

Risk for Immune-Mediated Liver Reactions by Nevirapine Revisited

Jose Medrano, Pablo Barreiro, Paula Tuma, Eugenia Vispo, Pablo Labarga, Francisco Blanco and Vincent Soriano

Infectious Diseases Department, Hospital Carlos III, Madrid, Spain

Abstract

Implementation of combination antiretroviral therapies has transformed the prognosis of HIV infection during the past decade. Because of its low-pill burden, convenient administration once or twice daily without food restrictions and, in the case of nevirapine, favorable metabolic profile and proven safety in pregnant women and newborns, nonnucleoside reverse transcriptase inhibitors have been shown to be often superior to protease inhibitors as third agents in combination with a backbone of two nucleoside reverse transcriptase inhibitors. Therefore, two nucleoside reverse transcriptase inhibitors plus one nonnucleoside reverse transcriptase inhibitor are currently the most popular used first-line therapies. Hepatotoxicity during the first weeks of therapy with nevirapine, particularly when initiated in women with CD4 counts > 250 cells/mm³, has prompted changes in guidelines and led to a modification in the product label. Recent data, however, suggest that virologically suppressed patients under any other antiretroviral drug combination may safely switch to nevirapine as a part of a simplification strategy, regardless of their current CD4 count. This subset of patients does not show an increased risk of hepatotoxicity or rash with elevated CD4 counts, as has been reported in drug-naïve HIV persons. This information is important and may expand the number of candidates who could benefit from nevirapine use, since a substantial proportion of HIV patients show metabolic abnormalities (dyslipidemia, insulin resistance, liver steatosis) and are at increased cardiovascular risk. Fortunately, many of these conditions may ameliorate or improve using nevirapine. (AIDS Rev. 2008;10:110-5)

Corresponding author: José Medrano, josemedranolaporte@hotmail.com

Key words

Nevirapine. Liver toxicity. Hypersensitivity reactions. CD4 counts.

Introduction

All antiretroviral drugs are potentially hepatotoxic, and liver enzyme elevations are commonly seen in patients under prolonged highly active antiretroviral therapy (HAART)¹. Several mechanisms of hepatotoxicity have been described, including metabolic host-mediated injury, hypersensitivity reactions, mitochondrial toxicity, and immune reconstitution phenomena (Table 1). More recently, two novel pathways for liver hepatotoxicity have been suggested. Insulin resistance in the context of the HAART-associated metabolic syndrome may lead to nonalcoholic steatohepatitis and ultimately to liver fibrosis². On the other hand, some nucleoside analogs, particularly didanosine, might be involved in a cascade of liver events, starting with portal sinusoidal injury and thrombosis, leading to hypoperfusion of some parenchymal hepatic areas and nodular regenerative hyperplasia³⁻⁵.

After initiating HAART, the reported incidence of severe liver toxicity ranges from 2-18%⁶⁻¹⁶. Besides

Correspondence to:

José Medrano
Servicio de Enfermedades Infecciosas
Hospital Carlos III
Sinesio Delgado, 10
28029 Madrid, Spain
E-mail: josemedranolaporte@hotmail.com

Table 1. Mechanisms of drug-related liver injury in HIV-infected patients¹**Metabolic host mediated (intrinsic & idiosyncratic)**

- PI and NNRTI
- Occurrence can vary by agent
- Dose-dependence for intrinsic damage

Hypersensitivity

- Nevirapine > abacavir > fosamprenavir
- Occurs early, usually within 8 weeks
- Often associated with rash
- HLA-linked

Mitochondrial toxicity

- NRTI (ddI > d4T > AZT > ABC = TDF = 3TC/FTC)
- Tends to occur after prolonged exposure

Immune reconstitution

- Chronic hepatitis B (unclear for HCV)
- Occurs within the first month following initiation of HAART
- More common in patients with very low CD4 counts who experience robust immune recovery

PI: protease inhibitor; NNRTI: nonnucleoside reverse transcriptase inhibitor; NRTI: nucleoside reverse transcriptase inhibitor; HLA: human leukocyte antigen; ddI: didanosine; d4T: stavudine; AZT: azidothymidine; ABC: abacavir; TDF: tenofovir; 3TC: lamivudine; FTC: emtricitabine.

