

Interleukin 18 and Cardiovascular Disease in HIV-1 Infection: A Partner in Crime?

Donato Torre and Agostino Pugliese

Section of Infectious Diseases, General Hospital, Cittiglio (Varese), and Department of Medical and Surgical Sciences, Amedeo di Savoia Hospital, University of Turin, Turin, Italy

Abstract

Cardiovascular disease has been frequent in HIV-infected patients both before and after the advent of antiretroviral therapy (HAART). The pathogenic basis for the increase of cardiovascular disease, in particular myocardial lesions, may involve HIV-1 itself or other mechanisms including endothelial dysfunction, activation of proinflammatory cytokines, and changes in platelets, which lead to atherosclerotic lesions of blood vessels. In the last decade, among the proinflammatory cytokines, interleukin 18 seems to play a central role in the inflammatory cascade, leading to development of atherosclerotic disease and the occurrence of ischemic heart disease in uninfected HIV-1 people. Increased levels of interleukin 18 were observed in HIV-1 infected patients.

This review attempts to evaluate the role of interleukin 18 in cardiovascular disease, especially in myocardial infarction, in HIV-1 infection, as well as the relationship between interleukin 18 and atherosclerotic plaque formation.

Two other characteristic aspects in HIV-1 infection, metabolic syndrome and lipodystrophy, will be evaluated in light of activity of interleukin 18. Moreover, the role of platelets and interleukin 18 as an important linkage between chronic inflammation, endothelial dysfunction, and atherogenesis will be highlighted.

Finally, experimental an animal model of rhesus macaques infected with simian immunodeficiency virus clearly demonstrates the involvement of interleukin 18 in myocardial lesions, and that circulating levels of interleukin 18 are important predictors of coronary heart disease.

In conclusion, interleukin 18 may be considered a partner in crime with other factors, including endothelial dysfunction, increased expression and production of adhesion molecules and proinflammatory cytokines in determining cardiovascular disease. (AIDS Rev. 2010;12:31-9)

Corresponding author: Donato Torre, donatotorre@libero.it

Key words

Interleukin 18. HIV-1. AIDS. Cardiovascular disease. Atherosclerosis.

Introduction

Cardiovascular disease (CVD) is frequently reported in patients with HIV-1 infection, particularly in those patients in the advanced stage of the disease^{1,2}. Before

the introduction of effective antiretroviral therapy (ART), retrospective studies and observational analyses reported that cardiac disorders are present in 25-75% of patients with AIDS³. Since HIV-1-infected patients develop opportunistic infections, cardiac involvement with pericarditis, endocarditis, and myocarditis is frequently related to opportunistic pathogens⁴. However, among other CVD reported in HIV-1-infected patients, dilated cardiomyopathy and associated symptoms of congestive heart failure are being recognized with increasing frequency³, as well as ischemia, pulmonary hypertension, and bundle branch block⁵. The ART regimens have significantly modified the course of HIV-1 infection, with

Correspondence to:

Donato Torre

Section of Infectious Diseases

General Hospital

Via Luvini, 1

21033 Cittiglio (Varese), Italia

E-mail: donatotorre@libero.it

longer survival rates and improvement of life quality in these patients. On the other hand, the early data have raised concerns that ART is associated with increased coronary artery disease⁶. The largest prospective study of cardiovascular risk with ART, the DAD study, showed that the incidence of myocardial infarction (MI) increased directly with longer exposure to protease inhibitors, but it did not find any relationship between MI and markers of HIV-1 infection such as lower CD4 lymphocyte count and higher levels of plasma HIV RNA⁷.

Furthermore, the relative risk for increasing age, male sex, current smoking, elevated cholesterol, low levels of HDL cholesterol, and diabetes mellitus were similar to those observed in studies of HIV-1-uninfected subjects^{8,9}. In contrast, a retrospective study showed no relation between the use of combined ART and the hazard of cardiovascular and cerebrovascular events¹⁰; in addition, Coplan, et al.¹¹ did not demonstrate a significant increase in MI risk during the first year of protease inhibitor therapy.

Successively, the SMART study showed an increased risk for CVD among patients who interrupted ART when their CD4 lymphocyte count rose above 350 cells/mm³¹². Although ART may be able to contribute to CVD, HIV-1 itself or immunologic factors may play a role in CVD risk. Firstly, HIV-1 may serve as a marker to identify a subgroup of the general population with an altered prevalence of traditional cardiovascular risk factors unrelated to ART; secondly, HIV-1 may affect the pathogenic process that leads to CVD in ways other than via an effect on traditional risk factors, such as through effects on endothelial function or on chronic inflammation; thirdly, HIV-1 may affect the risk of developing a traditional cardiovascular risk factor. Thus, both HIV-1 infection and ART may affect the function of the heart and the vasculature, and endothelial dysfunction is a predominant feature correlated either with HIV-1 itself or with ART. The mechanism of HIV-related endothelial dysfunction is not clear, but may include lipid disorders associated with HIV-1 infection¹³, viral protein-related endothelial activation¹⁴, effects of systemic inflammatory cytokine or chemokine dysregulation, or direct HIV-1 infection of the endothelium¹⁵, and vascular smooth muscle cells. Although ART improves endothelial dysfunction, long-term protease inhibitor-based ART may cause severe endothelial dysfunction¹⁶. It should be noted that HIV-1 infection, as a chronic inflammation, is able to activate and maintain a paramount of immunologic and inflammatory factors, which can significantly contribute to CVD. In fact, Tebas, et al.¹⁷ have suggested that

treatment interruptions lead to increased immune cell activation and systemic inflammatory responses along with recrudescence HIV-1 viremia, and this mechanism may explain the increased cardiovascular risk associated with interruption of ART.

In the last decade, several studies have highlighted the role of interleukin 18 (IL-18) in CVD. Interleukin 18 is a new member of the IL-1 family, and induces gamma interferon (IFN γ) production from T helper 1 (Th1) cells in the presence of IL-12^{18,19}. Interleukin 18 may act on Th1 cells, natural killer (NK) cells, B-cells, and dendritic cells to produce IFN γ in the presence of IL-12¹⁸⁻²⁰. Moreover, a constitutively secreted protein with high affinity binding to IL-18, IL-18BP, has been demonstrated and it is highly expressed in spleen and intestinal tract, both of which are immunologically active tissues^{21,22}. Elevated concentrations of IFN γ stimulate more IL-18BP in an attempt to reduce IL-18-mediated IFN γ production²³.

