

Review of Screening Guidelines for Non-AIDS-Defining Malignancies: Evolving Issues in the Era of Highly Active Antiretroviral Therapy

Zachary Tyerman¹ and David M. Aboulafia^{1,2}

¹Division of Hematology and Oncology, Virginia Mason Medical Center, Seattle, WA, USA; ²Division of Hematology, University of Washington, Seattle, WA, USA

Abstract

HIV-associated morbidity and mortality have declined dramatically in the era of HAART. Through direct and indirect benefits of HAART, people with HIV/AIDS are living longer, developing less AIDS-defining cancers and more cancers commonly seen in the seronegative population. Herein, we review cancer screening strategies for people living with HIV and compare and contrast them with those of the general population. The most noticeable differences occur in anal and cervical cancer screening. Although anal cancer is uncommon in the general population, it is more prevalent in men who have sex with men and people at high risk for human papillomavirus infection, especially those infected with HIV. To address this, we recommend that a digital rectal exam and a visual inspection be performed annually. In addition, an anal Pap test should be performed soon after the diagnosis of HIV infection, with follow-up testing every six months until two normal tests. Abnormal cytological results are then investigated with high-resolution anoscopy and biopsy of suspicious lesions. In screening for cervical cancer, a Pap test should be performed during the anogenital exam after initial HIV diagnosis, with a second Pap six months later, then annually if the results are normal. A colposcopy should follow an abnormal result. Human papillomavirus testing as a screening method for cervical cancer in women with HIV can also be efficacious. In lung cancer screening, preliminary data suggest that low-dose computerized tomography may play an important role, but further research is needed. Screening for breast and colon cancer should follow guidelines for the general population. Early screening for prostate cancer based on a diagnosis of HIV lacks clear benefit. (AIDS Rev. 2012;14:3-16)

Corresponding author: David M. Aboulafia, hemdma@vmmc.org

Key words

HIV/AIDS. Non AIDS-defining malignancies. Cancer screening. Highly active antiretroviral therapy era. HAART.

Introduction

Among the most dramatic clinical observations during the early years of the AIDS epidemic was the

propensity of HIV-infected people to develop cancers. AIDS-defining malignancies (ADM) include Kaposi's sarcoma (KS), intermediate and high-grade non-Hodgkin's lymphoma (NHL), primary central nervous system lymphoma, and invasive cervical cancer (ICC). Together KS, NHL and ICC made up 16% of AIDS-defining illnesses between 1992 and 1997¹. These ADM have been associated with viral infections in addition to HIV, including human herpes virus type 8 (HHV-8) in KS², Epstein-Barr virus (EBV) in NHL³, and oncogenic types of human papillomavirus (HPV) in cervical cancer⁴. Infections with these viruses are sufficient to promote neoplasia, but when coinfection with HIV occurs, their oncogenic potential is enhanced considerably⁵.

Correspondence to:

David M. Aboulafia
Section of Hematology/Oncology
Virginia Mason Medical Center
1100 Ninth Avenue
P.O. Box 900 (H14-HEM)
Seattle, WA 98111-0900, USA
E-mail: hemdma@vmmc.org

While HAART-associated immune reconstitution has contributed to a profound decline in AIDS-defining opportunistic infections and opportunistic malignancies, the reduced morbidity of HIV infection provides a longer latency period for development of non-ADM. In the pre-HAART era, non-ADM accounted for 1% of the deaths of HIV-infected patients. Currently, 13% of people with HIV die of non-ADM⁶⁻⁸. The ongoing HIV/AIDS Cancer Match Study compared the five years from 1991 to 1995 to the five years from 2001 to 2005, and found a threefold increase in the prevalence of non-ADM⁹. For people living with HIV in the HAART era, the increasing risk of dying from non-ADM can be attributed to evolving comorbidities, exposure to oncogenic viruses, substance abuse, and older age¹⁰⁻¹³.

Herein, we will briefly discuss the epidemiology and risk factors of HIV-associated malignancies of the cervix, anus, breast, prostate, lung, and colon. Though immune reconstitution induced by HAART has helped to minimize morbidity and mortality from KS and NHL, its impact on ICC is less certain. Some studies have suggested reduced persistence and progression of cervical dysplasia¹⁴, while others suggest HAART has no effect¹⁵⁻¹⁷. It is clear, however, that women with HIV remain at substantial risk of ICC even with HAART use¹⁸. With that in mind, we include it in our discussion of screening options for non-ADM.

Risk factors for malignancy

The multistage model of cancer etiology was introduced by Armitage and Doll in 1954¹⁹. It suggests that cancer is caused by discrete changes in a cell's genetic information. These "hits" are usually introduced by specific environmental factors rather than inherited genetic mutations, two common sources being cigarette smoke and radiation. Infectious agents can also supply hits by introducing their own genetic material into the cell¹⁹.