prolonged and continuous antiretroviral drug exposure, other comorbidities that predispose to liver damage are common among HIV-infected individuals, such as chronic hepatitis B or C, alcohol or illicit drug abuse, dyslipidemia, glucose metabolism abnormalities, and advanced immune suppression, all of which contribute in producing rapid, progressive, hepatic fibrosis^{1,17-20}. When indicated, HAART should not be deferred for any concern about the risks of hepatotoxicity as the benefits of immune recovery generally overcome the risks for liver events¹. However, prevention and management of antiretroviral-related hepatotoxicity have emerged as major issues for HIV-infected patients receiving HAART, since drug-associated hepatotoxicity can lead to liver-related morbidity and mortality²¹, as well as to discontinuation of HIV treatment.

Skin reactions and hepatic toxicity within the first weeks of treatment are the Achilles' heel for nevirapine (NVP), an otherwise well-tolerated and effective antiretroviral agent, which has been shown to be particularly useful for alleviating metabolic disturbances, facilitating adherence, or effectively preventing mother-to-child HIV transmission. Worries about the prescription of NVP became particularly burdensome following reports of cases of liver failure in immunocompetent HIV-negative individuals exposed to NVP as postexposure prophylaxis, or in HIV-asymptomatic carriers with well-preserved immunity in whom NVP was part of the first-line regimen. The recognition that allergic

phenomena involving either the skin or the liver may be more common in patients with elevated CD4 counts than in subjects with advanced immunodeficiency was the basis for the warning by health authorities regarding the use of NVP in men with > 400 CD4 T-cells/ μ l and women with > 250 cells/ μ l.

Benefits of nevirapine

Many characteristics make NVP convenient as part of first-line therapy of HIV infection. The Atlantic trial compared the combination of NVP, indinavir, or lamivudine, with a backbone of stavudine plus didanosine in antiretroviral-naïve patients²². In terms of viral suppression, tolerability, and favorable metabolic profile, the NVP arm was superior to the other two arms. Similar results were obtained in the Combine study²³, in which NVP was compared to nelfinavir, both in association with zidovudine plus lamivudine. Again, the NVP arm was superior to the nelfinavir arm, in part due to greater nonadherence in patients assigned to receive nelfinavir. A more favorable metabolic profile was achieved with NVP compared to nelfinavir. Interestingly, in the two trials previously mentioned, NVP outperformed the comparative protease inhibitor, even in patients with higher baseline viral load.

A direct comparison of NVP with efavirenz was assessed in the SENC trial²⁴. At 12 months, viral suppression and immunologic benefit were similar

in both arms, but neuropsychological adverse events were reported more frequently in the efavirenz arm. Since no major central nervous system events are seen in patients treated with NVP, in the context of neuropsychiatric abnormalities or drug dependence, NVP tends to be more convenient than efavirenz. Both nonnucleosides were also compared in the 2NN trial²⁵. The proportion of anti-retroviral-naïve HIV patients who achieved undetectable viremia at week 48 was similar using either NVP or efavirenz, irrespective of baseline plasma viral load and whether NVP was administered once or twice daily. Interestingly, the metabolic subanalysis of this trial revealed that the glucose and lipid profile was more favorable with NVP than with efavirenz.

The trials mentioned above found similar efficacy in terms of viral suppression when NVP was compared to efavirenz or protease inhibitors. Therefore, antiretroviral-naïve patients who will initiate HAART may consider regimens based on NVP. Due to its unique favorable metabolic profile, NVP may be preferred to the other options when prevention and/or treatment of lipid disorders and insulin resistance are advisable in patients with significant cardiovascular risk.

Since most protease inhibitor-based regimens are complex in terms of large pill burden, drug interactions and metabolic adverse events, several studies have investigated the outcome of simplification strategies with a switch to NVP-based regimens, once viral suppression has been obtained under a protease inhibitor-based regimen. As will be discussed later, this strategy has recently been evaluated in a meta-analysis of four trials²⁶⁻²⁹. All uniformly concluded that NVP outperformed protease inhibitor-based regimens in terms of metabolic profile, without increasing the risk of virologic failure³⁰.