We firstly observed increased circulating levels of IL-18 in symptomatic HIV-1-infected patients as well as in those with AIDS²⁴, and this cytokine, during the different stages of the disease, has shown proviral activity in both maintaining and worsening HIV-1 infection²⁵. In addition, ART induces a marked decline of serum levels of IL-18, and virologic treatment failure was associated with persistently raised levels of IL-18^{24,26,27}. However, previous *in vitro* studies showed that IL-18 stimulated HIV-1 replication in the chronically infected T-cell line²⁸. Senpuku, et al.²⁹ have shown that nonobese diabetic-severe combined immunodeficiency mice infected with HIV and successively treated with IL-18 had a higher viral replication, indicating that IL-18 may support HIV-1 infection. It should be noted that human heart tissue contains preformed IL-18 in macrophages and endothelial cells³⁰, and in the last decade IL-18 has become an important cytokine in myocardial ischemia reperfusion injury, a model of acute infarction, where it functions to decrease the contractile force of the heart³⁰.

Pathogenic role of interleukin 18 in cardiovascular disease

Several cardiac manifestations show a significant increase of IL-18 serum levels. Patients with congestive heart failure showed increased serum levels of IL-18³¹. Moreover, plasma IL-18 concentrations were significantly elevated in patients with acute myocardial infarction, and the peak IL-18 concentration in these

patients correlated with specific serum markers of acute myocardial infarction³². Patients with stable and unstable angina exhibited higher serum levels of IL-18 in comparison to control subjects, and levels of IL-18 did not differ significantly between patients with stable and unstable angina³³. Plasma concentrations of IL-18 are also increased in patients with acute coronary syndromes with or without myocardial necrosis³⁴. Moreover, patients with documented coronary disease and subsequent fatal cardiovascular events exhibit high serum levels of IL-18 compared to those with a low level of IL-18³⁵. In an *in vitro* study in the human myocardium, IL-18 is upregulated following ischemia and contributes to postischemic myocardial dysfunction³⁰. Animal studies have also demonstrated increased levels of IL-18 mRNA and plasma IL-18 after myocardial infarction³⁶, and that treatment with IL-18BP improved postischemic myocardial dysfunction through attenuating myocardial levels of IL-18 in a murine model³⁰.

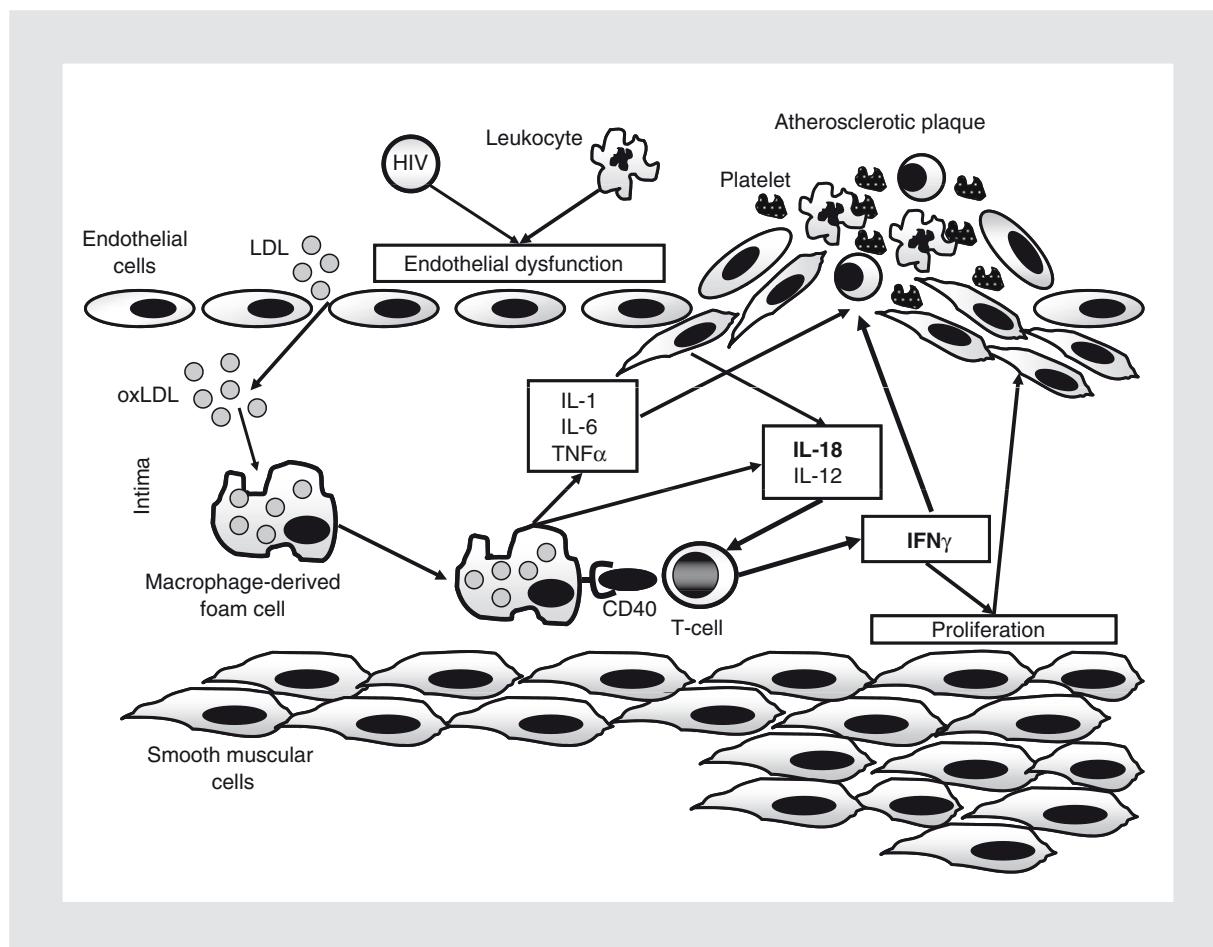
Thus, several cellular and molecular mechanisms concerning IL-18-induced myocardial injury can be postulated, including stimulation of inflammatory response, increase of apoptotic activity, and changes in intracellular calcium.

