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Abstract

HIV vaccine research has recently produced a number of efficacy results, in addition to some promising
preclinical developments. Some of these have been surprising, leading to parallel calls for a better
understanding of HIV pathogenesis and immunity, while accelerating the number of candidates that
can be tested empirically in clinical trials. In this review, we describe the development of three HIV
vaccine efficacy trials to date, and highlight some of the possible avenues available for the field of
biomedical HIV prevention to proceed. (AIDS Rev. 2010;12:209-17)
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In 1984, shortly after HIV was confirmed as the cause
AIDS'?, then US Health and Human Services Secretary
Margaret Heckler famously promised that a vaccine
would be available within two years3. Although it is
easy to be critical in hindsight, at the time the vaccine
field was brimming with confidence. Smallpox had
been eradicated less than five years prior, and polio
eradication appeared to be on the horizon. However,
in the case of HIV, despite many lessons in virology
and immunology, the first hint of vaccine efficacy was
observed more than 25 years later.

Many obstacles to the development an effective HIV
vaccine have been tabled?, but at the foremost of these
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are the many scientific challenges that HIV poses when
compared to traditional vaccine development para-
digms®. For instance, the most effective vaccines to
date were developed empirically to prevent acute viral
infections and elicit neutralizing antibodies. Several
lines of evidence, from animal models and human stud-
ies, suggest that the avidity and/or titer of neutralizing
antibodies are correlates of protection for these vac-
cines®. However, HIV rapidly escapes and avoids these
responses in the majority of subjects, such that con-
temporary antibodies can rarely neutralize circulating
strains of HIV7. Although broad neutralizing antibodies
can protect monkeys from SIV challenge®, this activity
is rare in HIV-infected subjects and correlated posi-
tively with viral load®.

The maijority of traditional vaccine development has
been empirical, in many cases before a very good
understanding of host immunity was available™. These
include whole killed and attenuated vaccines, both of
which had limited success in HIV. While live attenuated
vaccines are perhaps the most protective SIV vaccines
in animal models'!, these vaccines are thought to be
too dangerous for human use. This is based on the
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pathogenicity of live attenuated vaccines in neonatal
monkeys'?, eventual progression in the Australian nef-
deleted HIV-infected cohort'®, and recent studies
showing that recombination between challenge and
vaccine strain can cause monkeys to progress rapidly
to AIDS™,

To further complicate matters, several aspects of
natural HIV infection stand in the way of an easy path
to vaccine development. Once HIV reaches the lym-
phatic system, a latent viral reservoir is established for
life'®, and even in the face of highly effective therapy,
the estimated half-life of this reservoir is near the hu-
man lifespan’®. Secondly, HIV targets the immune sys-
tem itself, such that attempts to induce protective im-
munity against HIV often bring the virus into contact
with the CD4* T-cells it prefers to infect'”. The deple-
tion of CD4* T-cells, rapidly in the mucosa and more
slowly in the blood'®??, leading to opportunistic infec-
tions, forms part of the evidence of the importance of
these cells in host immunity. Also, the constant expo-
sure of the immune system to HIV causes profound
immune dysregulation as a consequence of chronic
activation, further debilitating many subsets of immune
cells®®?4, Thirdly, HIV exhibits extreme genetic diver-
sity, leading to rapid escape from many immune re-
sponses®. Therefore, even when protective responses
are induced, whether these responses will provide cov-
erage for all of the HIV strains a vaccinee may encoun-
ter remains an unanswered question.

HIV vaccine efficacy trials

There have been three HIV vaccine products tested
in clinical efficacy trials to date. The first were two
double-blinded, placebo-controlled phase Il efficacy
trials of HIV-1 envelope proteins completed by VaxGen
in 2003, which showed no efficacy?®®?’. The second
was the STEP (and the related Phambili) phase Ilb
proof-of-concept trials that used an adenovirus (Ad5)
vector with the aim of inducing HIV-specific T-cell re-
sponses. The STEP trial was stopped prematurely by
the Data Safety and Monitoring Board (DSMB) in late
2007, and subsequent analyses suggest this vaccine
might have actually increased HIV susceptibility in un-
circumcised, Ad5-seropositive men?®. Finally, a recent-
ly completed phase Il community-based trial called
RV144 in Thailand garnered much press attention
when in late 2009 - to the surprise of many — a 31.2%
protective effect was observed in a modified intent-to-
treat analysis®. This vaccine included a series of canary-
pox vector primes followed by VaxGen's Env protein

boost. We discuss these trials in detail below, and
consider the implications of this series of expectations
and surprises for future HIV vaccine development.

