-RNA values > 200 copies/ml, or four consecutive HIV-RNA values > 100 copies/ml.

Thirty patients were included in the study (nine patients had previously been treated with indinavir/ritonavir monotherapy).

At baseline, all combination therapies or indinavir/ritonavir monotherapy were stopped and only ritonavir-boosted atazanavir was administered for up to 24 weeks.

According to endpoint criteria, three patients failed on atazanavir/ritonavir monotherapy; all other patients (n = 27) were virologically suppressed in plasma at week 24 (HIV-RNA load < 50 copies/ml).

ACTG 5201 study²¹

This was a single-group, open-label, multicenter, 24-week pilot study including 36 HIV-1-infected patients with sustained virologic suppression for at least 48 weeks, receiving their first PI-based regimen.

Table 1. Summary of results in protease inhibitor monotherapy studies

	Kahler	ATARITMO	ACTG 5201	Karlström	Campo	Pierone	OK04	KALMO	Cameron (MM3- 613)	IMAN2	MONARK
Treatment group	experienced	experienced	experienced	experienced	experienced	experienced	experienced	experienced	naive	naive	naive
Entry criteria	HIV-RNA < 50 c/ml	HIV-RNA < 50 c/ml	HIV-RNA < 20 c/ml	HIV-RNA < 50 c/ml	HIV-RNA < 75 c/ml	HIV-RNA < 50 c/ml	HIV-RNA < 50 c/ml	HIV-RNA < 80 c/ml	HIV-RNA > 1000 c/ml	No PI resistance mutation	HIV-RNA < 100,000 c/ml
Results report to	48 weeks	24 weeks	24 weeks	72 weeks	24 weeks	48 weeks	96 weeks	96 weeks	96 weeks	48 weeks	96 weeks
Treatment groups	IDV/r	ATV/r	ATV/r	ATV/r	LPV/r	LPV/r	LPV/r + 2 NRTI	LPV/r	Standard HAART	LPV/r	LPV/r + 2 NRTI
Baseline HIV-RNA (\log_{10} c/ml), mean	< 50 c/ml	< 50 c/ml	< 50 c/ml	< 20 c/ml	< 50 c/ml	< 75 c/ml	< 50 c/ml	< 50 c/ml	< 80 c/ml	5.0	4.8
Dosed all	12	30	36	30 (planned)	6	18	100	98	30	104	51
Discontinued (%)	8.3	7	5.5	Stopped at 15 th participant	0	27.7	8	9	3.3	0	24
Sub-optimal response (%)	0	10	8.8	5/15 virologic failures = 33% n = 2 (33%)	33	13	22	3.3	> 50 c/ml n = 25 (25%)	0	15
% VL < 50 c/ml (intent-to-treat)	NA	NA	NA	NA	NA	NA	77	78	86.7 VL < 80 c/ml	48	61
Pl: protease inhibitor; NRTI: nucleoside reverse transcriptase inhibitor; EFV: efavirenz; VL: viral load; LPV: lopinavir; r: ritonavir; ATV: atazanavir; IDV: indinavir; copies: c.											

The primary endpoint was to evaluate the risk of virologic failure, defined as two consecutive plasma HIV-1 RNA levels ≥ 200 copies/ml, through 24 weeks after simplification to atazanavir/ritonavir monotherapy.

A total of 36 participants were enrolled; 33 patients remained in the study through 24 weeks. Out of the 33 patients, 31 were in virologic success.

Karlström study²²

This was a single-centre pilot trial investigating ritonavir-boosted atazanavir monotherapy in HIV-1-infected patients with stable antiretroviral therapy.

The patients were eligible if they had no prior history of PI therapy and if they had a sustained viral load < 20 copies/ml for a minimum of one year on conventional triple-antiretroviral therapy.

The study was intended to recruit 30 patients to be followed over 72 weeks. If five cases of virologic failures occurred during this period, the study was to be terminated.

The primary endpoint was the number of patients completing 72 weeks on monotherapy without experiencing virologic failure, defined by two consecutive plasma HIV-1 RNA load > 20 copies/ml.

The study was terminated according to protocol when 15 of the planned 30 patients had been recruited because five cases of virologic failure had already occurred.

The authors concluded that ritonavir-boosted atazanavir monotherapy might not be as potent as a conventional triple combination.

CAMPO study²³

This small, 24-week, pilot, non-comparative study explored whether monotherapy with lopinavir/ritonavir maintains viral suppression after initial therapy with conventional HAART.

Six previously naive patients on therapy with lopinavir/ritonavir 400/100 mg, zidovudine 300 mg, and lamivudine 150 mg, given twice a day for at least 24 weeks, and with three determinations of HIV-RNA < 50 copies/ml, were included.

Treatment with zidovudine/lamivudine was discontinued and lopinavir/ritonavir was continued. At week 24, four out of six patients had HIV-RNA levels < 400 copies/ml. The two remaining patients had less consistent viral suppression, with HIV-RNA levels ≥ 1000 copies/ml at least once. No PI-associated resistance mutation was detected in these two patients.

Pierone study²⁴

This was a 48-week prospective pilot study which evaluated the safety and efficacy of switching from NRTI plus NNRTI therapy to lopinavir/ritonavir monotherapy in HIV-infected patients with stable viral suppression < 75 copies/ml.