The role of immunosuppression in contributing to non-ADM risk remains uncertain. In general, the risk of such cancers has not been independently associated with a low CD4⁺ cell count²⁰, and it is unclear if HIV acts as a direct oncogenic agent. However, HIV may contribute to malignancy by other mechanisms. Impaired immune surveillance, dysregulation of cytokine pathways and growth factor production, chronic B-cell stimulation, and balance between cellular proliferation and differentiation may contribute to ADM and non-ADM to varying degrees²¹.

Coinfection with viruses other than HIV plays a significant role in promoting malignancy in people infected with HIV. In the general population, infection with oncogenic viruses, including cytomegalovirus, EBV, hepatitis B virus (HBV), hepatitis C virus (HCV), and HPV, are important risk factors for malignancy. People with HIV may be more susceptible to successive hits due to a higher rate of infection with oncogenic viruses like HPV, especially HPV-16 and -18. In a representative study of HIV-negative women, the baseline HPV prevalence was 26%²²; in contrast, among 634 HIV-infected women, the prevalence of HPV was 48%, of whom 94% were infected with carcinogenic HPV strains²³.

Anal HPV is highly prevalent in men who have sex with men (MSM). In one study, anal HPV DNA was identified in 93% of HIV-positive MSM and in 61% of HIV-negative MSM, with HPV-16 being the most common type²⁴.

The use of HAART itself continues to be investigated as a possible risk factor for malignancy. Though there have been some reports of association between some antiretroviral agents and the occurrence of cancer, a correlation has not been proven^{25,26}. In an effort to minimize HAART-related adverse events, a number of studies have examined structured treatment interruptions. In the SMART study, patients were randomized to a viral suppression or a drug conservation group, with treatment interruption occurring at pre-specified CD4⁺ cell counts²⁷. A higher rate of ADM and other deleterious clinical events were identified in the drug conservation cohort, while both groups had a substantial number of non-ADM²⁸. Consequently, patients who now begin HAART are encouraged to continue such treatment without interruptions^{29,30}.

Multiple sexual partners, increased alcohol consumption, illicit drug use, cigarette smoking, and HBV and HCV coinfection also account for increasing rates of non-ADM in HIV-positive patients³¹⁻³⁴. In one analysis, 70 of 71 HIV-infected lung cancer patients were active smokers with a long history of smoking³⁵. Furthermore, the Swiss HIV Cohort Study (SHCS) found no lung cancers in HIV-infected patients who were nonsmokers¹¹.

Cancer screening strategies should be adjusted for the HIV-positive population to meet the increased risk they may have of developing certain malignancies. However, in order to be widely accepted, screening strategies in this population must comply with guidelines such as the World Health Organization's Principles and Practice of Screening for Disease³⁶ to show that the benefits of early diagnosis outweigh its inconveniences or deleterious effects.

Table 1. Cervical cancer screening guidelines

Organization	HIV-negative women				HIV-positive women
	AAFP ⁴⁴	ACOG ⁴⁵	ACS ⁴⁶	USPSTF ⁴⁷	CDC ⁴⁸
Pap testing	Pap test at least every 3 years for women who have ever had sex	Biennial Pap test (liquid or conventional) after the age of 21, or 3 years after onset of sexual activity (whichever comes last)	Annual Pap test 3 years after onset of vaginal intercourse; not later than age 21; every 2 years with liquid-based Pap test	Conventional Pap test at least every 3 years for all women within 3 years after onset of sexual activity or by age 21 years (whichever comes first)	Pap test at initial HIV diagnosis; Second test 6 months later
		If ≥ 30 years, Pap test every 3 years after 3 normal consecutive smears	If ≥ 30 years, Pap test every 2-3 years after 3 normal consecutive smears		If 2 initial tests are negative, testing should continue annually
		Discontinue at 65 years with 3 normal tests in a row and no positive test for the past 10 years	Discontinue at 70 years (if not high risk) with 3 normal tests in a row and no positive test for the past 10 years	Discontinue at age 65 years if not at high risk	
HPV testing	Insufficient evidence of new technologies and HPV testing	For women ≥ 30 years, HPV test combined with cytology no more than every 3 years	For women ≥ 30 years, HPV test combined with cytology no more than every 3 years	Insufficient evidence of new technologies and HPV testing	

AAFP: American Academy of Family Physicians; ACOG: American Congress of Obstetricians and Gynecologists; ACS: American Cancer Society; USPSTF: United States Preventive Services Task Force; CDC: Center for Disease Control; Pap: Papanicolaou; HPV: human papillomavirus.

Cervical cancer

In the early years of the AIDS epidemic, case reports included women who presented with advanced-stage cervical cancer and whose tumors were poorly responsive to conventional chemotherapy^{37,38}. To highlight the increased risk of cervical cancer in this population, the Center for Disease Control (CDC), Atlanta, GA included ICC in the case definition of AIDS in 1993 and listed severe cervical dysplasia as an early symptomatic HIV condition³⁹.