Firstly, IL-18 is able to stimulate production of IFN γ from infiltrated neutrophils, resident macrophages, and endothelial cells in the heart, and this provokes myocardial inflammation and depression of myocardial contractility³⁷. In addition, IL-18 is able to stimulate production of other cytokines, including IL-6, IL-1, and tumor necrosis factor (TNF), leading to further alter myocardial function³⁸. Worsening of myocardial inflammation is also provoked by IL-18-induced expression of vascular adhesion molecule 1 and intracellular adhesion molecule 1, two chemokines that recruit leukocytes into the injured myocardium³⁸. Interleukin 18 also increases the activity of cytotoxic T lymphocytes³⁹, and all these factors contribute to mediate myocardial dysfunction.

Secondly, IL-18 is able to stimulate myocardial apoptosis with loss of cardiomyocytes. This activity may be an indirect effect through induction of several cytokines, including TNF α , IL-1 β , and IL-6, or a direct effect through upregulation of Fas-ligand in NK cells and TH1 cells^{40,41}. Moreover, antiapoptotic proteins, including Bcl-2 and Bcl-XL, are decreased by IL-18, whereas proapoptotic protein Bcl-Xs is upregulated by IL-18⁴².

Thirdly, IL-18 is also able to affect myocardial contractile function through changes in intracellular

calcium. Elevated IL-18 levels have been correlated with decreased left ventricular ejection fraction in patients with acute coronary artery disease³⁴. In addition, administration of IL-18 in mice provokes increased calcium in cardiomyocytes that is associated with depressed myocardial contractility and relaxation⁴³, and exposure of myocardium to IL-18 reduces the responsiveness of the myofilaments to calcium⁴³.


All these findings suggest that IL-18 may able to provoke inflammation, apoptotic activity, and alteration of intracellular calcium homeostasis, and this leads to myocardial injury with persistent myocardial dysfunction.

Interleukin 18 atherosclerosis and HIV-1 infection

Patients with HIV-1 infection have higher rates of atherosclerosis, and the progression is faster than in uninfected individuals^{44,45}. Atherosclerotic cardiovascular disease, a leading cause of morbidity and mortality in the general population, is an increasing cause for concern for HIV-1-infected patients as well⁴⁶.

Since atherosclerosis is a chronic inflammatory process, several inflammatory factors, including atherogenic lipoproteins, inflammatory cells (macrophage-derived foam cells and T-cells), platelets, and several inflammatory cytokines are involved⁴⁶. In fact, HIV-1-infected patients are prone to continuous inflammatory stimuli, which may trigger a cytokine imbalance that can influence the development of atherosclerosis⁴⁷.

As shown in figure 1, atherosclerosis is a specific form of chronic inflammatory process, resulting from interaction between plasma lipoproteins, monocyte/macrophage, T lymphocytes, endothelial cells, and smooth muscle cells and the extracellular matrix of the arterial wall⁴⁸. In addition, HIV-1 infection could represent a risk factor for the development of endothelial damage, inasmuch as HIV-1 itself can activate the endothelium directly or by a leukocyte-mediated inflammatory cascade through increase of adhesion mediators^{49,50}. Elevation of atherogenic lipoproteins may lead to the deposition in the intima, and macrophages may take up deposited atherogenic lipoproteins and be transformed into foam cells. It should be noted that atherosclerotic plaque contains inflammatory and immune cells, mainly macrophages and numerous T lymphocytes, as well as endothelial cells, smooth muscle cells, extracellular matrix lipids, and

Figure 1. Proposed mechanisms of interactions among HIV-1, endothelial cells, macrophage-derived foam cells, proinflammatory cytokines, inflammatory cells (neutrophils, T-cells, platelets), and smooth muscle cells in formation of atherosclerotic plaque. LDL: low density lipoprotein; oxLDL: oxidized low-density lipoprotein; IL: interleukin; IFN: interferon; TNF: tumor necrosis factor.

platelets⁵¹ (Fig. 1). Macrophages and foam cells migrated into the subendothelial space are responsible for producing proinflammatory cytokines, including IL-1, IL-6, and TNF α , and more important IL-12 and IL-18. Atherosclerosis is a Th1 cell-driven disease, since human plaques contain cells producing IFN γ , IL-12, IL-15, IL-18, and TNF α , but few cells producing Th2-type cytokine IL-4⁵². Cell components of atheroma, including macrophages, endothelial cells, and smooth muscle cells, express receptor subunits of IL-18⁵³. In addition, IL-18 along with IL-12 is an inducer and regulator of the expression of IFN γ , a major proinflammatory cytokine during atherogenesis¹⁸, and IL-18 induces IFN γ expression, not only in T-cells, but also in smooth muscle cells and macrophages, thus activating the proinflammatory pathway operating during atherogenesis^{18,53}. Furthermore, Gerdes, et al.⁵³ have found that vascular macrophages and smooth muscle cells may secrete IFN γ under the stimulation of IL-18, and

these cells can express receptors of IL-18 as well. As shown in figure 1, platelets also play a central role in the biology of atherosclerosis by producing inflammatory mediators such as CD40 ligand and platelet-derived growth factor, as well as directing leukocyte incorporation into plaques through platelet-mediated leukocyte adhesion⁵⁴.

Several lines of evidence support a major proatherogenic role for IL-18. Table 1 shows several experimental studies *in vivo* concerning IL-18 activity in experimental models utilizing apolipoprotein E-knockout mice, as well as *in vitro* studies using vascular endothelial cells and smooth muscle cells.

Expression of IL-18 and its receptor subunits is increased in atherosclerotic arteries compared with normal arterial segments⁵³. It has been demonstrated that IL-18 accelerates atherogenesis in IL-18-deficient apolipoprotein E-knockout mice⁵⁵, and that inhibition of IL-18 signaling decreases atherosclerotic plaque

Table 1. Proatherogenic effect of interleukin 18 *in vitro* and *in vivo* experimental studies

Author (Reference)	Mechanism of action
Gerdes, et al. ⁵³	Inflammatory response in vascular endothelial cells and smooth muscle cells
Elhage, et al. ⁵⁵	Reduced atherosclerosis in IL-18 deficient mice
Mallat, et al. ⁵⁶	Modulation of atherosclerotic plaque development
Tenger, et al. ⁵⁷	Enhancement and acceleration of atherosclerosis
Whitmann, et al. ⁵⁸	Enhancement of atherosclerosis in deficient apolipoprotein E mice

formation⁵⁶, whereas administration of exogenous IL-18 provokes atherogenesis and more fatty than fibrous lesions⁵⁷. This proatherogenic effect of IL-18 can be abolished in the absence of IFN γ ⁵⁸, suggesting that worsening of atherosclerosis from IL-18 is strictly dependent on production of IFN γ .