HIV envelope protein vaccines

Like many trials since, the VaxGen trials were con-
ducted amid much skepticism and controversy3%3!,
These protein vaccines were used in two parallel trials:
AIDSVAX B/B (VAX004), which was conducted in Europe
and North America and enrolled 5,403 volunteers (men
who have sex with men, n = 5,095; high-risk women,
n = 308) and AIDSVAX B/E (VAX003), which was con-
ducted in Thailand in 2,546 intravenous drug users.

Vaccines and schedule

AIDSVAX B/B was comprised of two recombinant
gp120 (rgp120) antigens derived from the CXCR4-
dependent HIV,,, and CCR5-dependent HIV g,
clade B strains of HIV-1, which were delivered as
seven injections over 30 months of vaccine or pla-
cebo (randomized 2:1), with HIV-1 acquisition at 36
months as the primary endpoint. AIDSVAX B/E con-
tained two recombinant gp120 antigens derived from
one clade B strain (CXCR4-dependent HIV,, ) and
one clade E strain (CCR5-dependent primary isolate
CRFO1_AE) of HIV-1%7. Similarly, these were given as
seven injections over 30 months of vaccine or placebo
(randomized 1:1) with HIV-1 acquisition at 36 months
as the primary endpoint.

Immunogenicity

Phase /Il trials of AIDSVAX B/B and AIDSVAX B/E
both demonstrated induction of significant antibody
titers against HIV envelope strains included in the vac-
cine®*%, These antibodies were capable of binding
gp120 V2 and V3 loop peptides and blocking binding
of soluble CD4 to rgp120 strains included in the vac-
cine. Although it was thought that vaccination with
HIV,,, (clade B) rgp120 alone could elicit clade E im-
munity, sera from monovalent AIDSVAX MN vaccinees
demonstrated a lack of antibody cross-reactivity to
HIV,,,, (clade E) peptides and failed to block sCD4
binding to HIV,,,, rgp120, supporting the use of AIDS-
VAX B/E in Thailand where both clades circulate. These
data suggest antibodies generated by the vaccine may
be limited in their ability to protect against strains with
gp120 sequences that vary compared to vaccine
strains. In support of this, while neutralizing activity of
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antisera against laboratory strains was seen in both
AIDSVAX B/E and AIDSVAX B/B recipients, antisera
from these individuals failed to neutralize primary HIV-1
isolates in phase | trials®. However, antibodies gener-
ated by AIDSVAX BJE vaccination were capable of
binding oligomeric gp120 on cells infected with primary
isolates, suggesting at least some level of cross-recog-
nition® (though oligomeric gp120 binding to vaccine
strains was not available for comparison purposes).

Efficacy

The VaxGen trial results were disappointing. For
AIDSVAX B/B, there was no difference in HIV-1 inci-
dence between vaccine and placebo recipients (6.7
vs. 7%, respectively)?. Similarly, AIDSVAX B/E showed
no difference in HIV-1 incidence between vaccinees
and controls (8.4% in vaccine and 8.3% in placebo)?’.
This is despite induction of antibody responses in most
vaccinees. Exploratory subgroup analyses revealed
that peak antibody levels correlated inversely with HIV
incidence. However, further analysis suggested that
this correlation was a marker of susceptibility and did
not represent a direct effect of antibody responses on
HIV-1 acquistion®. Indeed, the quality of the antibodies
elicited by vaccination was suspect, which fueled
skepticism about how effective the trial would be even
prior to its completion3931,

Adenovirus-based HIV vaccines

The STEP trial was conducted by the Vaccine Re-
search Centre (VRC) at NIH and Merck, and was based
on several continents including North America, the Ca-
ribbean, South America, and Australia. The trial enrolled
3,000 participants aged 18-45, most of whom were ei-
ther men who have sex with men or high-risk women.

Vaccine and schedule

The MRKAd5 vaccine used in the STEP trial was a
trivalent vaccine consisting of a 1:1:1 mixture of three
replication-defective adenovirus serotype 5 (Ad5) viral
vectors expressing gag (HIV,,,4), pol (HIV-1,5), or nef
(HIV-1,. 7). The vaccine was given as three doses
(baseline, week 4, week 26) with primary endpoints
of HIV acquisition and viral load set point in those
who became infected®. The trial analysis was strati-
fied by baseline Ad5 titers, based on the prediction
that preexisting neutralizing antibodies to the vaccine
vector (Ad5) might limit effectiveness of the vaccine.