Patients were eligible for enrolment if they were over 18 years, naive to PI, and on a stable NNRTI-based antiretroviral regimen for more than six months, with two consecutive viral load determinations < 75 copies/ml. Patient not receiving their first HAART treatment regimen could be enrolled if the prior regimen had been interrupted for any reason other than viral failure. The primary endpoint was the proportion of participants with plasma HIV-RNA level < 75 copies/ml at week 48. Virologic failure was defined as HIV-RNA load > 400 copies/ml on two consecutive samples at least one week apart.

Eighteen patients discontinued NNRTI and started lopinavir/ritonavir during two weeks. Thereafter, NRTI were stopped and lopinavir/ritonavir monotherapy was continued. At week 48, 12 out of 18 (66%) participants met the primary endpoint. Thirteen (72%) participants completed the 48-week study on lopinavir/ritonavir monotherapy, and 12 out of 13 (92%) participants had HIV-RNA levels < 75 copies/ml at week 48 on study treatment.

Randomized studies

OK study²⁵

This 48-week study evaluated maintenance with lopinavir/ritonavir monotherapy versus continuing lopinavir/ritonavir plus two NRTI in HIV-infected patients with sustained viral suppression for more than six months prior to enrolment. Patients were eligible if they had no history of virologic failure while receiving a PI.

The primary outcome measure for efficacy was the proportion of patients with HIV-RNA < 500 copies/ml at week 48. Virologic failure was defined as two consecutive HIV-RNA > 500 copies/ml two weeks apart.

Forty-two patients were randomized to continue or to stop the NRTI (21 per group).

Twenty patients in each group completed the study. After a 48-week follow-up, 81% of patients in the monotherapy group maintained an HIV-RNA < 50 copies/ml, versus 95% in the triple-therapy group ($p = 0.34$).

OK04 study²⁶

The eligibility criteria for this study were essentially the same as for the OK study.

A total of 198 patients were randomized to lopinavir/ritonavir monotherapy (n = 100) or lopinavir/ritonavir triple therapy (n = 98). The primary endpoint was the proportion of participants without therapeutic failure (defined as two consecutive HIV-RNA values > 500 copies/ml two weeks apart). Of note, patients in the monotherapy group who experienced viral rebound and were subsequently re-suppressed after intensification with two NRTI were not considered as therapeutic failures.

After 48 weeks, the proportion of patients without therapeutic failure was 94% in the monotherapy group and 89.9% in the triple-therapy group²⁶. At week 96, the percentage of patients without virologic failure was 87% in the monotherapy group versus 78% in the triple-therapy group. The proportion of patients with HIV-RNA < 50 copies/ml was 77% in the monotherapy group versus 78% in the triple-therapy group²⁷.

KALMO study²⁸

This was an open-label study in which 60 patients were randomized 1:1 to maintain their current regimen or to switch to lopinavir/ritonavir monotherapy.

Participants were eligible if their plasma HIV-RNA was < 80 copies/ml for at least six months on their current regimen, with no prior virologic failure, and with a CD4 cell count > 100 cells/mm³. The primary endpoint was the proportion of patients with HIV-RNA < 80 copies/ml by week 96.

At week 48, by intent-to-treat analysis, 26 out of 30 (86.7%) patients in the monotherapy group, and 25 out of 30 (83.3%) patients in the control group had plasma viral loads < 80 copies/ml²⁹. At week 96, 26 out of 30 (86.7%) subjects in both groups had viral loads < 80 copies/ml²⁸.

Induction-maintenance strategy

Cameron study M03-613³⁰

This study was a randomized trial comparing the efficacy of lopinavir/ritonavir monotherapy following combination treatment with lopinavir/ritonavir plus lamivudine/zidovudine with a standard combination regimen (efavirenz plus lamivudine/zidovudine) in antiretroviral-naïve subjects followed for 96 weeks.

Patients were eligible to participate in the study if they were naïve for any antiretroviral treatment, with HIV-RNA ≥ 1000 copies/ml, and without resistance to any study drug on screening genotype.

A total of 155 patients were randomized to receive lamivudine/zidovudine twice daily with either lopinavir/ritonavir (n = 104) or efavirenz (n = 51). In the lopinavir/ritonavir group, subjects achieving three consecutive monthly HIV-RNA < 50 copies/ml between weeks 24-48 stopped zidovudine/lamivudine and continued with lopinavir/ritonavir monotherapy.

The primary endpoint was the proportion of subjects in the intent-to-treat exposed population with HIV-RNA < 50 copies/ml at week 96.

Viral rebound was defined as two consecutive plasma HIV-RNA > 50 copies/ml after achieving plasma HIV-RNA < 50 copies/ml.

In total, 112 (72%) subjects completed the study on their assigned regimen. In the intent-to-treat exposed population, 48% of the lopinavir/ritonavir group and 61% in the efavirenz group had HIV RNA < 50 copies/ml at week 96 (p = ns). Lopinavir/ritonavir monotherapy subjects had a significantly shorter time from simplification to confirmed virologic rebound > 50 copies/ml compared to similar efavirenz-treated subjects.