In an experimental model of simian immunodeficiency virus-infected macaques, atherogenic diet increased plasma levels of IL-18, and the IL-18 levels were predictive of short survival⁵⁹. Moreover, after infection, plasma IL-18 levels correlated closely with viral load⁵⁹.

All these *in vitro* and *in vivo* studies on the atherogenic role of IL-18 were confirmed in clinical studies, which demonstrated increased IL-18 levels in patients with stable and unstable angina, in patients with myocardial infarction, and in those with coronary artery disease^{34,33,32,60}. Moreover, it has been demonstrated that there is a strong association between IL-18 and several cardiovascular risk factors, particularly those linked with the metabolic syndrome (MS)⁶¹.

Interleukin 18, metabolic syndrome and HIV-1 infection

The metabolic syndrome is characterized by abdominal obesity, hypertriglyceridemia, a low high-density lipoprotein cholesterol level, hypertension, and insulin resistance⁶². This syndrome is directly associated with a high incidence of CVD, and specifically atherosclerosis⁶³. Several abnormalities found in HIV-1-infected patients with lipodystrophy overlap with

the components of MS, and it has been observed that there is an elevated risk of premature atherosclerosis and adverse cardiovascular events among HIV-1 infected patients^{13,64}. There are several evidences that IL-18 levels may be linked with metabolic risk factors. Hung, et al.⁶¹ have found that IL-18 concentrations were specifically correlated with a range of metabolic risk traits, including body mass index, waist circumference, triglycerides, high density lipoprotein, blood pressure, and fasting insulin levels, and this finding with IL-18 further enhances the argument that inflammation and activated immunity, through cytokine response, are involved in the cluster of metabolic and cardiovascular risk factors. Levels of IL-18 are known to be elevated in patients with obesity, which represent a key risk factor for the development of CVD⁶⁵⁻⁶⁸, and insulin resistance, and that weight loss also caused a decrease of systemic IL-18 concentrations^{65,66}.

Skurk, et al.⁶⁹ demonstrated that human adipocytes release IL-18 spontaneously, and there is upregulation of IL-18 release in adipocyte cultures from obese compared with lean or overweight control subjects. In contrast, it has been recently shown that IL-18 improves experimental hyperphagia⁷⁰, but a successive study showed a defective response to IL-18 stimulation correlated with decreased expression of IL-18 receptor subunits⁷¹. This IL-18 resistance may explain the association of obesity and diabetes with increased concentrations of IL-18, similar to hyperinsulinemia and hyperleptinemia. Straczkowski, et al.⁷² have observed that increased serum levels of IL-18 were associated with low serum levels of adiponectin in patients with obesity, and they postulated that IL-18 might be the factor inhibiting adiponectin secretion from adipose tissue⁷². The HIV-1-associated lipodystrophy has characteristics in common with MS: hypertriglyceridemia, hypercholesterolemia, increased lipolysis, and insulin resistance. It has been demonstrated that HIV-1-infected patients with lipodystrophy (lipoatrophy with or without central fat accumulation) show elevated serum levels of IL-18, and IL-18 is mechanistically linked to the low total limb fat mass^{73,74}. In addition, in HIV-1-infected patients with hypertriglyceridemia, a positive correlation was found between serum ghrelin, adiponectin, and IL-18 levels, and these molecules might be involved in the pathogenesis of metabolic disorders in HIV-1 infection⁷⁵.

Thus, marked abnormalities in inflammatory markers, including IL-18 and adiponectin, may represent reliable biomarkers of MS in HIV-1-infected patients with lipodystrophy.

Interleukin 18 and platelets: Bridging HIV-1 infection and cardiovascular disease

Platelets represent an important linkage between chronic inflammation, endothelial dysfunction, and atherogenesis, and this is becoming particularly true for HIV-1 infection, inasmuch as platelet adhesion, inflammatory cytokines, adhesion molecules, and inflammatory cells may contribute to endothelial damage, which leads to formation of atherosclerotic plaque⁷⁶.

Figure 2 illustrates the interaction of HIV-1 with platelets in inducing chronic inflammatory processes at the vascular wall that result in the development of atherosclerotic lesions and atherothrombosis.