One additional advantage of NVP is regarding its proven safety during pregnancy. Administration of NVP at pre-partum and to the newborn is more effective than using AZT alone in the prevention of vertical HIV transmission^{31,32}. In a trial, the combination of NVP with AZT during the last two trimesters of pregnancy diminished the transmission of HIV-1 to 1.1%³³. Since triple therapies are more effective and specific NVP-associated resistance mutations (e.g. Y181C or K103N) can be selected with mono or dual therapies, these strategies should be limited only to developing countries where full HAART is not yet available³⁴. In developed regions, however, the lack of teratogenicity

of NVP makes the drug particularly attractive for child-bearing women wanting to become pregnant. Finally, the relatively low price of the drug facilitates its wide access for almost all patients in need of anti-retroviral therapy.

Risk of hepatotoxicity using nevirapine

The overall incidence of symptomatic events involving the liver in patients taking NVP is around 5%^{35,36}. Hypersensitivity reactions, usually manifested as exanthema often accompanied by systemic symptoms (fever, malaise, etc.), may occur along with liver involvement. Cases of early-onset severe liver toxicity in HIV-seronegative individuals starting NVP as post-exposure prophylaxis suggest that this host-mediated pathway could be immune dependent³⁷. In the FTC-302 trial, a higher incidence of hepatotoxicity was recorded in patients assigned to the NVP arm compared to the efavirenz arm³⁸. Liver enzyme elevations predominated in black women, often in association with rash and fever, again consistent with a drug hypersensitivity reaction. Further analysis revealed that these events appeared to be linked to NVP use in women with CD4 counts > 250 cells/ μ l, emphasizing the importance of host immunity and neoantigen recognition in the pathogenesis of NVP-associated hypersensitivity reactions³⁹. Other risk factors for NVP-associated hepatotoxicity included low body mass index⁴⁰ and host genetics. Persons with an HLA-DRB1*0101 background had an increased propensity for developing NVP-associated hypersensitivity reactions⁴¹⁻⁴³. Of note, these episodes of liver enzyme elevations within a few weeks of initiation of NVP therapy were not more frequent in patients with underlying chronic hepatitis B or C.

In patients with a prolonged exposure to NVP, a subset with underlying chronic viral hepatitis may present with flares in liver enzymes, which could reflect intermittent episodes of cytolysis during the spontaneous course of chronic hepatitis B/C or delayed liver toxicity of NVP. This distinct pattern of drug injury due to NVP use may be recognized beyond 16 weeks of therapy, and is more consistent with a direct or idiosyncratic liver injury⁴⁴⁻⁴⁶. This late-onset hepatotoxicity of NVP has also been reported to occur in patients treated with efavirenz and could be considered as a class toxicity. The recognition of this alternative form of hepatotoxicity using nonnucleoside analogs is particularly important when

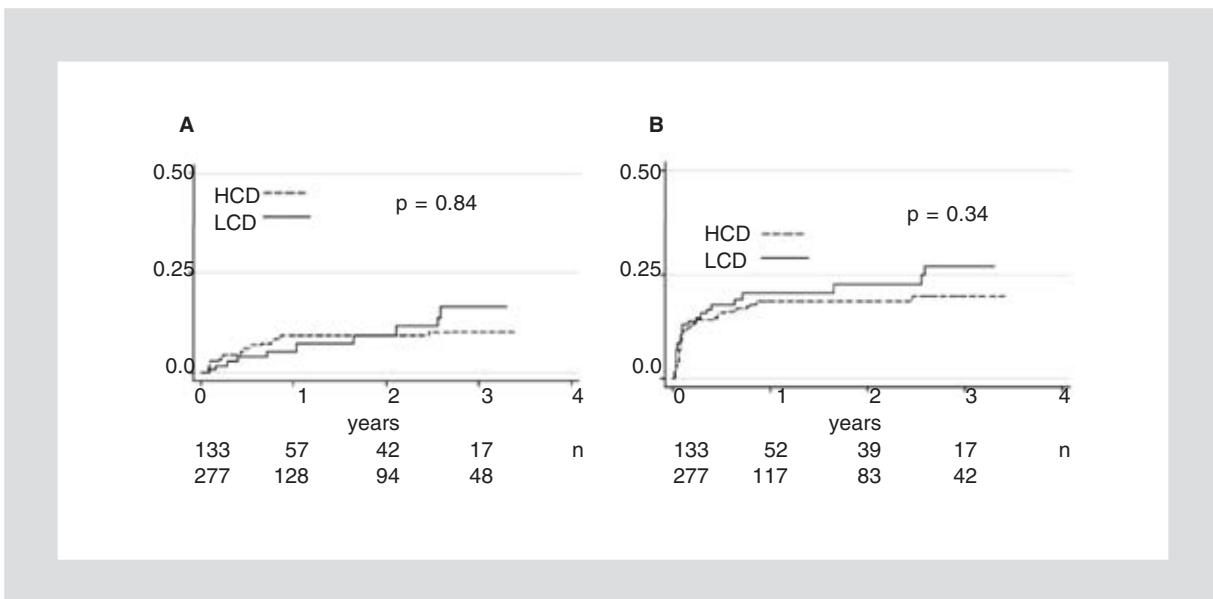
treating populations with a high prevalence of chronic hepatitis C (e.g. intravenous drug users) or chronic hepatitis B (e.g. patients from South East Asia). In other patient populations, this late-onset hepatotoxicity of NVP is rarely seen (~ 3%)⁴⁷. Moreover, specific genetic polymorphisms of metabolizing enzymes and drug transporters seem to be involved in the pathogenesis of late-onset NVP-associated hepatotoxicity^{35,48}.