First-line strategy

Pilot studies

IMANI-2 study³¹

This pilot study evaluated the efficacy of a first-line lopinavir/ritonavir monotherapy regimen in 39 antiretroviral-naïve HIV-1-infected patients without any PI resistance, followed during 48 weeks. The primary endpoint was the proportion of patients with HIV-RNA < 75 copies/ml at week 48.

All participants completed the study. There were six virologic failures of which five could be attributed to poor adherence to study treatment.

Randomized study

MONARK study³²

MONARK was a prospective, pilot, open-label, randomized, 96-week trial comparing the safety and efficacy of lopinavir/ritonavir monotherapy to a standard triple therapy associating lopinavir/ritonavir with lamivudine/zidovudine, as an initial treatment

regimen in HIV-infected patients with HIV-RNA < 100,000 copies/ml.

Patients were eligible if they were 18 years or older, naive to antiretroviral therapy, had a CD4 cell > 100/mm³, a plasma HIV-RNA < 100,000 copies/ml, and if they required initiation of anti-HIV therapy according to the IAS guidelines.

The primary endpoint was the proportion of patients with HIV-RNA < 400 copies/ml at week 24 and < 50 copies/ml at week 48. Patients were followed up to week 96.

A total of 136 patients were randomized to the monotherapy (n = 83) or the triple-therapy (n = 53) groups. The on-treatment analysis indicated that 80% in the monotherapy group and 95% in the triple-therapy group reached the primary endpoint (p = 0.02). Less patients on lopinavir/ritonavir monotherapy had an HIV-RNA < 50 copies/ml at week 48 compared to those on lopinavir/ritonavir triple therapy (84 vs. 98%; p = 0.03). The authors concluded that lopinavir/ritonavir monotherapy demonstrated a lower rate of virologic suppression when compared to lopinavir/ritonavir triple therapy and therefore should not be considered as a preferred treatment option in antiretroviral-naive patients.

Development of resistance mutations at failure on boosted protease inhibitor monotherapy (Table 2)

Boosted PI combination therapy is associated with a high genetic barrier to development of resistance, as reflected by the very low rate of PI resistance observed over periods of up to seven years of treatment³³. Indeed, combination therapy with lopinavir/ritonavir rarely selects for PI resistance in antiretroviral-naive patients^{34,35}.

In the context of antiretroviral monotherapy, it will be of major importance to study the risk of selection of drug-resistant viruses. In addition, the polymorphism of HIV-1 non-B protease could decrease the genetic barrier as some polymorphism mutations may impact PI susceptibility, thus increasing the risk of resistance development.

Single-drug maintenance therapy with atazanavir/ritonavir in pilot studies described rates of virologic failure varying from 7-36%²⁰⁻²². In these three studies, resistance testing at failure did not identify PI resistance mutations, and no sample showed any primary resistance mutations, including I50L which is the mutation selected in the case of atazanavir virologic failure.

Maintenance strategy with lopinavir/ritonavir monotherapy showed that after full viral suppression obtained with HAART, efficacy of maintenance was demonstrated in comparison to triple therapy^{27,30}. In the OK study, after 48 weeks of follow-up, 21 patients in each group were still in the study; 81% patients in the monotherapy group remained with an HIV-RNA < 50 copies/ml, versus 95% for the triple-therapy group (p = 0.34). No PI resistance was detected in patients with virologic failure and genotypic resistance test available (Table 2). In the Cameron study, 48% of the lopinavir/ritonavir group and 61% in the efavirenz group had an HIV-RNA < 50 copies/ml at week 96. In the lopinavir/ritonavir monotherapy group, three patients selected a resistant virus at week 40 (M46L, V82A), week 44 (L90M) and week 60 (M46I). In the lopinavir/ritonavir triple-therapy group, one patient selected a resistant virus at week 40 (I54V) (Table 2). The PI resistance patterns observed in patients included in the Cameron study were already described for lopinavir/ritonavir resistance in the context of triple therapy, with the emergence of major PI mutations such as M46I, I54V, V82A, and L90M^{34,35}. The pattern of mutations including V32I, M46I, and I47A was not evidenced in these studies in contrast to the Friend report.

In the MONARK study, where lopinavir/ritonavir was used as monotherapy in naive patients, preliminary results until week 48 reported that resistance mutations were detected in the protease gene in three out of 83 patients (3.6%) in lopinavir/ritonavir monotherapy, and in the reverse transcriptase gene in one out of 53 on lopinavir/ritonavir triple therapy³². More recently, at the last HIV Drug Resistance Workshop, Delaugerre, et al. reported the rate and profile of resistant virus at week 96³⁶. In the lopinavir/ritonavir monotherapy group, 32 subjects qualified for genotypic resistance testing, seven due to suboptimal response, five discontinued study treatment, and 20 requested because of the occurrence of low-level episodes of viremia of 50-500 copies/ml after an HIV-RNA < 50 copies/ml. Of these 32 subjects, five had a virus with major PI mutations: M46I, L63P at week 40; L76V at week 44; I13V, M46I, L76V at week 62; L10F, V82A at week 76; L76V at week 90 (Table 2). The five viruses with major PI mutations belonged to subtype B in two cases and to CRF02_AG subtype in three cases. Major PI mutations were detected between weeks 40 and 90. The selected PI-associated resistance mutations (M46I and V82A) have been previously described in patients failing on a triple combination containing lopinavir/ritonavir. Interestingly, three out of the five patients selected protease muta-