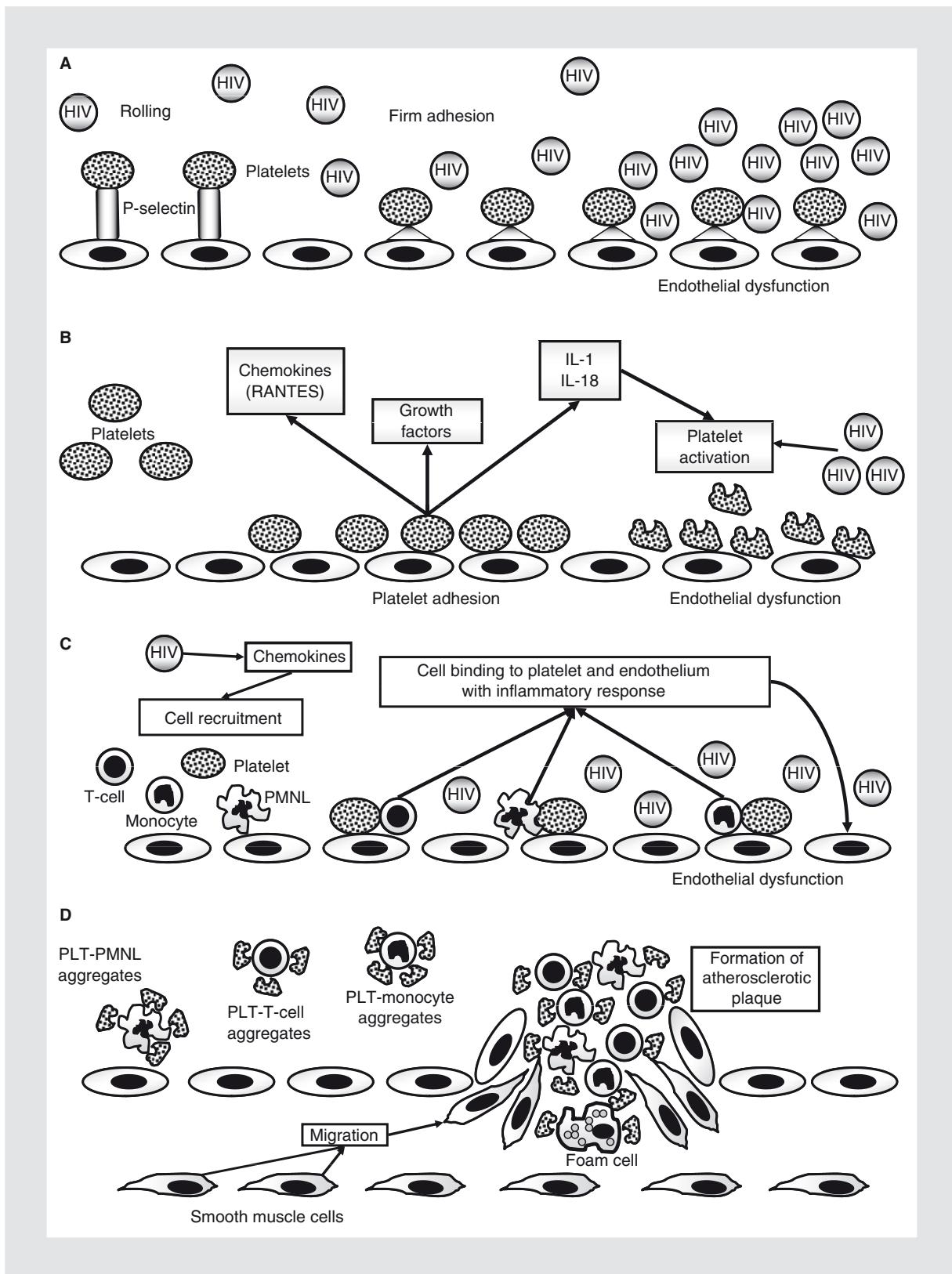
The initial loose contact between circulating platelets and vascular endothelium (platelet rolling) is mediated by P-selectin, which is present on both platelets and endothelial cells⁷⁷. Successively, a firm adhesion between the platelet and the endothelium is achieved by integrins⁷⁸ (Fig. 2 A). The rolling and firm adhesion of platelets to endothelium plays an important role in the initiation and progression of vascular inflammation, combined with binding of platelets with HIV-1 through the fibronectin receptor present on their surface⁷⁹ (Fig. 2 A). In addition, platelets may be considered as carriers for persistent replication and systemic spread of HIV-1⁷⁹. During the adhesion process and binding to HIV-1, platelets become activated and release huge amounts of potent inflammatory and mitogenic substances, including chemokines (RANTES, platelet factor 4), growth factors (platelet-derived growth factor, transforming growth factor beta, epidermal growth factor), and cytokine-like factors (IL-1 β , CD40 ligand, beta-thromboglobulin), and IL-18⁸⁰ (Fig. 2 B). It should be noted that IL-18 along with HIV-1 are able to activate platelets. In fact, Ahmad, et al.⁸¹ found that human platelets contain abundant amounts of IL-18, which they release upon activation; in addition, they observed enhanced platelet activation by IL-18 in HIV-1-infected patients (Fig. 2 B).

All these events lead to chronic inflammation of endothelial cells and this represents a crucial aspect of endothelial dysfunction during the symptomatic and advanced stages of HIV-1 infection.

HIV-1 enhances chemokine release and upregulates endothelial molecules and through platelet adherence to the endothelium⁸⁰ (Fig. 2 C).

Finally, all these processes lead to formation of atherosclerotic plaque. As shown in figure 2 D, in this stage activated platelets play an important role in the formation of aggregates with inflammatory cells, including T-cells,

neutrophils, and monocytes. In fact, circulating activated platelets and platelet-neutrophil/monocyte aggregates promote formation of atherosclerotic lesions⁸². Lymphocyte-conjugated platelets enhance lymphocyte adhesion on the endothelium, and platelet-lymphocyte aggregates are critical in the formation and exacerbation of atherosclerotic plaque⁸³⁻⁸⁵. Furthermore, active proliferation of smooth muscle cells along with foam cells and platelet-inflammatory cell aggregates are critical for the formation and exacerbation of atherosclerotic plaque (Fig. 2 D).


Summary and concluding remarks

In this review, we have shown a prominent role for IL-18 in atherosclerosis and its activity on several inflammatory cells, including monocytes/macrophages, platelets, T-cells, and particularly on the endothelial cells. Besides, in the last years, several experimental and clinical studies have highlighted the role of IL-18 either in HIV-1-related lipodystrophy and MS or its likely effect on myocardial function in HIV-1-infected patients. In fact, pathogenic mechanisms of CVD and, in particular ischemic heart disease, in HIV-1 infection are essentially based on endothelial dysfunction, on abnormal and persistent inflammatory cytokine response, and on inflammatory cells, including macrophages/foam cells, T-cells, and platelets. Thus, all these events in the chronic inflammation of HIV-1 infection are responsible for atherosclerosis.

However, it should be noted that a direct pathogenic link between IL-18 and myocardial lesions in HIV-1 infection has not yet been demonstrated, inasmuch as previous studies have evaluated atherosclerosis in chronic HIV-1 infection. Evaluation of immune and pathologic changes in early stages of HIV-1 infection is crucial to understand early immune response and pathologic changes leading to atherosclerosis. Unfortunately, this approach is not feasible in HIV-1-infected patients since most of them are not diagnosed until an indeterminate length of time after primary infection.

However, in the last two years, Yearley, et al.^{86,87} have investigated, in two studies, myocardial lesions and progression of atherosclerosis in an experimental model of macaques infected with pathogenic simian immunodeficiency virus (SIV-strain mac 251).

In the first study, Yearley, et al.⁸⁶ found in the SIV-infected group a significant increase of plasma levels of IL-18 relative to baseline by day 14, correlated with the occurrence of peak viremia; in addition, increased

Figure 2. A: Proposed mechanisms of interactions of HIV-1, endothelial cells, with platelets for their rolling and firm adhesion to endothelium. **B:** Interactions of platelets with chemokines, growth factor and IL-18 in platelet activation and subsequent endothelial dysfunction. **C:** Cell intravascular recruitment by HIV-1, and cell binding (neutrophils, T-cells and monocytes) to platelets with subsequent endothelial dysfunction. **D:** Formation platelet-T cell aggregates, platelet-neutrophil aggregates and monocyte-platelet aggregates, and subsequent formation of atherosclerotic plaque. IL: interleukin; PMNL: polymorphonuclear leukocytes; PLT: platelet.

levels of IL-18 were correlated significantly with increased left ventricular end-diastolic diameter at day 35. These investigators have shown that the degree of immune response activity around the period of peak viremia may directly contribute to the extent of subsequent myocardial lesions, suggesting that immune activation, expressed as increased production of proinflammatory cytokines, may also play an important role in myocardial end-organ damage.