Immunogenicity

Vaccination with MRKAdS in phase | trials elicited
positive interferon (IFN)-y ELISPOT responses to two or
more peptide pools in the majority (72%) of volun-
teers®. All three HIV proteins were targeted by 44% of
vaccinees. CD8* T-cells dominated, based on intracel-
lular cytokine staining, but CD4* T-cell responses were
also detected. Cross-clade reactivity was observed in
61-67% of clade-B responders to clades A and C,
respectively. Interestingly, individuals with higher base-
line anti-Ad5 antibody titers had reduced ELISPOT re-
sponses, suggesting the possibility of lower vaccine
immunogenicity in individuals with high preexisting
vector immunity.

Efficacy

The STEP trial had a predetermined interim ana-
lysis scheduled when 30 per-protocol events were
observed in those with Ad5 titers < 200. In the mod-
ified intent-to-treat analysis at this time point, 24 in-
fections (3%) were observed in the vaccine versus
21 (3%) in the placebo arm, and there was also no
difference in set point viral loads between groups
(4.61 vs. 4.41 log,, copies/ml in the vaccine and
placebo arms, respectively). Similarly, the per-proto-
col analysis also showed no significant differences in
either primary endpoint: 19 infections (4%) in vaccine
vs. 10 (2.12%) in the placebo arm, and again there
were no differences in viral loads between the vac-
cine and placebo arms (4.6 vs. 4.57 log,, copies/ml).
Based on these data, the STEP trial was stopped in
September 2007 due to futility (i.e. it was unlikely that
if the trial was extended, it would produce a positive
result). A very similar trial called Phambili, based in
South Africa, had enrolled 801 volunteers, but was
stopped at the same time as STEP. The failure of this
trial occurred despite the regular detection of T-cell
responses (by IFN-y ELISPOT) in 75% of vaccinees
tested®, although whether the breadth of these re-
sponses was sufficient has been debated and is dis-
cussed as follows.

Since 2007, there have been several subgroup ana-
lyses of the STEP trial®®. Of most concern was the trend
towards an increased risk for HIV infection in vacci-
nated men who were Ad5-seropositive and uncircum-
cised. The mechanism(s) responsible for this remain
unknown. The possibility of increased immune activa-
tion, such as increases in CD4*CCR5* T-cells in the
high Ad5 titer subgroup, has been raised. Although
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two recent studies have presented negative data in
response to this question3®4%, since no mucosal sam-
ples were collected, this possibility is difficult to rule
out. Why the vaccine did not provide protection is also
unknown, but possibilities include that dual CD4/CD8
responses were only seen in 31% of vaccinated
participants®’, which is of lower magnitude and
quality than in HIV-positive long-term non-progres-
sors. Furthermore, these T-cell responses may not
have been cross-reactive enough, given the genet-
ic difference between vaccine and infecting strain
observed in breakthrough infections®®. Other poten-
tial shortcomings of the quality of cytotoxic T-lym-
phocyte (CTL) elicited by MRKAd5 include inade-
quate recognition of infected cells and inappropriate
CTL trafficking in vaccinees*', underscoring the im-
portance of considering all aspects of CTL function
during vaccine design.

The STEP trial, although a negative result, raised
many questions*>43, Because many considered this
the best “T-cell vaccine” in the pipeline, some won-
dered if this meant a failure of the T-cell-based HIV
vaccine concept. Others questioned whether it could
mean the end of adenovirus vectors, or even merely of
Ad5 vectors*. Interestingly, although the predicted dif-
ficulty with Ad5 as a vector was that preexisting Ad5
immunity would limit protectiveness, the trial suggested
a worse scenario — that preexisting Ad5 immunity may
result in enhanced HIV-1 susceptibility. This remains
an important question to sort out as future vaccines are
being considered.