It should be highlighted that hepatotoxicity with either NVP or efavirenz does not appear to increase the risk of developing liver injury following exposure to the alternative nonnucleoside analog^{49,50}. Altogether, these data suggest that in order to prevent NVP immune-mediated liver toxicity, the drug should be given only to women with CD4 counts < 250 cells/ μ l and to men with < 400 cells/ μ l. Close monitoring of liver enzymes is recommended during the first weeks of therapy, but only every 3-4 months in patients tolerating the drug well.

Safety of nevirapine in patients already on successful antiretroviral therapy

The advice to use NVP only in subjects with low CD4 counts in order to minimize the risk of hepatotoxicity was demonstrated in drug-naïve subjects. However, several studies have recently shown that the risk of NVP-associated liver enzyme elevations could be lower in patients with complete suppression of HIV replication under HAART. In a recent meta-analysis³⁰, in which data from four large simplification trials using NVP were revisited (NEFA²⁶, GESIDA 26/02²⁷, QDLuita²⁸ and Study 1100.138²⁹), there was a uniformly low risk of hepatotoxicity using NVP along with a lack of correlation with CD4 counts. All patients in those studies were under effective HAART and had undetectable plasma HIV RNA when starting NVP. The drug was always prescribed as currently recommended: 200 mg/day during the first two weeks and 400 mg/day thereafter; exposure for at least three months was assessed in all patients. Using as main endpoint the development of liver enzyme elevations grade 3-4 (ALT or AST > 200 IU/l if normal at baseline, or > 3-fold increase if abnormal at baseline), no differences in hepatotoxicity were seen when comparing with low or high CD4 counts.

It should be noted that a total of 410 patients were included in the pooled meta-analysis; 133 patients were categorized as with low CD4 counts (women


< 250 cells/ μ l and men < 400 cells/ μ l) and 277 as with high CD4 counts. No significant differences were observed between the two groups at baseline in terms of age, sex, CD4 count nadir, or HCV coinfection rates. Within the first three months after switching to NVP, three patients (2%) in the low CD4 count group and 12 patients (4%) in the high CD4 count group developed hepatotoxicity. No patients in the former group and only two (1%) in the latter group developed symptomatic hepatitis; no deaths were registered.

Using a meta-regression model, none of the following variables showed a significant statistical association with an increased risk of hepatotoxicity or death using NVP in simplification strategies: baseline CD4 count, gender, HCV coinfection, or age. Only baseline ALT/AST levels showed a trend towards greater liver toxicity using NVP (OR: 0.13; 95% CI: -0.02 to 0.27; $p = 0.08$). By the end of the follow-up period, the risk of hepatotoxicity or death using NVP was similar in both groups, with a combined OR of 0.77 (95% CI: 0.61-1.60; $p = 0.64$) (Fig. 1).