In a more recent study, the same investigators, in the SIV-infected macaques maintained on an atherogenic diet for six months, observed a significant correlation between basal plasma levels of IL-18 and atherosclerotic lesion severity at necropsy⁸⁷. In addition, IL-18 plasma levels correlated with levels of T-cell and macrophage foam cell infiltration, and extent of vascular lipid accumulation. It also should be noted that baseline circulating IL-18 levels have been identified as important predictors of stable and unstable angina, and more generally of coronary heart disease in uninfected HIV-1 people^{35,60,88}, as predictors of accelerated SIV disease in macaques on a diet high in saturated fat and cholesterol⁵⁹, and as predictors of future systolic dysfunction in a rhesus model of HIV-associated cardiomyopathy⁸⁶.

In summary, this review highlights and confirms the more prominent and crucial role of IL-18 in CVD, either in uninfected HIV-1 subjects or in experimental animal models infected with SIV.

It is interesting to note that in the SMART study¹², the risk of CVD was higher among HIV-1-infected patients who went off ART, a surprising finding in light of the known lipid-raising effect of several antiretrovirals. In fact, a persistently high viral load in the absence of treatment leads to increased and chronic activation of inflammatory markers, including IL-18 and other proinflammatory cytokines, that may further increase the risk of damage to the cardiovascular system. Thus, the link between HIV-1 infection and atherosclerosis, clinically expressed as CVD, is probably related to endothelial dysfunction, increased expression and production of adhesion molecules and proinflammatory cytokines, particularly IL-18, and activation of platelets.

In conclusion, growing experimental and clinical results show that proinflammatory cytokine IL-18, along with other proinflammatory cytokines, may play a predominant and causative role in determining myocardial ischemic dysfunction, and IL-18 can be considered a partner in crime along with other immunological and clinical factors in determining CVD in HIV-1-infected patients.

References

- Yunis N, Stones V. Cardiac manifestations of HIV/AIDS: a review of the disease spectrum and clinical management. *J Acquir Immune Defic Syndr Hum Retrovir*. 1998;18:145-54.
- Barbaro G, Di Lorenzo G, Grisorio B, Barbarini G. Cardiac involvement in the acquired immunodeficiency syndrome: a multicenter clinical-pathological study. *AIDS Res Hum Retrovir*. 1998;14:1071-7.
- Khunawat C, Mukerji S, Havlichek D, et al. Cardiovascular manifestations in human immunodeficiency virus-infected patients. *Am J Cardiol*. 2008;102:635-42.
- Acjermo L. Cardiac complications in acquired immunodeficiency syndrome (AIDS): a review. *J Am Coll Cardiol*. 1989;13:1144-54.
- Pugliese A, Isnardi D, Saini A, Scarabelli T, Raddino R, Torre D. Impact of highly active antiretroviral therapy in HIV-positive patients with cardiac involvement. *J Infect*. 2000;40:282-4.
- Rekpananapipat P, Wongpraparut N, Jacobs L, Kotler M. Cardiac manifestations of acquired immunodeficiency syndrome. *Arch Intern Med*. 2000;160:602-8.
- Friis-Møller N, Sabin C, Weber R, et al. Data collection on adverse events of anti-HIV drugs (DAD) study group. Combination antiretroviral therapy and the risk of myocardial infarction. *N Engl J Med*. 2003;349:1993-2003.
- Yusuf S, Hawken S, Ounpuu S, et al. INTERHEART study investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. *Lancet*. 2004;364:937-52.
- Cooper J, Miller G, Humphries S. A comparison of the PROCAM and Framingham point-scoring systems for estimation of individual risk of coronary heart disease in the second Nortwick Park heart study. *Atherosclerosis*. 2005;181:93-100.
- Bozzette S, Ake C, Tam H, Chang S, Louis T. Cardiovascular and cerebrovascular events in patients treated for human immunodeficiency virus infection. *N Engl J Med*. 2003;348:702-10.
- Coplan P, Nikas A, Japour A, et al. Incidence of myocardial infarction in randomized clinical trials of protease inhibitor-based antiretroviral therapy: an analysis of four different protease inhibitors. *AIDS Res Hum Retroviruses*. 2003;19:449-55.
- The strategies for management of antiretroviral therapy (SMART) study group. CD4 count-guided interruption of antiretroviral treatment. *N Engl J Med*. 2006;355:2283-96.
- Grinspoon S, Carr A. Cardiovascular risk and body-fat abnormalities in HIV-infected adults. *N Engl J Med*. 2005;352:48-62.
- Ren Z, Yao Q, Chen C. HIV-1 envelope glycoprotein 120 increases intercellular adhesion molecule-1 expression by human endothelial cells. *Lab Invest*. 2002;82:245-55.
- Conaldi P, Serra C, Dolei A, et al. Productive HIV-1 infection of human vascular endothelial cells requires cell proliferation and is stimulated by combined treatment with interleukin-1 beta plus tumor necrosis factor-alpha. *J Med Virol*. 1995;47:355-63.
- Stein J, Klein M, Bellehumeur J, et al. Use of human immunodeficiency virus-1 protease inhibitors is associated with atherogenic lipoprotein changes and endothelial dysfunction. *Circulation*. 2001;104:257-62.
- Tebas P, Henry W, Matining R, et al. Metabolic and immune activation effects of treatment interruption in chronic HIV-1 infection: implications for cardiovascular risk. *Plos One*. 2008;3:e2021.
- Okamura H, Tsutsui H, Komatsu T, et al. Cloning of a new cytokine that induces gamma interferon production by T cells. *Nature*. 1995;378:88-91.
- Yoshimoto T, Takeda K, Tanada T, et al. IL-12 up-regulates IL-18 receptor expression on T cells, Th1 cells, and B cells: synergism with IL-18 for gamma IFN production. *J Immunol*. 1998;161:3400-7.
- Nakanishi K, Yoshimoto T, Tsutsui H, Okamura H. Interleukin-18 regulates both Th1 and Th2 responses. *Annu Rev Immunol*. 2001; 19:423-74.
- Kim S, Azam T, Novick D, et al. Identification of amino acid residues critical for biological activity in human interleukin-18. *J Biol Chem*. 2002;277:10998-1003.
- Novick D, Kim S, Fantuzzi G, Reznikov L, Dinarello C, Rubinstein M. Interleukin-18 binding protein: a novel modulator of the Th1 cytokine response. *Immunity*. 1999;10:127-36.
- Paulukat J, Bosmann M, Nold M, et al. Expression and release of IL-18 binding protein in response to gamma IFN. *J Immunol*. 2001; 167:7038-43.
- Torre D, Speranza F, Martegani R, et al. Circulating levels of IL-18 in adult and paediatric patients with HIV-1 infection. *AIDS*. 2000;14: 2211-12.
- Torre D. Is interleukin-18 a proviral or antiviral cytokine in HIV-1 infection? *J Infect Dis*. 2007;196:803-4.
- Stylianou E, Bjerkeli V, Yndestad A, et al. Raised serum levels of interleukin-18 is associated with disease progression and may contribute to virological treatment failure in HIV-1-infected patients. *Clin Exp Immunol*. 2003;132:462-6.
- Torre D, Pugliese A. Interleukin-18: a proinflammatory cytokine in HIV-1 infection. *Curr HIV Res*. 2006;4:423-30.