Table 2. Main characteristics of studies using protease inhibitor monotherapy

Article	Study	Previous treatment	Study treatment after switch	Patients (n)	Virologic success (%)	Virologic failure (%)	Genotypic resistance test
Boosted protease inhibitor maintenance study							
ACTG 5201 study Swindells S, et al. JAMA. 2006	Non-comparative 24 week pilot study	First PI-based regimen with VL < 50 c/ml for at least 48 w	ATV/r (300/100 mg qd)	34	31/34 (91%) at week 24	3/34 (9%) wk 12: 4730 c/ml wk 14: 1285 c/ml wk 20: 28 397 c/ml	Absence of PI resistance
Karlström O, et al. J. AIDS.	Non-comparative pilot study	PI naive ART therapy with VL < 20 c for at least 48 w	ATV/r (300/100 mg qd)	15	9/14 (64%) median time of 36 weeks (16-48)	5/14 (36%) wk 12: 3400, 100 c/ml wk 12: 100, 400 c/ml wk 16: 100, 200 c/ml wk 12: 50, 200 c/ml wk 16: 50, 300 c/ml	Absence of PI resistance (n = 3) 2 patients not tested
ATARITMO study Vernazza P, et al. AIDS. 2007	Non-comparative 24-week pilot study	HAART treatment with VL < 50 c/ml for at least 12 w	ATV/r (300/100 mg qd)	30	27/30 (90%) at week 24 (VL < 50 c/ml)	*2/30 (7%) wk 8: > 400, > 400 c/ml wk 20: > 400, > 400 c/ml	Not tested
OK study Arribas J R, et al. J. AIDS. 2005	Randomized controlled, pilot study (1:1)	No history of virologic failure with HAART containing PI 2 NRTI + LPV/r > 1 month and VL < 50 c/ml for at least 24 w	LPV/r (400/100 mg bid) monotherapy 2 NRTI + LPV/r	21	17/21 (81%) at week 48	4/21 (19%) (wks 14, 16, 25, 29)	Absence of PI resistance (n = 3) 1 patient lost of follow-up Absence of PI resistance (n = 1)
Cameron D W, et al.	Randomized controlled, study (2:1)	ARV naive patients ZDV/3TC/LPV/r (bid) with 3 consecutive VL < 50 c/ml between w 24 and w 48	LPV/r (400/100 mg bid)	71	48% VL < 50 c/ml at week 36	LPV/r monotherapy (n = 14) 3 PI resistance w 40: M46L, V82A w 44: L90M w 60: M46 LPV/r tritherapy (n = 1) w 40: I54V ZDV/3TC/EFV (n = 5) 1/5 NNRTI resistance K103N	
		EFV (600 mg qd)/ZDV/3TC	EFV (600 mg qd)/ZDV/3TC	51	61% VL < 50 c/ml at week 36		

(Continue).

Table 2. Main characteristics of studies using protease inhibitor monotherapy (Continued)

Article	Study	Previous treatment	Study treatment after switch	Patients (n)	Virologic success (%)	Virologic failure (%)	Genotypic resistance test
Boosted protease inhibitor monotherapy in naïve patients							
MONARK study Delfraissy JF, et al. AIDS [in press]. Delaugere C, et al. Antivir Ther. 2007	Randomized controlled study (2:1)	Naïve patients VL < 100 000 c/ml CD4 cell count > 100/mm ³	LPV/r (400/100 mg bid)	83	53/83 (64%) VL < 400 c/ml at w 24 and < 50 c/ml at w 48	40/53 (75%)	Absence of PI resistance (n = 27) 5 PI resistance w 40: M46I, L63P w 44: L76V w 62: I13V, M46I, L76V w 76: L10F, V82AV w 90: L76V Absence of resistance (n = 1) 3TC resistance w 24: M184V

* ATARITMO study: Two patients failed the ATV/r monotherapy (2 consecutive HIV-RNA > 400 copies/ml). One patient was identified as a protocol violator having previously failed indinavir-based HAART, one patient decided to stop treatment after week 20, one patient had persistent low-level replication > 50 copies/ml but never reached the failure criteria.
PI: protease inhibitor; NRTI: nucleoside reverse transcriptase inhibitor; VL: viral load; ART: antiretroviral therapy; ATV: atazanavir; LPV: lopinavir; EFV: efavirenz; ZDV: zidovudine; 3TC: lamivudine; c: copies.

tion L76V and all three were infected with HIV-1 CRF02_AG subtype. In the lopinavir/ritonavir triple-combination group, none had a virus with a major PI mutation.

In summary, no PI-resistant virus was identified in pilot studies using atazanavir/ritonavir as single-drug maintenance therapy. In studies using lopinavir/ritonavir as single-drug maintenance therapy or as monotherapy in naïve patients, the barrier for selection of PI resistance mutations appears to be lower than with lopinavir/ritonavir-based three-drug regimens. In addition, mutation L76V in protease gene has not been yet described in patients failing on triple therapy, and was selected in three HIV-1 patients treated with first-line lopinavir/ritonavir monotherapy and infected with a CRF02_AG virus. A first explanation could be the reduced potency of antiretroviral regimens in naïve patients due to the absence of NRTI. A second explanation could be the polymorphism of HIV-1 non-B protease gene that could decrease the genetic barrier, subsequently increasing the risk of resistance development.