These results clearly demonstrate that virologically suppressed HIV patients switching to NVP as a part of a simplification regimen do not show a higher risk of hepatotoxicity or rash depending on gender and/or CD4 cell counts. Thus, the current warning against NVP use in patients with high CD4 counts may not be applicable to patients already under HAART having complete viral suppression. In fact, fatal cases of liver toxicity using NVP have been reported among HIV-seronegative individuals or HIV-infected subjects naïve for antiretroviral therapy. All these findings together may suggest that the risk for severe NVP reactions could be dependent on the cellular immunity and/or its abnormalities as result of uncontrolled HIV replication.

Conclusion

Nevirapine is being used widely in both developed and developing countries. Because of its favorable metabolic profile, antiviral potency, and proven safety for pregnant women and newborns, it is a good alternative to protease inhibitors. Efavirenz cannot be used in pregnant women. The current warning against NVP use in HIV patients with elevated CD4 counts may be only applicable to antiretroviral-naïve individuals. In this population, elevated CD4 counts (> 400 cells/mm³ in men and > 250 cells/mm³ in women), baseline ALT/AST elevations, and HCV

Figure 1. Time to hepatotoxicity or death (A) and time to hepatotoxicity or rash or death (B) in 410 HIV patients included in a meta-analysis³⁰. HCD: high CD4 defined counts (> 400 cells/ μ l in men and >250 cells/ μ l in women); LCD: low CD4 defined counts.

coinfection are the most reliable predictors of NVP-associated hepatotoxicity. However, in HIV patients already on antiretroviral therapy and having complete viral suppression, the prescription of NVP is often made in the context of simplification strategies. In this setting, no increased risk of liver toxicity has been found in women with > 250 or males with > 400 CD4 $^{+}$ T-cells/ μ l.