28. Pugliese A, Gennero L, Vidotto V, Speranza F, Tambini R, Torre D. Interleukin-18 enhances HIV-1 production in a human chronically-infected T cell line (H9-V). *Cell Biochem Funct.* 2002;20:333-7.
29. Senpuku H, Asano T, Matin K, et al. Effects of human interleukin-18 and interleukin-12 treatment on human lymphocyte engraftment in NOD-scid mice. *Immunology.* 2002;107:232-42.
30. Pomerantz B, Reznikov L, Harken A, Dinarello C. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL-18 and IL-1 beta. *Proc Natl Acad Sci USA.* 2001;98:2871-6.
31. Mallat Z, Heymes C, Corbaz A, et al. Evidence for altered interleukin 18 (IL)-18 pathway in human heart failure. *FASEB J.* 2004;18:1752-4.
32. Seta Y, Kanda T, Tanaka T, et al. Interleukin 18 in acute myocardial infarction. *Heart.* 2000;84:668.
33. Rosso R, Roth A, Herz I, et al. Serum levels of interleukin 18 in patients with stable and unstable angina pectoris. *Int J Cardiol.* 2005;98:45-8.
34. Mallat Z, Henry P, Fressonnet R, et al. Increased plasma concentrations of interleukin-18 in acute coronary syndromes. *Heart.* 2002;88:467-9.
35. Blankenberg S, Tiret L, Bickel C, et al. Interleukin-18 is a strong predictor of cardiovascular death in stable and unstable angina. *Circulation.* 2002;106:24-30.
36. Woldbaek P, Tonnessen T, Henriksen U, et al. Increased cardiac IL-18 mRNA, pro-IL-18 and plasma IL-18 after myocardial infarction in the mouse: a potential role in cardiac dysfunction. *Cardiovasc Res.* 2003;59:122-31.
37. Kelly R, Smith T. Cytokines and cardiac contractile function. *Circulation.* 1997;95:778-81.
38. Wang M, Markel T, Meldrum D. Interleukin 18 in the heart. *Shock.* 2008; 30:3-10.
39. Dao T, Mehal W, Crispe I. IL-18 augments perforin-dependent cytotoxicity of liver NK-T cells. *J Immunol.* 1998;161:2217-22.
40. Tsutsui H, Nakanishi K, Matsui K, et al. IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. *J Immunol.* 1996;157:3967-96.
41. Dao T, Ohashi K, Kayano T, Kurimoto M, Okamura H. Interferon-gamma-inducing factor, a novel cytokine, enhances Fas ligand-mediated cytotoxicity of murine T helper 1 cells. *Cell Immunol.* 1996;173:230-5.
42. Chandrasekar B, Vemula K, Surabhi R, et al. Activation of intrinsic and extrinsic proapoptotic signaling pathways in interleukin-18-mediated human cardiac endothelial cell death. *J Biol Chem.* 2004;279:20221-33.
43. Woldbaek P, Sande J, Stromme T, et al. Daily administration of interleukin-18 causes myocardial dysfunction in healthy mice. *Am J Physiol Heart Circ Physiol.* 2005;289:H708-14.
44. Deparion M, Chesseix S, Sudre P, et al. Swiss HIV cohort study. Premature atherosclerosis in HIV-infected individuals- focus on protease inhibitor therapy. *AIDS.* 2001;15:329-34.
45. Hsue P, Lo J, Franklin A, et al. Progression of atherosclerosis as assessed by carotid intima-media thickness in patients with HIV infection. *Circulation.* 2004;109:1603-8.
46. Mehta N, Reilly M. Atherosclerotic cardiovascular disease risk in the HAART-treated HIV-1 population. *HIV Clin Trials.* 2005;6:5-24.
47. Koutkia P, Grinspoon S. HIV-associated lipodystrophy: pathogenesis, prognosis, treatment, and controversies. *Annu Rev Med.* 2004; 55:303-17.
48. Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis. *J Atheroscler Thromb.* 2003;10:63-71.
49. Lafeuillade A, Alessi M, Poizet-Martin I, et al. Endothelial cell dysfunction in HIV infection. *J Acquir Immune Defic Syndr.* 1992;5:127-31.
50. Zietz C, Hotz B, Sturzl M, Rauch E, Penning R, Lohrs U. Aortic endothelium in HIV-1 infection: chronic injury, activation and increased leukocyte adherence. *Am J Pathol.* 1996;149:1887-98.
51. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson G. Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. *Arteriosclerosis.* 1986;6:131-8.
52. Hansson G, Libby P. The immune response in atherosclerosis: a double-edge sword. *Nature Rev Immunol.* 2006;6:508-19.
53. Gerdes N, Sukhova G, Libby P, Reynolds R, Young J, Schonbeck U. Expression of interleukin(IL)-18 and functional IL-18 receptor on human vascular endothelial cells, smooth muscle cells, and macrophages: implications for atherogenesis. *J Exp Med.* 2002;195:245-57.
54. Croce K, Libby P. Intertwining of thrombosis and inflammation in atherosclerosis. *Curr Opin Hematol.* 2007;14:55-61.
55. Elhage R, Jawien J, Rudling M, et al. Reduced atherosclerosis in interleukin-18 deficient apolipoprotein E-knockout mice. *Cardiovasc Res.* 2003;59:234-40.
56. Mallat Z, Corbaz A, Scoazec A, et al. Interleukin-18/interleukin-18 binding protein signaling modulates atherosclerotic lesion development and stability. *Circ Res.* 2001;89:e41-5.
57. Tenger C, Sundborger A, Jawien J, Zhou X. IL-18 accelerates atherosclerosis accompanied by elevation of IFN-g and CXCL16 expression independently of T cells. *Arterioscler Thromb Vasc Biol.* 2005;25:791-6.
58. Whitman S, Ravisankar P, Daugherty A. Interleukin-18 enhances atherosclerosis in apolipoprotein E (-/-) mice through release of interferon-gamma. *Circ Res.* 2002;90:E34-8.