Women with HIV have greater rates of ICC and cervical intraepithelial neoplasia (CIN) than the general population⁴⁰. A meta-analysis by Grulich, et al.⁵ calculated an ICC surveillance incidence ratio (SIR) of 5.82, while the SHCS reported SIR of 8.0 (95% CI: 2.9-17.4)¹¹. The higher incidence of ICC in HIV-positive women is linked to more prevalent infection of the high-risk types of HPV than the general population²³. Though the role of immunosuppression in relation to ICC and CIN is unclear, there is a correlation between CD4⁺ cell counts and HPV infection^{14,15}. Women with CD4⁺ counts < 200 cells/ μ l, and especially those with CD4⁺ counts < 100 cells/ μ l, are

more commonly infected with high-risk HPV⁴⁰. The incidence of ICC in the HAART era is similar to the pre-HAART era⁴¹⁻⁴³.

Since the introduction of the cervical Pap test in 1941, the mortality of cervical cancer has been reduced substantially. Though there is a debate about the proper age to start and end Pap testing, medical organizations agree upon the efficacy of the test. The American Academy of Family Physicians (AAFP)⁴⁴, American Congress of Obstetricians and Gynecologists (ACOG)⁴⁵, American Cancer Society (ACS)⁴⁶ and United States Preventative Services Task Force (USPSTF)⁴⁷ all have published guidelines on cervical cancer screening in the general population. They are summarized in table 1.

Screening protocols are modified to address the heightened concern of ICC in women with HIV. The CDC recommends women should undergo a liquid-based or conventional Pap test after their initial diagnosis with HIV, with a follow-up test six months later⁴⁸ (Table 1). The initial twice-per-year tests for women with HIV are especially important as CIN is common, can develop rapidly⁴⁹⁻⁵¹, and high-grade lesions may go undetected with a single Pap test⁵². After two normal results, further

tests should be administered annually⁴⁸. Key guidelines support this protocol⁵³⁻⁵⁶, which has been shown to be cost-effective in the USA compared to other protocols⁵⁷.

The HIV Epidemiology Research Study (HERS) followed 189 HIV-infected women over six years. Because cytology and colposcopy findings in this cohort rarely diverged, the investigators concluded that routine colposcopy was not necessary⁵⁸. However, some studies suggest that annual or biannual cytology alone is insufficient. Among 248 HIV-infected women, 38% of all CIN would have been missed without routine colposcopy and biopsy⁵². Whether cytology alone or cytology combined with colposcopy and biopsy are more effective screening strategies needs further study. However, HIV-positive women with atypical squamous cells with possible high-grade or low-grade squamous intra-epithelial lesions, squamous cell carcinoma, or atypical squamous cells of undetermined significance should undergo colposcopy and directed biopsy^{59,60}.

The role of HPV DNA testing for cervical cancer screening in women with HIV remains uncertain. Some studies have suggested that it has low specificity and poor predictive value^{61,62}. However, in a recent South African trial that included 6,553 women between the ages of 35-65 years (of whom 956 [14.5%] were infected with HIV), participants were divided into one of two screen-and-treat groups or a control group⁶³. The screening methods used for the screen-and-treat groups were HPV DNA testing (HPV-and-treat) or visual inspection with acetic acids (VIA-and-treat). Dysplastic lesions were treated with cryotherapy. In the control group, inspection and treatment were delayed six months. All women underwent colposcopy and biopsy at month 6 and, in a subset of women, at month 12, 24, and 36. The study endpoint was CIN grade 2 or higher. At 36 months, HIV-positive women had higher detected rates of CIN 2+ (14.9%) than HIV-negative women (4.6%) ($p = 0.0006$). In the HPV-and-treat group, there was a significant reduction in CIN 2+ in both HIV-positive women (RR: 0.20; 95% CI: 0.06-0.69) and HIV-negative women (RR: 0.31; 95% CI: 0.20-0.50). In the VIA-and-treat group, the reduction in CIN was less apparent. The authors concluded that the VIA test's low sensitivity was the cause for its relative failure compared to HPV testing. For every 100 women screened, HPV-and-treat could prevent 11.9 cases of CIN 2+ in HIV-positive and 3.1 cases in HIV-negative women. The VIA-and-treat would only prevent 7.4 CIN 2+ cases in HIV-positive and 1.1 cases in HIV-negative women.

Though these results are promising, further research is needed. Finding a way to distinguish the many transitory

HPV infections from long-duration, cancer-causing infections would accelerate the acceptance of HPV testing as a screening tool regardless of HIV status⁶⁴.

Anal cancer

Squamous cell carcinoma of the anus (SCCA) is rare in the general population, making up only 4% of gastrointestinal malignancies. Although more women are diagnosed with SCCA than men, over the past 35 years the incidence of SCCA has increased significantly in both men and women⁶⁵. HIV-negative and HIV-positive MSM are 20 and 40 times, respectively, more likely to be diagnosed with SCCA than the general population⁶⁶. In HIV-seropositive women, the incidence of SCCA is 7-28 times that of the general population³⁷. In a study that spanned 11 years, the incidence of non-ADM in 54,780 people with HIV was compared to the general population. The SIR for anal cancer was 78 in people infected with HIV⁶⁷. Another study found that high-grade anal cytological abnormalities are present in 30-60% of people with HIV⁶⁸.