Efficacy of boosted protease inhibitor monotherapy in anatomical sanctuaries

Triple combination with two NRTI and one PI has been shown to efficiently reduce HIV-1 shedding in semen of most patients³⁷. However, little is known about the impact of PI monotherapy on HIV-1 shedding in semen. One concern about boosted PI monotherapy is its ability to control HIV-1 replication in sanctuary anatomical reservoirs such as the male genital tract. Indeed, drug disposition in semen is influenced by drug ionization, lipophilicity, molecular weight, the degree of protein binding, affinity for membrane transporters, and semen pH³⁸. The biochemical characteristics of most PI suggest they may not penetrate the blood-testis barrier well, being more lipophilic and extensively bound to blood plasma proteins. We and others have previously shown that penetration of boosted amprenavir, saquinavir, lopinavir, and atazanavir in semen was poor^{39,40}, contrasting with that of indinavir which achieved therapeutic concentrations in semen³⁹. This issue raises concerns about the local selection of drug resistance, with potential replenishment with resistant virus into circulation⁴¹.

Two studies describing seminal plasma antiretroviral activity of boosted atazanavir when used as sole agent are available. These two studies involved patients who had an already suppressed HIV replication on a triple combination before switching to boosted atazanavir

monotherapy^{20,21}. These two studies provided conflicting results, one showing no detection of HIV-RNA in seminal plasma of eight patients after 24 weeks on boosted atazanavir monotherapy²¹, while in the other study, high levels of HIV-RNA were detected in seminal plasma of 2/15 patients tested at week 24, despite full viral suppression in blood²⁰. No pharmacologic measurement was performed in these two studies.

The only study in the male genital tract with data on both viral quantification and pharmacologic measurements in semen was performed in antiretroviral-naïve patients starting a first-line monotherapy with lopinavir/ritonavir, or a standard triple combination with zidovudine/lamivudine plus lopinavir/ritonavir in the MONARK trial³². In this study, semen HIV-RNA was undetectable in five out of five men on lopinavir/ritonavir monotherapy, despite undetectable semen lopinavir and ritonavir concentrations⁴². Semen HIV-RNA was also undetectable in five out of five men after 48 weeks on zidovudine/lamivudine plus lopinavir/ritonavir⁴².

Only one study explored the impact of lopinavir/ritonavir monotherapy in the female genital tract, with available data on both viral quantification and pharmacologic measurement. In this study, HIV-RNA was undetectable in the cervicovaginal fluid of all seven women studied⁴³. Lopinavir/ritonavir penetration into cervicovaginal fluid exceeded the reference population median IC₅₀ (1.9 ng/ml) in all but one sample, despite significant dilution of lavage samples⁴³.

Finally, two studies addressed the issue of boosted PI monotherapy virologic impact in cerebrospinal fluid (CSF). The first study, IMANI-2, involved antiretroviral-naïve patients who started a first-line lopinavir/ritonavir monotherapy, and who had achieved at least two plasma HIV-RNA measurements < 75 copies/ml after a minimum of 24 weeks on treatment⁴⁴. The HIV-RNA in CSF was undetectable in 10 out of the 11 patients studied. The lopinavir CSF median concentration was 24.3 ng/ml. The median lopinavir IC₅₀ ratio was 12.8 (range, 3.7-44.9). All individual-subject lopinavir concentrations exceeded the reference population median IC₅₀ by at least threefold, and the mean CSF lopinavir concentration exceeded the reference population median IC₅₀ by 16-fold. The authors concluded that lopinavir/ritonavir delivers adequate lopinavir concentrations that reliably exceed the reference population median IC₅₀ for wild-type virus⁴⁴. The second study involved already suppressed patients and switched for boosted atazanavir monotherapy²⁰. At week 24, CSF was obtained from 20 patients with plasma HIV-RNA < 50 copies/ml. Three patients (15%) had elevated

viral loads in CSF (2.8, 2.2, and 3.8 log₁₀ cp/ml) despite viral suppression in plasma. Mean ratio of CSF/plasma drug concentration was 0.9% (\pm 0.8, range 0.1-2.7%). These levels were slightly above the EC₅₀ (1 ng/ml) for wild-type virus.

Clinical use of protease inhibitor monotherapy in clinical practice

The challenge currently facing HIV researchers and clinicians is to find a simple and potent treatment strategy that might not only avoid cumulative toxicities associated with long-term use of antiretrovirals, but also reduce the cost of a lifespan-planned antiretroviral therapy. Regarding these issues, boosted PI monotherapy seems an appealing approach. All boosted PI monotherapy studies reported herein showed that this strategy is effective in a surprisingly high proportion of patients. This clearly challenges the notion that a three-drug regimen is a definite prerequisite for successful antiretroviral therapy.