References

1. Soriano V, Puoti M, García-Gascó, et al. Antiretroviral drugs and liver injury. AIDS. 2008;22:1-13.
2. Petta S, Cammà C, Marco V, et al. Insulin resistance and diabetes increase fibrosis in the liver of patients with genotype 1 HCV infection. Am J Gastroenterol. 2008;103:1136-44.
3. Maida I, Núñez M, Rios MJ, et al. Severe liver disease associated with prolonged exposure to antiretroviral drugs. J Acquir Immune Defic Syndr. 2006;42:177-82.
4. Mallet V, Blanchard P, Verkarre V, et al. Nodular regenerative hyperplasia is a new cause of chronic liver disease in HIV-infected patients. AIDS. 2007;21:187-92.
5. Maida I, García-Gasco P, Sotgiu G, et al. Antiretroviral-associated portal hypertension: a new clinical condition? Prevalence, predictors and outcome. Antivir Ther. 2008;13:103-7.
6. Rodríguez-Rosado R, García-Samaniego J, Soriano V. Hepatotoxicity after introduction of HAART. AIDS. 1998;12:1256.
7. Saves M, Vandentorren S, Dacourt V, et al. Severe hepatic cytolysis: incidence and risk factors in patients treated by antiretroviral combinations. AIDS. 1999;13:F115-21.
8. Sulkowski M, Thomas D, Chaisson R, Moore R. Hepatotoxicity associated with antiretroviral therapy in adults infected with HIV and the role of hepatitis C or B virus infection. JAMA. 2000;283:74-80.
9. Den Brinker M, Wit F, Wertheim-van Dillen P, et al. Hepatitis B and C virus coinfection and the risk for hepatotoxicity of HAART in HIV-1 infection. AIDS. 2000;14:2895-902.
10. Saves M, Raffi F, Clevenbergh P, et al. Hepatitis B or hepatitis C virus infection is a risk factor for severe hepatic cytolysis after initiation of a PI-containing antiretroviral regimen in HIV-infected patients. Antimicrob Agents Chemother. 2000;44:3451-5.
11. Núñez M, Lana R, Mendoza J, Martín-Carbonero L, Soriano V. Risk factors for severe hepatic injury following the introduction of HAART. J Acquir Immune Defic Syndr. 2001;27:426-31.
12. Bonfanti P, Landonio S, Ricci E, et al. Risk factors for hepatotoxicity in patients treated with HAART. J Acquir Immune Defic Syndr. 2001;27:316-8.
13. D'Arminio Monforte A, Bugarini R, Pezzotti P, et al. Low frequency of severe hepatotoxicity and association with HCV coinfection in HIV-positive patients treated with HAART. J Acquir Immune Defic Syndr. 2001;28:114-23.
14. Aceti A, Pasquazzi C, Zechini B, De Bac C; The LIVERHAART Group. Hepatotoxicity development during antiretroviral therapy containing protease inhibitors in patients with HIV - the role of hepatitis B and C virus infection. J Acquir Immune Defic Syndr. 2002;29:41-8.
15. Wit F, Weverling G, Weel J, Jurriaans S, Lange J. Incidence and risk factors for severe hepatotoxicity associated with antiretroviral combination therapy. J Infect Dis. 2002;186:23-31.
16. Servoss J, Kitch D, Andersen J, Reisler R, Chung R, Robbins G. Predictors of antiretroviral-related hepatotoxicity in the adult AIDS Clinical Trial Group (1989-1999). J Acquir Immune Defic Syndr. 2006;43:320-3.
17. Sulkowski M, Mehta S, Torbenson M, et al. Rapid fibrosis progression among HIV/HCV-coinfected adults. AIDS. 2007;21:2209-16.
18. Okuda M, Li K, Beard M, et al. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by HCV core protein. Gastroenterology. 2002;122:366-75.
19. Mohsen A, Easterbrook P, Taylor C, et al. Impact of HIV infection on the progression of liver fibrosis in HCV-infected patients. Gut. 2003;52:1035-40.
20. Lédinghen V, Barreiro P, Foucher J, et al. Liver fibrosis on account of chronic hepatitis C is more severe in HIV-positive than HIV-negative patients despite antiretroviral therapy. J Viral Hepat. 2008;15:427-33.
21. Weber R, Sabin C, Friis-Møller N, et al. Liver-related deaths in persons infected with HIV: the D:A:D study. Arch Intern Med. 2006;166:1632-41.
22. Van Leeuwen R, Katlama C, Murphy R, et al. A randomized trial to study first-line combination therapy with or without a protease inhibitor in HIV-1-infected patients. AIDS. 2003;17:987-99.
23. Podzamczer D, Ferrer E, Consiglio E, et al. A randomized clinical trial comparing nefatinavir or nevirapine associated to zidovudine/lamivudine in HIV-infected naïve patients (the Combine Study). Antivir Ther. 2002;7:81-90.
24. Núñez M, Soriano V, Martín-Carbonero L, et al. SENC (Spanish efavirenz vs. nevirapine comparison) trial: a randomized, open-label study in HIV-infected naïve individuals. HIV Clin Trials. 2002;3:186-94.
25. Van Leth F, Phanuphak P, Ruxrungtham K, et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: a randomized open-label trial. The 2NN Study. Lancet. 2004;363:1253-63.