Like cervical cancer, SCCA is strongly associated with high-risk types of HPV, most notably 16 and 18⁶⁹. Though anal HPV is highly prevalent in MSM, especially those infected with HIV²⁵, increased anal HPV infection and precursor lesions are also noted in HIV-infected people who do not practice anal sex⁷⁰.

The incidence of SCCA is increasing in the HAART era^{71,72}. In the Multicenter AIDS Cohort Study (MACS), the incidence of SCCA in the HAART era was higher than in the pre-HAART era (incidence rate: 137 vs. 30 per 100,000 person years)⁷³. Like high-grade cervical dysplasia, HAART use does not reliably lead to regression of high-grade precancerous anal lesions, nor does it appear to improve the clearance of anal HPV in people with HIV⁷⁴. Recently, however, new preventative measures have been approved for the general population, which could reduce HPV infection in people with HIV.

In December 2010, the U.S. Food and Drug Administration (FDA) approved the use of the HPV vaccine Gardasil® for the prevention of anal cancer. The vaccine inoculates against HPV types 6, 11, 16, and 18, but it does not prevent development of anal precancerous lesions from HPV types already present at the time of vaccination. Thus, the vaccine has been recommended for use in both males and females between the ages of nine and 26 years, with a goal to immunize against oncogenic HPV strains before infection through sexual contact⁷⁵.

The FDA approval of Gardasil® is based on a randomized, controlled trial of 4,065 male participants

Table 2. Cervical and anal cancer prevention tips

- Smoking is a known risk factor for cervical and anal cancer
- Having multiple sexual partners increases the risk of HPV infection
- Condoms can lower the risk of HPV infection and reinfection with new types, though they are not completely protective
- Because OCP may increase HPV infection, women with multiple partners should consider a different contraceptive method or the additional use of condoms
- Women should get regular Pap smears (every 6-12 months if HIV-positive, at least every 3 years if HIV-negative)
- At-risk individuals should ask their medical provider about anal Pap smears and obtain regular anal exams
- A follow-up colposcopy or anoscopy should follow an abnormal Pap test

HPV: human papillomavirus; Pap: Papanicolaou; OCP: oral contraceptive pills. *Adapted from Aboulafia DM¹⁷⁵.*

aged 16-26 years. In those with either positive or negative HPV status at baseline, the vaccine was 60% more effective than placebo in the prevention of external genital warts, and 66% more effective in preventing HPV-6, -11, -16, or -18-related lesions. In the subgroup that was HPV-negative at enrollment, the vaccine was 90% more effective than placebo among HPV-6, -11, -16, or -18-related lesions⁷⁶. Though use in HIV-positive patients was not directly addressed, preliminary findings suggest that this is a preventive strategy whose benefits may well extend to this at-risk population⁷⁷.

Early detection of anal cancer may lead to better treatment outcomes, as prognosis depends heavily on the stage at diagnosis^{65,78}. Nonetheless, the value of anal cancer screening remains unproven. A randomized trial to document the value of screening for anal cancer in at-risk populations has not yet been undertaken, as the duration, size, and costs of such a trial have, up until now, been daunting^{79,80}. Coupled with the uncertainty over the predictive value of cytological findings^{81,82}, uniform guidelines have not been established. Despite the lack of data, the potential benefits of anal cancer screening can be extrapolated from highly successful cervical cancer screening protocols⁷⁹.

In 2007, the New York State Department of Health AIDS Institute (NYSAI) was the first to issue guidelines recommending annual anal cancer screening in HIV-infected people⁸³. At baseline and as a part of the annual physical exam, healthcare providers are encouraged to ask about any symptoms in the anal region (itching, bleeding, diarrhea, or pain), and perform an inspection of the perianal region and a digital rectal exam. Anal Pap tests should also be performed in three HIV-infected subgroups: MSM, women with a history of abnormal cervical or vulvar histology, and men and women with a history of anogenital warts. If the anal Pap test is

abnormal, including atypical squamous cells of undetermined significance, high-resolution anoscopy and biopsy are recommended⁸³. However, the cost of such a screening protocol is substantial, in the order of \$70,000 per quality-adjusted life year gained⁸⁴. Less controversial is the low-cost message that healthcare providers can provide their patients to change anogenital cancer-promoting habits⁸⁵ (Table 2).

Breast cancer

Among females, breast cancer is the most common malignancy (except for non-melanoma skin cancers) and second most common cause of cancer-related death⁸⁶. Though men do develop breast cancer, women are about 100-times more likely than their male counterparts⁸⁶. Unlike cervical and anal cancer, breast cancer is not attributed to infection with an oncogenic virus. The main causes are not fully understood, but important risk factors include family history and hormonal factors⁸⁷⁻⁸⁹.