The major concern with such a strategy is the higher proportion of patients experiencing transient episodes of low-level viremia (50-500 copies/ml) when compared to classical triple regimens. Of note, the proportion of patients with low-level, transient viremia seems to depend on the clinical setting in which it is used, being lesser in studies of maintenance therapy than in first-line studies. In most cases, this low-level viremia did not favor the development of resistance mutations. A simulated model of treatment simplification with boosted PI monotherapy suggested that subjects who do not develop PI resistance at the time of virologic failure are projected to live longer than subjects receiving the standard-of-care regimen because they can receive an additional line of therapy without compromising future options⁴⁵. In the very few cases where resistance mutations were selected on suboptimal boosted PI monotherapy³⁶, they did not affect phenotypic or genotypic viral susceptibility to the PI used and did not jeopardize future therapeutic options. Indeed, intensification with two NRTI yielded a plasma HIV-RNA < 50 copies/ml. All randomized studies showed a similar increase in CD4 cells in patients on triple combination or on boosted PI monotherapy, despite higher rates of low-level viremia in the latter group^{30,32}, suggesting that low-level viremia had minimal, if any, impact on restoration of immune function. The origin of this low-level viremia is at present unclear. Adherence may be a critical determinant²¹. In addition, a recently published mathematical model suggested that this low-level viremia

may also be facilitated by differential drug penetration in anatomic sanctuary sites⁴⁶. The consequences of suboptimal drug penetration in the central nervous system or in the genital tract have major clinical and public health implications, especially in the setting of boosted PI monotherapy. Indeed, despite full viral suppression in blood plasma, some patients may develop HIV encephalopathy⁴⁷. Given that, in the vast majority of cases, viral particles in anatomic reservoirs originate from passive diffusion from blood plasma⁴⁸, we would therefore, in keeping with Vernazza, et al.²⁰, caution against the wide use of PI-based monotherapies until complete suppression of viral load in the central nervous system is documented or at least probable after a sufficient induction period with a triple combination. Compartmentalization of HIV-1 in the genital tract is also a source of concern. It might not only increase the risk of development of local resistance, but also enhance the risk of HIV transmission of resistant strains from treated individuals⁴⁹. The few existing data on the impact of boosted PI monotherapy on HIV-1 shedding in the male genital tract showed conflicting results^{20,21,42}, which suggest that the reassuring results obtained with lopinavir might not be extended to the whole PI class.

Another important issue is patient quality of life; this issue, however, has been poorly addressed in most randomized studies. Fat distribution has been studied by Cameron, et al., who showed that peripheral fat loss occurred significantly less frequently on lopinavir/ritonavir monotherapy compared to a triple regimen with efavirenz. Moreover, lipohypertrophy occurred with a similar frequency in both treatment groups³⁰.

Finally, a boosted PI monotherapy strategy offers an interesting cost saving compared with the standard-of-care triple combination^{24,45}.

In conclusion, a boosted PI monotherapy strategy can maintain continuous plasma HIV-RNA suppression in a large proportion of patients already suppressed on a standard triple combination. The more frequent occurrence of low-level viremia, however, does not allow the widespread use of such a strategy outside of clinical studies at this time. Moreover, we believe that the suboptimal efficacy of such a strategy in anatomical viral sanctuaries requires a sufficient induction period on standard triple combination, which makes first-line boosted PI monotherapy not suitable in antiretroviral-naïve patients. Ongoing large randomized studies with new generation PI such as darunavir, with a high genetic barrier and low induction of resistance mutations in case of virologic failure⁵⁰, will help to better identify the most appropriate patient populations that might

benefit most from a boosted PI single-agent strategy and to better understand the potential risks and benefits associated with this therapeutic strategy.