This trial also raised questions regarding the limita-
tions of monkey models. An Ad5/SIVgag vaccine pro-
tected rhesus macaques against SHIVg, . but not
SIV, eozo™*, the latter of which is thought to be a
more stringent challenge virus (i.e. is more difficult to
protect against)?’. One difficulty lies in the fact that it
is difficult to know which models are predictive of
clinical efficacy in the absence of an effective product;
predicting a negative result is obviously not the same
as predicting a positive result. Another problem with
monkey models when it comes to T-cell vaccines is
differences in human leukocyte antigen/major histo-
compatibility complex that may influence immunity.
For example, Ad5 vaccines generate much broader
CD8* T-cell responses in monkeys than were observed
in the STEP trial*®, and broader responses, particu-
larly to Gag, are thought to mediate protection in HIV
infection*®. Resolution of these issues will not be easy,
but is critical to moving forward with future vaccine
platforms.

An ongoing trial: HVTN 505

A vaccine trial related to the STEP trial is currently
underway, and is expecting results by the end of
2011%0. This phase Il trial will enroll 1,350 men who
have sex with men (who have been circumcised and
lack Ad5 antibodies). This trial utilizes a prime-boost
strategy: three immunizations with DNA vaccine fol-
lowed by boost at week 24 with recombinant Ad5. The
insert for this vaccine contains clades A, B, C Env, plus
Gag/Pol/Nef (Nef has been included in DNA vaccine
but not rAd5). The endpoint of this trial is reduction in
HIV viral load in those who become infected. The Ad5
in this vaccine has been modified from the Merck vec-
tor, and unlike the STEP trial, this vaccine contains Env
and a DNA prime, which it is thought will increase the
breadth of vaccine-induced T-cell responses.

The canarypox/envelope prime-boost
vaccine approach

Also referred to as the “Thai trial”, RV144 was a
phase Il efficacy trial, the results of which were re-
leased in September 2009. This trial enrolled > 16,000
people in two provinces in Thailand, and was com-
munity representative, i.e. not merely high risk sub-
jects. The primary endpoints for this trial were HIV-1
acquisition, and postinfection viral load and CD4
counts in those who became infected.

Vaccines and schedule

The vaccine consisted of Aventis Pasteur's ALVAC-
HIV (vCP1521), a canarypox vector expressing HIV-1
subtype B Gag and protease (HIV ,) and gp120
(CRFO1_AE) linked to transmembrane anchoring portion
of gp41 (HIV,). The ALVAC-HIV vaccine was given as
a prime at four visits (baseline, 4, 12, 24 weeks). Fol-
lowing priming, VaxGen’s AIDSVAX B/E, a bivalent en-
velope glycoprotein vaccine containing rgp120 from
clade B (HIV,, ) and E (HIV,,,,) viruses, was given as
a boost at weeks 12 and 24. Notably, the AIDSVAX
boost was the same vaccine as was used in one of the
initial VaxGen trials described previously.

Immunogenicity

Preliminary immunogenicity phase I/l trials of RV144
suggested that the immune responses induced were
modest. For example, administration of ALVAC alone
did not result in production of neutralizing antibodies.
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In those who also received AIDSVAX B/E, binding
antibodies were detected in most vaccinated indivi-
duals and a high percentage of these neutralized one
or more lab-adapted HIV-1 strains®'. Despite these
encouraging results, the failure of the earlier AIDSVAX
BJE trial demonstrated that these antibody responses
are not sufficient to protect against infection.

The use of a live vCP1251 vector as a delivery sys-
tem for the vaccine was aimed at inducing potent HIV-
specific T-cell responses. However, immunogenicity
trials demonstrated CD8 CTL responses in only 24%
of vaccinated individuals, and only 41% of responders
showed repeat positive responses®'. These results var-
ied in comparison to similar trials of vCP205 (express-
ing the same gag, pol and gp41 genes as vCP1251),
which ranged in HIV-specific CTL responses from 20
to 76% of vaccinated individuals®?%°. Several of these
studies demonstrated high background responses in
placebo recipients, calling the immunogenicity of the
vaccines into question. Lymphoproliferative responses
were observed in 63 and 61% of vaccinees to clades
E and B envelope proteins, respectively. However,
lymphoproliferative responses as high as 24% in pla-
cebo recipients complicated the interpretation of these
results®!.

Efficacy

The RV144 results indicated a very modest protective
effect (depending on the analysis), but regardless this
was lower than the 50% protection level set by the Thai
government at which licensure might be considered?.
Overall, 132 HIV infections occurred during the study:
56 in vaccine and 76 in the placebo arm. The degree
of vaccine efficacy was on the borderline of statistical
significance, ranging from 26.2% (p = 0.16) in the per-
protocol, 26.4% (p = 0.08) in the intent-to-treat, and
31.2% (p = 0.04) in the modified intent-to-treat. The
latter analysis excluded seven randomized individuals
who were later found to have seronegative HIV infec-
tion prior to the first vaccine dose. No significant dif-
ference was observed in postinfection viral load or CD4
counts between the vaccine and placebo arms. There-
fore, although modestly protective, the confidence in-
tervals were very wide (in the modified intent-to-treat,
95% Cl ranged from 1.1 to 51.2%).