The prevalence of breast cancer in women with HIV is unclear. A Tanzanian study of cancer registry data from 1969 to 1996 showed a significant decrease in observed breast cancer cases in both men and women after the AIDS epidemic began⁹⁰. Similar findings were reported in an Italian cancer registry study⁹¹. Furthermore, among 25,914 chronically immunosuppressed, HIV-negative, solid organ transplant female patients who were monitored for 1-11 years, there were only 86 cases of breast cancer compared to 114 expected cases based on data from the general population⁹². These findings lend support to the hypothesis that immunosuppression is correlated with a reduced incidence of breast cancer. In contrast, a Nordic study of 5,629 renal transplant patients showed no difference in breast cancer incidence compared to the general

Table 3. Breast cancer screening guidelines

Organization	AAFP ¹⁰¹	ACOG ¹⁰²	ACS ¹⁰³	USPSTF ¹⁰⁴
Mammography	Mammography every 2 years for women 50-74 years. Screening before 50 decided by patient	Mammography every 1-2 years for women 40-49 years; then annually	Mammography annually for women ≥ 40 years	Mammography every 2 years for women 50-74 years. Screening before 50 decided by patient
Clinical breast exam	Insufficient evidence for CBE	CBE annually for all women ≥ 19 years	CBE every 3 years for women 20-39 years; annually for women ≥ 40 years	Insufficient evidence for CBE
MRI considerations	Insufficient evidence for the use of MRI or digital mammography instead of film mammography		Mammography and MRI annually for women with > 20% lifetime risk	Insufficient evidence for the use of MRI or digital mammography instead of film mammography
Breast self-exam	BSE should not be taught	Optional: BSE for all women	Optional: BSE for women ≥ 20 years	BSE should not be taught

AAFP: American Academy of Family Physicians; ACOG: American Congress of Obstetricians and Gynecologists; ACS: American Cancer Society; USPSTF: United States Preventive Services Task Force; BSE: breast self-exam; CBE: clinical breast exam; MRI: magnetic resonance imaging.

population⁹³. Furthermore, when Frisch, et al. found an unexpectedly low relative risk (RR) of breast cancer after AIDS diagnosis in their study of 302,834 HIV-infected adults, they surmised that it was due to an increase in medical attention around the time of AIDS diagnosis, followed by a shift to palliative care⁹⁴. Additionally, the high mortality rate of HIV in African countries may contribute to an apparent decrease in breast cancer incidence, as many women die from AIDS-related complications before they can be diagnosed with breast cancer⁹⁵. Further studies are needed to determine the prevalence of breast cancer in HIV-infected individuals, and whether HIV itself can protect against breast cancer on a cellular level⁹⁶.

Initial case reports of breast cancer in HIV-infected women focused on early age of onset, unusual or poorly differentiated neoplasms, increased frequency of metastases, and poor survival outcome⁹⁷. Contemporary case series involving patients with HIV and breast cancer show survival rates similar to HIV-negative controls^{98,99}. With only 46 cases of breast cancer in women with HIV reported in the literature, further study of clinical outcomes is needed⁹⁵.

Mammography is the primary screening tool for breast cancer, and randomized clinical trials have shown a clear mortality benefit in women older than 50 years. A recent study has also shown a significant benefit to screening minority group women aged 40-49 years, specifically Hispanic women. Women in this subgroup are 60% more likely to be diagnosed with ductal cancer *in situ* and 80%

more likely to be diagnosed with small invasive breast tumors than their Caucasian counterparts¹⁰⁰. The recommendations for the use of mammography and other screening modalities vary amongst medical societies¹⁰¹⁻¹⁰⁴ (Table 3). Though mammography has traditionally been the standard in screening, as many as 20% of new breast cancers are not detected on mammogram¹⁰⁵. This underscores the importance that all suspicious lumps are fully evaluated, even in the context of an unremarkable mammogram. Magnetic resonance imaging (MRI) may improve upon mammography's high false-positive rate and low sensitivity to invasive cancers, especially in women with dense breasts. In a study of 687 women at high risk for breast cancer, MRI had a sensitivity of 93%, while the sensitivity of ultrasound and digital mammography were only 37 and 33%, respectively. If women at high risk are to be screened starting around age 30 years, MRI should be utilized as it is more sensitive and prevents excessive radiation exposure¹⁰⁶.

Breast cancer screening in women with HIV appears to be underutilized. At the Johns Hopkins University Moore Clinic, only 56% of eligible HIV-infected women were referred for mammography¹⁰⁷. In another study, 2,059 HIV-positive and 569 HIV-negative women from the Women's Interagency HIV Study (WIHS) were compared with women from the National Health Insurance Survey (NHIS). The NHIS was used to simulate a sampling of the general population in regard to use of mammography. For women 40 years or older, women in the WIHS reported less screening, regardless of HIV status, than in the NHIS¹⁰⁸.