References

1. Palella F, Delaney K, Moorman A, et al. Declining morbidity and mortality among patients with advanced HIV infection. HIV Outpatient Study Investigators. *N Engl J Med.* 1998;338:853-60.
2. Brinkman K, ter Hofstede H, Burger D, Smeitink J, Koopmans P. Adverse effects of reverse transcriptase inhibitors: mitochondrial toxicity as common pathway. *AIDS.* 1998;12:1735-44.
3. Brinkman K, Smeitink J, Romijn JA, Reiss P. Mitochondrial toxicity induced by nucleoside-analog reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy related lipodystrophy. *Lancet.* 1999;354:1112-15.
4. Saint-Marc T, Partisan M, Poizot-Martin I, et al. A syndrome of peripheral fat wasting (lipodystrophy) in patients receiving long-term nucleoside analogue therapy. *AIDS.* 1999;13:1659-67.
5. Mallal S, John M, Moore C, James I, McKinnon E. Contribution of nucleoside analog reverse transcriptase inhibitors to subcutaneous fat wasting in patients with HIV infection. *AIDS.* 2000;14:1309-16.
6. Carr A, Emery S, Law M, Puls R, Lundgren J, Powderly W. An objective case definition of lipodystrophy in HIV-infected adults: a case-control study. *Lancet.* 2003;361:726-35.
7. Duran S, Saves M, Spire B, et al. Failure to maintain long-term adherence to HAART: the role of lipodystrophy. *AIDS.* 2001;15:2441-4.
8. El-Sadr W, Lundgren J, Neaton J, et al. CD4⁺ count-guided interruption of antiretroviral treatment. *N Engl J Med.* 2006;355:2283-96.
9. van der Valk M, Gisolf E, Reiss P, et al. Increased risk of lipodystrophy when nucleoside analog reverse transcriptase inhibitors are included with protease inhibitors in the treatment of HIV-1 infection. *AIDS.* 2001;15:847-55.
10. Murphy R, Zhang J, Hafner R, et al. Switching to a thymidine analog-sparing or a nucleoside-sparing regimen improves lipoatrophy: 24-week results of a prospective randomized clinical trial, AACTG 5110. 12th CROI 2005.
11. Carr A, Hudson J, Chuah J, et al. HIV protease inhibitor substitution in patients with lipodystrophy: a randomized, controlled, open-label, multicentre study. *AIDS.* 2001;15:1811-22.
12. Ruiz L, Negredo E, Domingo P, et al. Antiretroviral treatment simplification with nevirapine in protease inhibitor-experienced patients with HIV-associated lipodystrophy: 1-year prospective follow-up of a multicenter, randomized, controlled study. *J Acquir Immune Defic Syndr.* 2001;27:229-36.
13. Martinez E, Garcia-Viejo M, Blanco J, et al. Impact of switching from HIV-1 protease inhibitors to efavirenz in successfully treated adults with lipodystrophy. *Clin Infect Dis.* 2000;31:1266-73.
14. Smith D, Carr A, Law M, et al. Thymidine analog withdrawal for lipoatrophic patients on protease-sparing therapy improves lipoatrophy but compromises antiviral control: the PIILR extension study. *AIDS.* 2002;16:2489-91.
15. Valantin M, Lanoy E, Bentata M, et al. Maintenance of virologic suppression and impact on lipoatrophy of NRTI-sparing regimen in antiretroviral treated patients: NONUKE ANRS 108 study. 10th European AIDS Conference. Dublin, Ireland 2005.
16. Molla A, Korneyeva M, Gao Q, et al. Ordered accumulation of mutations in HIV protease confers resistance to ritonavir. *Nat Med.* 1996;2:760-6.
17. Marcelin A, Affolabi D, Lamotte C, et al. Resistance profiles observed in virologic failures after 24 weeks of amprenavir/ritonavir containing regimen in protease inhibitor experienced patients. *J Med Virol.* 2004;74:16-20.
18. Bongiovanni M, Bini T, Adorni F, et al. Virologic success of lopinavir/ritonavir salvage regimen is affected by an increasing number of lopinavir/ritonavir-related mutations. *Antivir Ther.* 2003;8:209-14.
19. Kahlert C, Hupfer M, Wagels T, et al. Ritonavir boosted indinavir treatment as a simplified maintenance "mono"-therapy for HIV infection. *AIDS.* 2004;18:955-7.