26. Martinez E, Arnaiz JA, Podzamczer D, et al. Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with HIV infection. *N Engl J Med.* 2003;349:1036-46.
27. Knobel H, Miro JM, Mahillo B, et al. Failure of ceterizine to prevent nevirapine-associated rash. *J Acquir Immune Defic Syndr.* 2004;37:1276-81.
28. Ruiz L, Negredo E, Domingo P, et al. Antiretroviral treatment simplification with nevirapine in PI-experienced patients with HIV-associated lipodystrophy: 1-year prospective follow-up of a multicenter, randomized, controlled study. *J Acquir Immune Defic Syndr.* 2001;27:229-36.
29. Montaner J, Cahn P, Zala C, et al. Randomized, controlled study of the effects of a short course of prednisone on the incidence of rash associated with nevirapine in patients infected with HIV-1. *J Acquir Immune Defic Syndr.* 2003;33:41-6.
30. de Lazzari E, León A, Arnaiz J, et al. Hepatotoxicity of nevirapine in virologically suppressed patients according to gender and CD4 cell counts. *HIV Med.* 2008;9:221-6.
31. Guay L, Musoke P, Fleming T, et al. Intrapartum and neonatal single-dose nevirapine compared with zidovudine for prevention of mother-to-child transmission of HIV in Kampala, Uganda: HIVNET 012 randomised trial. *Lancet.* 1999;354:795-802.
32. Taha T, Kumwenda N, Hover D, et al. Nevirapine and zidovudine at birth to reduce perinatal transmission of HIV in an African setting: a randomized controlled trial. *JAMA.* 2004;14:202-9.
33. Lallement M, Jourdain G, Le Coeur S, et al. Single-dose perinatal nevirapine plus standard zidovudine to prevent mother-to-child transmission of HIV-1 in Thailand. *N Eng J Med.* 2004;351:2013-5.
34. Jackson J, Becker-Pergola G, Guay L, et al. Identification of the K103N resistance mutation in Ugandan women receiving nevirapine to prevent HIV-1 vertical transmission. *AIDS.* 2000;14:111-5.
35. Ritchie M, Haas D, Motsinger A, et al. Drug transporter and metabolizing enzyme gene variants and NNRTI hepatotoxicity. *Clin Infect Dis.* 2006;43:779-82.
36. Stern J, Robinson P, Love J, Lanes S, Imperiale M, Mayers D. A comprehensive hepatic safety analysis of nevirapine in different populations of HIV-infected patients. *J Acquir Immune Defic Syndr.* 2003;34(Suppl 1):21-33.
37. Benn P, Mercey D, Brink N, Scott G, Williams I. Prophylaxis with a nevirapine-containing triple regimen after exposure to HIV-1. *Lancet.* 2001;357:687-8.
38. Sanne I, on behalf of the FTC-302 Study Investigators and the FTC-302 Independent Clinical Steering Committee. Severe liver toxicity in patients receiving two nucleoside analogs and a NNRTI. *AIDS.* 2000;14(Suppl 4):12.
39. Leith J, Piliero P, Storfer S, et al. Appropriate use of nevirapine for long-term therapy. *J Infect Dis.* 2005;192:545-6.
40. Sanne I, Mommeja-Marin H, Hinle J, et al. Severe hepatotoxicity associated with nevirapine use in HIV-infected subjects. *J Infect Dis.* 2005;191:825-9.
41. De Maat M, Mathot R, Veldkamp A, et al. Hepatotoxicity following nevirapine containing regimens in HIV-1-infected individuals. *Pharmacol Res.* 2002;46:295-300.
42. Martin A, Nolan D, James I, et al. Predisposition to nevirapine hypersensitivity associated with HLA-DRB1*0101 and abrogated by low CD4 T-cell counts. *AIDS.* 2005;19:97-9.
43. Johnson S, Chan J, Bennett C. Hepatotoxicity after prophylaxis with a nevirapine-containing antiretroviral regimen. *Ann Intern Med.* 2002;137:146-7.
44. Martin-Carbonero L, Núñez M, González-Lahoz J, Soriano V. Incidence of liver injury after beginning antiretroviral therapy with efavirenz or nevirapine. *HIV Clin Trials.* 2003;4:115-20.
45. Sulkowski M, Thomas D, Mehta S, Chaisson R, Moore R. Hepatotoxicity associated with nevirapine or efavirenz-containing antiretroviral therapy: role of hepatitis C and B infections. *Hepatology.* 2002;35:182-9.
46. Martinez E, Blanco J, Arnáiz J, et al. Hepatotoxicity in HIV-infected patients receiving nevirapine-containing antiretroviral therapy. *AIDS.* 2001;15:1261-8.
47. Palmon R, Koo B, Shoultz D, Dieterich D. Lack of hepatotoxicity associated with NNRTIs. *J Acquir Immune Defic Syndr.* 2002;29:340-5.
48. Rotger M, Colombo S, Furrer H, et al. Influence of CYP2B6 polymorphism on plasma and intracellular concentrations and toxicity of efavirenz and nevirapine in HIV-infected patients. *Pharmacogenet Genomics.* 2005;15:1-5.
49. Soriano V, Dona C, Barreiro P, Gonzalez-Lahoz J. Is there cross-toxicity between nevirapine and efavirenz in subjects developing rash? *AIDS.* 2000;14:1672-3.
50. Manosuthi W, Thongyen S, Chumpathat N, Muangchana K, Sungkanupraph S. Incidence and risk factors of rash associated with efavirenz in HIV-infected patients with preceding nevirapine-associated rash. *HIV Med.* 2006;7:378-82.