Table 4. Prostate cancer screening guidelines

Organization	AUA ¹¹⁹	ACS ¹²⁰	USPSTF ¹²¹
When to begin screening	PSA test should be given to well-informed men ≥ 40 years with a life expectancy of >10 years. A DRE should accompany the PSA test	Men should have a discussion with their doctor about screening starting at 50 years for average risk, 45 years for high risk*, and 40 years for very high risk† men	Insufficient evidence for screening men under 75 years
Frequency of screening	Frequency of test should be discussed with doctor and be based on the patient's individual risk factors such as race and family history	For those who are tested: PSA < 2.5 ng/ml should consider retesting biennially. PSA > 2.5 ng/ml should undergo annual testing. DRE is also optional	
When to stop screening		Men with a < 10 -year life expectancy should not be tested	Men over 75 years should not be screened

AUA: American Urological Association; ACS: American Cancer Society; USPSTF: United States Preventive Services Task Force; DRE: digital rectal exam; PSA: prostate-specific antigen.

*African Americans and men who have a first-degree relative (father, brother, or son) diagnosed with prostate cancer at an early age (younger than age 65).

†Several first-degree relatives who had prostate cancer at earlier than 65 years.

We recommend that women with HIV should be screened for breast cancer starting at the same age and with the same frequency as HIV-negative women.

Prostate cancer

Prostate cancer is the most common malignancy in men in the USA, with a lifetime risk of diagnosis at 16.4%¹⁰⁹. Though its causes are unclear, risk factors include family history with a possible inherited genetic mutation, androgenic hormones, and exposure to radiation and carcinogenic chemicals¹¹⁰.

Like breast cancer, the relationship between prostate cancer incidence and HIV is unclear. Among 14,000 men with AIDS living in San Francisco between the years 1990 and 2001, the SIR of prostate cancer was 1.7 compared to the general population¹¹¹. In addition, among 4,144 HIV-infected individuals who had access to U.S. military clinics between 1988 and 2003, the reported age-adjusted incidence rate of prostate cancer was nearly twice that found in the general population²⁰. However, a meta-analysis using SIR from 18 studies of non-ADM in HIV-infected individuals found substantially lower rates of prostate cancer compared to the general population (SIR: 0.69; 95% CI: 0.55, 0.86)⁸. Other similarly designed, retrospective, population-based studies have shown comparably low risk¹¹².

Current data include only epidemiological studies that look at the incidence of prostate cancer in an HIV-positive cohort. This is dependent on detection,

and thus on digital rectal exam (DRE) and prostate-specific antigen (PSA) screening. Similar to breast cancer, reports of lower incidence of prostate cancer in HIV-positive individuals may, in part, be due to decreased screening in this group^{113,114}.

The most common screening modalities for prostate cancer include DRE, measurement of serum PSA, and transrectal ultrasound of the prostate. The cancers detected by a PSA test, as opposed to physical exam or presentation of symptoms, are more often at an early stage of development. However, the survival benefit from early detection has not been clearly demonstrated^{109,115}. Among 9,000 Swedish men, researchers found no significant mortality benefit for men screened for prostate cancer versus treatment after clinical diagnosis¹¹⁶. Alternatively, the European Randomized Study of Screening for Prostate Cancer showed a 20% reduction in the cancer-specific mortality for screened men aged 55-69 years¹¹⁷. Alarmingly, a recent study reports men in their 70s are nearly twice as likely to have had a PSA test as men in their 50s, demonstrating that the men most likely to benefit from PSA screening are typically screened at markedly lower rates than those most unlikely to benefit¹¹⁸. Complicating matters further, the American Urology Association¹¹⁹, ACS¹²⁰, and USPSTF¹²¹ have differing opinions on how and when prostate cancer screening should occur (Table 4).

Whether men with HIV should undergo more screening seems unlikely based on current evidence. Two cross-sectional studies have examined the prostate cancer

screening outcomes in older HIV-positive men^{122,123}. Both studies found abnormal PSA measurements in about 3% of subjects. Yet, among 600 men, only one case of prostate cancer was identified. As the benefit of early detection of prostate cancer in the general and HIV-infected populations remains unclear, HIV-infected men should have the same discussions with their doctors about screening as the general population.

Lung cancer

Lung cancer (both small cell and non-small cell) is the second most commonly diagnosed malignancy in the USA in men and women, and it is the leading cause of cancer-related death among both sexes. Approximately 222,500 people were diagnosed with lung cancer. Among those, 157,300 died due to lung cancer in 2010¹²⁴.

Lung cancer, like prostate cancer, is strongly associated with age. Roughly 66% of people diagnosed with the disease are older than 65 years and only 3% are younger than 45 years. Men are more likely to develop the disease than women (72 per 100,000 men vs. 54 per 100,000 women) and African American men are 40% more likely to develop lung cancer than Caucasian men¹²⁴.

Approximately 20% of Americans smoke, a behavior that is accountable for about 85-90% of lung cancers. Other risk factors include radon gas exposure, asbestos inhalation, air pollution (including second-hand cigarette smoke), and inherited genetic mutations¹²⁴.