20. Vernazza P, Daneel S, Schiffer V, et al. The role of compartment penetration in PI-monotherapy: the Atazanavir-Ritonavir Mono-maintenance (ATARITMO) Trial. *AIDS*. 2007;21:1309-15.
21. Swindells S, DiRienzo A, Wilkin T, et al. Regimen simplification to atazanavir-ritonavir alone as maintenance antiretroviral therapy after sustained virologic suppression. *JAMA*. 2006;296:806-14.
22. Karlström O, Josephson F, Sonnerborg A. Early virologic rebound in a pilot trial of ritonavir-boosted atazanavir as maintenance monotherapy. *J Acquir Immune Defic Syndr*. 2007;44:417-22.
23. Campo R, Lalanne R, Tanner T, et al. Lopinavir/ritonavir maintenance monotherapy after successful viral suppression with standard HAART in HIV-1-infected patients. *AIDS*. 2005;19:447-9.
24. Pierone G, Mieras J, Bulgin-Coleman D, et al. A pilot study of switch to lopinavir/ritonavir monotherapy from NNRTI-based therapy. *HIV Clin Trials*. 2006;7:237-45.
25. Arribas J, Pulido F, Delgado R, et al. Lopinavir/ritonavir as single-drug therapy for maintenance of HIV-1 viral suppression: 48-week results of a randomized, controlled, open-label, proof-of-concept pilot clinical trial (OK Study). *J Acquir Immune Defic Syndr*. 2005;40:280-7.
26. Pulido F, Arribas J, Delgado R, et al. Lopinavir-ritonavir monotherapy versus lopinavir-ritonavir and two nucleosides for maintenance therapy of HIV. *AIDS*. 2008;22:F1-9.
27. Arribas J, Pulido F, Delgado R, et al. Lopinavir-ritonavir monotherapy vs lopinavir-ritonavir and two nucleosides for maintenance therapy of HIV. Ninety-six week results of a randomized, controlled, open label, clinical trial (OK04 Study). 11th EACS. Madrid, Spain, October 2007 [abstr PS3/1].
28. Nunes E, Oliveira M, Almeida M, et al. 96-week efficacy and safety of simplification to single agent lopinavir/ritonavir regimen in patients suppressed below 80 copies/ml on HAART - The KalMo Study. 11th EACS. Madrid, Spain, October 2007 [abstr P7.5/04].
29. Nunes E, Oliveira M, Almeida M, et al. 48-week efficacy and safety results of simplification to single agent lopinavir/ritonavir regimen in patients suppressed below 80 copies/ml on HAART-the KalMo study. XVI IAC. Toronto, Canada 2006 [abstr TUAB0103].
30. Cameron D, da Silva B, Arribas J, et al. A randomized trial comparing lopinavir-ritonavir, zidovudine and lamivudine induction followed by lopinavir-ritonavir monotherapy with efavirenz, zidovudine and lamivudine in antiretroviral-naïve subjects: 96 week results. *J Infect Dis*. 2008 [in press].
31. Gathe J, Yeh R, Mayberry C, et al. Single agent therapy with lopinavir/ritonavir suppresses plasma HIV-1 viral replication in HIV-1 naïve subjects: IMANI-2 48-week results. 4th IAS Conference on HIV Pathogenesis, Treatment and Prevention. Sydney, Australia, July 2007.
32. Delfraissy J, Flandre P, Delaugerre C, et al. Lopinavir/ritonavir monotherapy or plus zidovudine and lamivudine in antiretroviral-naïve HIV-infected patients: the Monark trial. *AIDS*. 2008; 22:385-93.
33. King M, Lipman B, Molla A, Kempf G, Hanna G. Assessing the potential for protease inhibitor cross-resistance in antiretroviral-naïve patients experiencing viral rebound on a lopinavir/ritonavir-based regimen. 3rd European HIV Drug Resistance Workshop. Athens, Greece, 2005 [abstr 9.9].
34. Conradie F, Sanne I, Venter W, Eron J. Failure of lopinavir-ritonavir (Kaletra)-containing regimen in an antiretroviral-naïve patient. *AIDS*. 2004;18:1084-5.
35. Friend J, Parkin N, Liegler T, Martin J, Deeks S. Isolated lopinavir resistance after virologic rebound of a ritonavir/lopinavir-based regimen. *AIDS*. 2004;18:1965-6.
36. Delaugerre C, Flandre P, Dellamonica P, et al. Protease gene mutation in a trial comparing first line LPV/r monotherapy to LPV/r + AZT/3TC (MONARK Trial). XVI International HIV Drug Resistance Workshop. Barbados 2007.
37. La Sala G, Pilotti E, Nicoli A, et al. Dynamics of HIV viral load in blood and semen of patients under HAART: impact of therapy in assisted reproduction procedures. *AIDS*. 2007;21:377-9.
38. Taylor S, Pereira A. Antiretroviral drug concentrations in semen of HIV-1 infected men. *Sex Transm Infect*. 2001;77:4-11.
39. Ghosn J, Chaix M, Peytavin G, et al. Penetration of enfuvirtide, tenofovir, efavirenz, and protease inhibitors in the genital tract of HIV-1-infected men. *AIDS*. 2004;18:1958-61.
40. van Leeuwen E, ter Heine R, van der Veen F, Repping S, Beijnen J, Prins J. Penetration of atazanavir in seminal plasma of men infected with HIV-1. *Antimicrob Agents Chemother*. 2007;51:335-7.
41. Kepler T, Perelson A. Drug concentration heterogeneity facilitates the evolution of drug resistance. *Proc Natl Acad Sci USA*. 1998; 95:11514-19.
42. Ghosn J, Chaix M, Peytavin G, et al. Absence of HIV-1 shedding in male genital tract after one year of first-line lopinavir/ritonavir alone or in combination with Combivir®. XV International HIV Drug Resistance Workshop. Sitges, Spain 2006 [abstract 76].
43. Yeh R, Hammill H, Fiscus S, et al. Single agent therapy with lopinavir/ritonavir controls HIV-1 viral replication in the female genital tract. 11th EACS. Madrid, Spain, October 2007.
44. Yeh R, Letendre S, Novak I, et al. Single agent therapy with lopinavir/ritonavir controls HIV-1 replication in the central nervous system. 14th CROI. Los Angeles, USA 2007.
45. Schackman B, Scott C, Sax P, et al. Potential risks and benefits of HIV treatment simplification: a simulation model of a proposed clinical trial. *Clin Infect Dis*. 2007;45:1062-70.
46. Jones L, Perelson A. Transient viremia, plasma viral load, and reservoir replenishment in HIV-infected patients on antiretroviral therapy. *J Acquir Immune Defic Syndr*. 2007;45:483-93.
47. Hull M, Johnston D, Sherlock C. Evidence of neurological deterioration due to compartmentalized HIV-1 with discordant viral load and resistance evolution in cerebrospinal fluid in a treatment experienced patient with undetectable plasma viral load: a case report XVI IAC. Toronto, Canada 2006 [abstract THPE0071].
48. Ghosn J, Viard J, Katlama C, et al. Evidence of genotypic resistance diversity of archived and circulating viral strains in blood and semen of pre-treated HIV-infected men. *AIDS*. 2004;18:447-57.
49. Taylor S, Cane P, Hue S, et al. Identification of a transmission chain of HIV type 1 containing drug resistance-associated mutations. *AIDS Res Hum Retroviruses*. 2003;19:353-61.
50. Madruga J, Berger D, McMurchie M, et al. Efficacy and safety of darunavir-ritonavir compared with that of lopinavir-ritonavir at 48 weeks in treatment-experienced, HIV-infected patients in TITAN: a randomized controlled phase III trial. *Lancet*. 2007;370:49-58.