Further observations from RV144, although lacking
in statistical power, are hypothesis generating in terms
of how this vaccine may have worked in humans. First-
ly, it seems that the majority of protection was ob-
served in the first year after vaccination. After one year,

there were 20 more infections in the placebo than vac-
cine arm, but the gap between these groups was more
or less maintained for the duration of the study. Sec-
ondly, high-risk people did not seem to be protected.
Since the trial was community-based, stratification of
subjects by risk group was possible in sub-analyses.
Although not statistically significant, estimated vaccine
efficacy in lowest-risk subjects was 40% (17 vaccine vs.
29 placebo infections), 47.6% in medium risk (12 vac-
cine vs. 22 placebo infections), and 3.7% in highest
risk (22 vaccine vs. 23 placebo infections). One inter-
pretation of these data is that protection was transient
and moderate, failing to protect for a long duration and
in people at most risk for infection, which concurs with
the modest efficacy observed overall. While one must
be cautious with these interpretations, the implications
for future trials can be considered (discussed in HIV
vaccine research: where to go from here).

HIV vaccine research: where to go
from here

Based on this history, it is clear that the road to an
HIV vaccine has been anything but smooth or predict-
able. Yet the need for an HIV vaccine remains as
pressing as ever, with more than two million new cas-
es annually®®, and swelling numbers needing antiretro-
viral therapy in a world with finite resources®”. While it
would be ideal to evaluate as many candidates as
possible, especially given the unexpected nature of
results to date, financial issues complicate this strate-
gy. Many doubts were raised as to whether the now-
completed efficacy trials were justified, largely due to
guestionable potency and the associated financial
costs (RV144 cost an estimated US$ 119 million). In
addition to the huge amounts of time involved for each
trial (more than five years), there have also been con-
cerns that the public and volunteer recruitment may
suffer in the face of repeated failures, even if these are
necessary to get a positive outcome.

The question has been raised regarding how much
preliminary data and rationale are necessary before a
large trial proceeds. Many have argued that phase |l
immunogenicity data predicted the failure of VaxGen;
namely, the antibodies induced could neutralize lab
strains of HIV but not primary isolates (to which a vac-
cinee is exposed)®. Similarly, several leading HIV sci-
entists called for an end to the Thai trial in 2004, argu-
ing that the phase Il ALVAC trials did not induce
sufficient CTL, and AIDSVAX had already failed to in-
duce protective antibodies in its own efficacy trial®.
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The counter rationale for going ahead was that this was
the first test of a regimen aimed at inducing T-cells and
antibody in combination, and the results turned out
better than many expected. Finally, in the wake of the
unexpected STEP failure, NIH canceled a trial called
PAVE in 2008 (which was to be similar to STEP) and
called for an emphasis on fundamental research®®.

Indeed, these three completed efficacy trials have
led to extensive questioning of how to best direct HIV
vaccine development efforts. Is a return to basic sci-
ence ideal, aimed at better rationale vaccine design,
or should we proceed with more smaller scale empiri-
cal trials, where we could determine protective corre-
lates once we have a promising product? Between
these extremes is the concept of translational research
programs that link vaccine development with basic
science, such that hypothesis-driven phase Ilb proof-
of-concept trials could be completed in conjunction
with comprehensive basic science evaluations that
would inform subsequent generations of a given prod-
uct. Questions surrounding the design of novel immu-
nogens to elicit better antibody and T-cell responses
are prominent. Responses believed to be protective
have been difficult to elicit in vaccination of humans.
Better vector, adjuvant, and/or delivery systems could
also be tested towards this goal. Should HIV vaccines
prevent transmission, delay disease progression, or
both? Some of the products developed to date have
been tested to do both (as primary endpoints), but
based on what we know of protective immunity against
acquisition versus progression, is it realistic to think
that a single vaccine could do both®? Finally, the use-
fulness of nonhuman primates for informing HIV vac-
cine development remains an open question. Better
strains such as SIV, .54 OF SIV44, (@ swarm of viruses,
similar to the HIV at exposure in humans) and low-dose
repeated mucosal challenges may improve on the use-
fulness of the model.