The incidence of lung cancer in people with HIV is several times higher than in the general population¹²⁵⁻¹²⁸. Immunosuppression associated with HIV infection may play an important role. In a recent meta-analysis of seven studies of adults with HIV/AIDS in developed countries, spanning the years 1980 to 2002, 444,172 people with HIV/AIDS were identified, of whom 1,297 were diagnosed with lung cancer. The SIR for lung cancer in people with HIV/AIDS was 2.72 (95% CI: 1.91-3.87), which is comparable to the lung cancer SIR of 2.18 (95% CI: 1.85-2.57) in immunosuppressed organ transplant recipients⁵.

Lung cancer risk in the HAART era appears to have remained relatively stable when compared to the pre-HAART era^{94,129}. Among 20,277 HIV-infected patients in the Kaiser Permanente registry, 54 were diagnosed with lung cancer. Compared to the general population, the RR was 1.9 (95% CI: 1.42-5)¹³⁰. Furthermore, when Engels, et al. examined trends in cancer risk among people with AIDS in the pre- and post-HAART eras, they found a RR of lung cancer between 1980-1989 of 2.5

(95% CI: 1.9-3.3), between 1990-1995 of 3.3 (95% CI: 2.9-3.8), and between 1996-2002 of 2.6 (95% CI: 2.1-3.1)¹³¹.

Even when adjusted for smoking, people with HIV appear to be at a greater risk for lung cancer. In a study involving 2,086 HIV-infected patients, data were modified for smoking, sex, age, and calendar period¹³². HIV infection was still associated with an increased lung cancer risk (HR: 3.6; 95% CI: 1.6-7.9). Preexisting lung disease and smoking were the major risk factors for lung cancer. Illicit drug use was not associated with increased risk, nor was CD4⁺ cell count or HIV viral load.

Patients with HIV and lung cancer tend to be 10-15 years younger and have more advanced disease at time of cancer diagnosis than their HIV-negative lung cancer counterparts¹³³. Despite their younger age at lung cancer diagnosis, HIV-infected patients also tend to have a greater cumulative pack year history of smoking³⁵.

The benefits of screening and early detection of lung cancer remain unproven. Several studies have investigated the benefits of routine chest radiographs (CXR) and sputum cytology to detect lung cancer at an early stage, but they have not shown such efforts lead to a difference in mortality or reduction in late-stage cancers^{134,135}. The ongoing Prostate, Lung, Colon, and Ovarian Cancer Screening Trial may more definitively determine if there is a mortality benefit with CXR screening¹³⁶.

Low-dose spiral computerized tomography (LDSCT) is also being investigated as a screening tool for lung cancer. The impetus for this derives from the findings of the Early Lung Cancer Action Project which demonstrated that CT scans had accuracy and sensitivity rates six-times higher than CXR at identifying very small tumors¹³⁷. Recently, the National Lung Screening Trial recruited 53,454 participants from 33 sites across the USA to test whether three annual screenings with a LDSCT for five years could reduce overall and disease-specific mortality compared to CXR. Participants were between the ages of 55 and 74 years, were current or former smokers who had quit within 15 years of enrollment, and had a smoking history of at least 30 pack years. In October 2010, the data and safety monitoring board stopped the trial after preliminary findings showed a 20% reduction in lung cancer mortality and a 7% reduction in overall mortality¹³⁸ in the group receiving CT screening. Despite these promising findings, it is not clear how this will influence lung cancer screening programs. The costs of CT scans are not currently covered by insurance or Medicare, and each investigation may cost more than \$300. Based on current data, \$90,000 (300 individuals screened) would have to be spent to prevent one death¹³⁹. Also uncertain

is the possible risk of repeated radiation exposure and unnecessary invasive procedures as a result of a false-positive test. Among patients who were screened with LDSCT, the false-positive rate was 25%¹³⁹.

Although the benefits of lung cancer screening require further study, it is clear that healthcare providers must continue to focus on smoking cessation as a primary mortality-reducing tool. Furthermore, HIV-positive smokers may benefit from smoking cessation interventions specifically tailored to their complex range of psychiatric, social, economic, and medical needs^{140,141}. Further studies of factors or interventions that can lessen the risk of continued smoking are needed.

Colorectal cancer

Colorectal cancer (CRC) is the second leading cause of cancer-related death in the USA. The causes of CRC are not clear, but risk factors include, age, family history, adenomatous polyps, and ingestion or inhalation of carcinogenic materials, including cigarette smoke¹⁴².