59. Mansfield K, Carville A, Wachtman L, et al. A diet high in saturated fat and cholesterol accelerates simian immunodeficiency virus disease progression. *J Infect Dis.* 2007;196:1202-10.
60. Blankenberg S, Luc G, Ducimetiere P, et al. Interleukin-18 and the risk of coronary heart disease in European men: the prospective epidemiological study of myocardial infarction (PRIME). *Circulation.* 2003;108:2453-9.
61. Hung J, McQuillan B, Chapman C, Thompson P, Beilby J. Elevated interleukin-18 levels are associated with the metabolic syndrome independent of obesity and insulin resistance. *Arterioscler Thromb Vasc Biol.* 2005;25:1268-73.
62. Grundy S, Brewer H, Cleeman J, Smith S, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. *Arterioscler Thromb Vasc Biol.* 2004;24:e13-18.
63. Isooma B, Almgren P, Tuomi T, et al. Cardiovascular morbidity and mortality with the metabolic syndrome. *Diabetes Care.* 2001;24:683-9.
64. d'Arminio A, Sabin C, Philips A, et al. Cardio-and cerebrovascular events in HIV-infected persons. *AIDS.* 2004;18:1811-7.
65. Esposito K, Pontillo A, Cirotola M, et al. Weight loss reduces interleukin-18 levels in obese women. *J Clin Endocrinol Met.* 2002;87:3864-6.
66. Esposito K, Pontillo A, Di Palo C, et al. Effect of weight loss and lifestyle changes on vascular inflammatory markers in obese women: a randomized trial. *JAMA.* 2003;289:1799-804.
67. Bosello O, Zamboni M. Visceral obesity and metabolic syndrome. *Obes Rev.* 2002;1:47-56.
68. Hauner H. Insulin resistance and the metabolic syndrome – a challenge of the new millennium. *Eur J Clin Nutr.* 2002;56(Suppl 1):S25-9.
69. Skurk T, Kolb H, Muller-Scholze S, Rohrig K, Hauner H, Herder C. The proatherogenic cytokine interleukin-18 is secreted by human adipocytes. *Eur J Endocrinol.* 2005;152:863-8.
70. Netea M, Joosten L, Lewis E, et al. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. *Nat Med.* 2006;12:650-6.
71. Zilverschoon G, Tack C, Joosten L, Kullberg B, van der Meer J, Netea M. Interleukin-18 resistance in patients with obesity and type 2 diabetes mellitus. *Int J Obes.* 2008;32:1407-14.
72. Straczkowski M, Kowalska I, Nikolajuk A, et al. Increased serum interleukin-18 concentration is associated with hypo adiponectinemia in obesity, independently of insulin resistance. *Int J Obes.* 2007;31:221-5.
73. Lindegaard B, Hansen A, Gerstoft J, Pedersen B. High plasma level of IL-18 in HIV-infected patients with lipodystrophy. *J Acquir Immune Defic Syndrome.* 2004;36:588-93.
74. Lindegaard B, Hansen A, Pilegaard H, Killer P, Gerstoft J, Pedersen B. Adipose tissue expression of IL-18 and HIV-associated lipodystrophy. *AIDS.* 2004;18:1956-8.
75. Falasca K, Manigrasso M, Raciatti D, et al. Associations between hypertriglyceridemia and serum ghrelin, adiponectin, and IL-18 levels in HIV-infected patients. *Ann Clin Lab Sci.* 2006;36:59-66.
76. Torre D, Pugliese A. Platelets and HIV-1 infection: old and new aspects. *Curr HIV Res.* 2008;6:411-8.
77. Subramaniam M, Frenette P, Saffaripour F, Johnson R, Hynes R, Wagner D. Defects in hemostasis in P-selectin-deficient mice. *Blood.* 1996;87: 1238-42.
78. Ruggeri Z. Platelets in atherosclerosis. *Nat Med.* 2002;8:1227-34.
79. Pugliese A, Savarino A, Cantamessa C, Torre D. Influence of fibronectin on HIV-1 infection and capability of binding to platelets. *Cell Biochem Funct.* 1996;14:291-6.
80. Gawaz M, Langer H, May A. Platelets in inflammation and atherogenesis. *J Clin Invest.* 2005;115:3378-84.
81. Ahmad R, Iannello A, Samarani S, et al. Contribution of platelet activation to plasma IL-18 concentrations in HIV-infected AIDS patients. *AIDS.* 2006;20:1907-9.
82. Huo Y, Schober A, Forlow S, et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. *Nat Med.* 2003;9:61-7.
83. Diacovo T, Puri K, Warnock R, Springer T, von Adrian U. Platelet-mediated lymphocyte delivery to high endothelial venules. *Science.* 1996; 273:252-5.
84. Massberg S, Brand K, Gruner S, et al. A critical role of platelet adhesion in the initiation of atherosclerotic lesion formation. *J Exp Med.* 2002; 196:887-96.
85. Buckner K, Henn V, Grafe M, de Boer O, Becker A, Kroczeck R. CD40 ligand is selectively expressed on CD4 T cells and platelets: implications for CD40-CD40L signaling in atherosclerosis. *J Pathol.* 2003;201:288-95.
86. Yearley J, Mansfield K, Carville A, et al. Antigenic stimulation in the simian model of HIV infection yields dilated cardiomyopathy through effects of TNF-alpha. *AIDS.* 2008;22:585-94.
87. Yearley J, Xia D, Pearson C, Carville A, Shannon R, Mansfield K. Interleukin-18 predicts atherosclerosis progression in SIV-infected and uninfected rhesus monkeys (*Macaca mulatta*) on a high-fat/high-cholesterol diet. *Lab Invest.* 2009;89:657-67.
88. Tiret L, Godefroy T, Lubos E, et al. Genetic analysis of the interleukin-18 gene in cardiovascular disease. *Circulation.* 2005;112:643-50.