The RV144 trial generated even more questions than
STEP, given that the latter was expected to work and
the former was expected to fail. The consensus emerg-
ing from a recent NIH HIV Vaccine meeting was that
RV144 appears to be “a signal”, but what nexté'? Some
follow-up trials are already in progress®. Immediate
plans include a boost of HIV-negative vaccinees, to
determine whether their immunity can be augmented
by another vaccine dose. This trial, called RV305, is in
the planning phase, and is obviously time-dependent;
the longer the vaccinees are from receiving the initial
vaccine, the less likely this approach will provide an-
swers. A second idea is a more detailed immunogenicity

study (called RV306). Since the immunogenicity of
RV144’s components was evaluated 5-10 years ago,
advances in immunology, particularly in systems biol-
ogy® and flow cytometry®*, could provide a more de-
tailed picture of how this vaccine elicits immune re-
sponses. A third idea is a new phase lIb trial in South
Africa, where HIV incidence in some places remains
quite high. The aims of this trial would be to test vac-
cine modifications, dissect which vector did what, and
to get a more rapid evaluation of efficacy (possibly in
24 months) in a population where HIV risk could again
be stratified amongst vaccinees.

Several new ideas have been reported at recent HIV
vaccine conferences. Multiple groups are considering
passive neutralizing antibody infusion as a proof-of-
concept trial to indicate that these are the types of
antibodies we should be aiming to generate®. Similar
studies have given encouraging results in nonhuman
primates®%. Another possible way to deliver effective
antibodies is through AAV-vectored gene therapy, and
this concept is also under evaluation®”. The impetus for
reevaluating antibody-based vaccine efforts stem in
part from the recent identification of additional antibod-
ies that can broadly neutralize HIVE70 but also be-
cause of the RV144 trial, where non-neutralizing anti-
bodies and CD4* T-cell proliferation were the most
common responses. Although no data has emerged,
some have considered the possibility that other anti-
body effector mechanisms, such as complement acti-
vation or antibody-dependent cellular cytotoxicity
(ADCC)™, could be protective against HIV.

Other ideas for eliciting cell-mediated immunity in-
clude the use of other vectors such as DNA/NYVAC,
which is under evaluation”. Cytomegalovirus looks
promising in preclinical studies, generating very dur-
able mucosal effector memory T-cell responses and
protecting 50% of monkeys from a low-dose chal-
lenge. As to the problem of HIV diversity, the testing
of mosaic vaccine antigens might be a strategy to in-
crease the breadth of T-cell responses generated by
vaccination”75. In general, given the unexpected his-
tory of HIV vaccine efficacy trials, a further diversifica-
tion of approaches, rather than the parallel testing of
similar, competing approaches, should be seen in
coming years.

There are also emerging ethical and logistical issues
that face the HIV vaccine field. One is whether there is
enough production capacity to generate enough RV144
components to do follow-up studies. Since this vaccine
was made long ago and expected to fail, these ca-
pacities need to be regenerated. A second issue is
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whether future trials need to provide the RV144 vaccine
as a placebo. Given its modest efficacy, one could
argue that RV144 should become a standard-of-care
in the setting of further vaccine evaluations. Converse-
ly, in light of the STEP results, should trials in men only
be conducted on those who are circumcised? Although
we now know that circumcision is protective on its own,
another trial that increased risk for uncircumcised men
would certainly be unwelcome. Finally, given the high
expectations of ongoing pre-exposure prophylaxis tri-
als to show efficacy, will all future vaccinees be on
antiretroviral therapy as the new standard-of-care for
individuals at high risk for HIV? This would surely im-
pact on the logistics of carrying out evaluations of HIV
vaccines, if the new goal of the vaccine was to improve
upon something that is already effective.

On the other hand, the concept of combining suc-
cessful prevention approaches may be an effective
way to slow the pandemic. There are several other
biomedical interventions, in addition to vaccines, that
could prevent HIV transmission’8. Some promising pre-
clinical results are from a compound called glycerol
monolaurate, which suppresses the recruitment of tar-
get cells, limiting expansion of HIV-infected founder
T-cell populations. This microbicide was effective in
preventing SIV acquisition during repeated vaginal
challenges’. Until recently, clinical trials of microbi-
cides in humans have ranged from ineffective to harm-
ful’®. There was optimism when Pro2000 showed 30%
efficacy in phase llb, but this product showed no pro-
tection in its phase lll trial. However, the new genera-
tion of topical microbicides is focusing on compounds
with a specific mode of action’, such as those contain-
ing antiretrovirals, including CCR5 inhibitors: CCR5-trop-
ic strains of HIV almost universally are those that es-
tablish infection. CAPRISA 004 was the first trial to test
the efficacy of this approach. The microbicide candi-
date in this trial was a vaginal gel formulation of teno-
fovir, a nucleotide reverse transcriptase inhibitor. The
gel reduced HIV acquisition by 39% overall, and by
54% in women with high (> 80%) gel adherence®. In
addition, this gel also prevented acquisition of HSV2.
Although this efficacy may be too low for licensure,
these results are very encouraging for the HIV preven-
tion field.

Recent debate has focused on the extent to which
ART can prevent HIV transmission at a population
level. Some have questioned, on the basis of modeling
data, whether wide-scale testing and treatment pro-
grams could eventually eradicate HIV; if the reproduc-
tive rate is reduced below 1, epidemics eventually

extinguish®'. Although the ability of ART to reduce to
HIV transmission could be substantial, on the basis of
reducing plasma viral load, a major predictor of trans-
mission®, there are possible drawbacks to this con-
cept. These include financial and practical feasibility,
considering that even covering those with CD4 < 200
has been a major challenge. Further worries include
the possibility that more widespread use of ART might
cause an increase in drug resistance, and that taking
ART for a much longer time period might lead to in-
creased exposure to side effects and possibly poor
adherence. Finally, the reduced autonomy of individu-
als in choices of care may represent a human rights
hurdle to this approach. However, data in favor of this
approach have recently been presented, including
evidence of modest decreases in HIV incidence that
correspond temporally with increased ART use®. More
direct evidence comes from a study of discordant
couples that showed a 92% decrease in transmission
in ART-naive compared to subjects on ART®. There-
fore, the implications of ART on transmission cannot be
ignored.

Conclusions

The need to develop an HIV vaccine remains a ma-
jor global public health priority. Prevention remains the
cornerstone of public health, and vaccination is one of
the most important public health advances of the 20"
century. Yet the advocacy for prevention is never as
high as it is compared to when someone is affected by
a disease; the benefits of prevention lie in the future,
its beneficiaries are unknown, and when something is
prevented, it is often invisible (i.e. it's difficult to prove
that something didn’t happen)®. However, while in the
early days HIV was kept as a low priority by many
governments of the world, delaying the effectiveness
of the response, there has since then been a remarkable
investment in fighting this disease. Prior to the current
global financial crisis, there was a 20-fold increase in
HIV/AIDS funding from 1998 to 2008, an increase from
US$ 485 million to US$ 10 billion®, including approxi-
mately US$ 868 million on HIV vaccine development
in 2008%7.

The clues gathered from the failed STEP and partially
successful RV144 trials, as well as promising ongoing
preclinical vaccine data, offer unprecedented opportu-
nities to build on these efforts towards an effective HIV
vaccine. Altering RV144, and/or uncovering its mode
of action, could be most critical in this regard. Further-
more, the immunological knowledge and available
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research tools are increasing exponentially, resulting
in increased capacity to discern correlates of protec-
tion. This has to a large extent been driven by HIV,
prompting some to say that immunology has been
“taught by viruses"®. However, in line with the claim
that a vaccine has never been made by an immunolo-
gist®®, STEP and RV144 have also implied that we need
to evaluate as many candidates as is feasible, while
nesting detailed immunological and epidemiological
evaluations for future iterations of any product that
shows promise. In the meantime, there is hope that
investment in research, treatment, and prevention of
HIV now will help to reduce healthcare costs later,
given the costs associated with lifetime treatment for
growing numbers of HIV-infected individuals®’. In the
continued search for new prevention technologies, ac-
cess to prevention tools that are known to be effective,
such as male circumcision and prevention of mother-
to-child transmission, needs to be increased®. In light
of the recent CAPRISA results, ART-based microbi-
cides may also become available in the near future
and could be combined with a successful vaccine.
The realization of an effective vaccine for other infec-
tious agents has taken decades®!, and now is the time
to further concentrate HIV vaccine efforts. Since this
will require continued investment from multiple sec-
tors, it is hoped that the promise of a breakthrough
that leads to an effective HIV vaccine will be an ac-
ceptable pay-off.
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