Some authors suggest a relationship between chronic HIV infection and colonic adenocarcinoma¹⁴³. However, there is a scarcity of data regarding the prevalence of CRC in the HIV-infected population, and the data that have been published lack a clear trend. An Australian study of 8,108 HIV-infected individuals and an Italian registry study of 12,104 people living with HIV reported colon cancer SIR of 0.33 and 0.95, respectively^{144,145}. Alternatively, some studies suggest that the CRC incidence is increasing in the HIV-infected population^{143,146,147}. A prospective study of 2,882 patients with HIV found an incidence of 0.65 per 1,000 patient years in the pre-HAART era, which increased to 2.34 per 1,000 patient years in the HAART era¹⁴⁷. Furthermore, a study of screening colonoscopy in 136 asymptomatic HIV-infected patients aged older than 50 years found the prevalence of neoplastic lesions to be significantly higher than for control subjects¹⁴⁸. Additional studies are needed to properly gauge the prevalence of CRC in HIV-positive individuals compared to the general population.

There have been relatively few case reports detailing HIV-associated CRC and, therefore, little information about the natural history of the disease in HIV-infected individuals¹⁴⁹⁻¹⁵³. The few case studies that have been published suggest CRC in the setting of HIV infection tends to occur at a younger age, with more advanced disease, and is associated with a poorer outcome^{143,154,155}. In the general population, diagnosis of CRC at an age of less than 40 years is rare. Yet, in a recent case series, 11 of 17 (64%) HIV-infected patients with CRC were less

than 40 years of age. These individuals had no predisposing conditions that would heighten their risk¹⁵⁶. In this series, right-sided colonic neoplasms were more prevalent, even after adjustment for race, sex, and age. Similar to the general population, there was a predominance of grade 2 malignancies. However, 54% were stage 4 cancers, a sharp contrast to the 19% found in the general population¹⁵⁶. Most patients in this study with stage 4 cancer died within 26 months of diagnosis. This is consistent with the 8%, five-year survival rate of stage 4 cancer in the general population¹⁵⁷.

Factors contributing to a more aggressive clinical course of CRC in the presence of HIV infection are unclear. HAART does not likely influence tumor grade or cancer stage, but the HIV virus itself may have an effect. *In vitro* HIV transactivator, or Tat protein, promotes colorectal cell growth in a way that is perhaps analogous to how it promotes the aggressive growth of KS¹⁵⁸. Furthermore, the effects of smoking should not be underestimated, as the practice has been associated with increased CRC risk^{159,160}. Since a far greater proportion of people with HIV are smokers, smoking cessation is a logical step in the prevention of CRC in HIV-infected patients.

Various professional societies are in agreement that screening for CRC in average-risk individuals begin at 50 years of age^{142,161-163}. Colonoscopy remains a gold standard for screening because it allows for full visual examination of the entire colon, and simultaneously offers the opportunity for biopsy and removal of suspicious lesions or polyps¹⁶⁴. However, there are alternative tests that are accepted by the professional societies. They are summarized in table 5.

The mortality benefit of screening for CRC is well established. The ACS, in association with the U.S. Multi-Society Task Force, estimates that colonoscopy has the potential to prevent about 65% of CRC events. For the area of the colon within its reach, sigmoidoscopy has the ability to reduce colorectal cancer mortality by 60-80%. Regular use of fecal occult blood tests (FOBT) reduces the risk for death from CRC by approximately 15-33%. Unfortunately, only 50% of the adult population aged over 50 years has ever undergone an endoscopy and only 10% reported having a FOBT within the proper time intervals. Screening prevalence is especially low among those who are nonwhite, lack health insurance, have few years of education, and are recent immigrants¹⁶⁵.

Screening for CRC appears to be even more underutilized in the HIV-infected population compared to the general population. While interviewing 114 HIV-positive and 91 HIV-negative patients, Iqbal, et al. noted

Table 5. Colorectal cancer screening guidelines

Organization	ACS ¹⁴²	ACG ¹⁶¹	ACOG ¹⁶²	USPSTF ¹⁶³
When to begin screening	50 years	50 years (1B) 45 years in African Americans	50 years 45 years in African Americans	50 years
	High risk: 40 years, or 10 years before the age of the youngest diagnosis in immediate family	High risk: 40 years, or 10 years before the age of the youngest diagnosis in immediate family		
Preventative testing options (only one should be performed)	Colonoscopy every 10 years Flexible sigmoidoscopy every 5 years* Double-contrast barium enema every 5 years*	Colonoscopy every 10 years Flexible sigmoidoscopy every 5-10 years	Colonoscopy every 10 years Flexible sigmoidoscopy every 5 years*	Fecal occult blood testing, sigmoidoscopy, or colonoscopy in adults Insufficient evidence for computed tomographic colonography and fecal DNA testing
	CT colonography (virtual colonoscopy) every 5 years*	CT colonography every 5 years	CT colonography every 5 years*	
Cancer detection tests (only one should be performed)	Annual gFOBT [†] Annual FIT [†] Stool DNA test (sDNA) [†] interval unspecified	Annual gFOBT Annual FIT Stool DNA testing every 3 years (2B)	Annual gFOBT Annual FIT* Stool DNA test (sDNA)* interval unspecified	
When to stop screening				75 years

ACS: American Cancer Society; ACG: American College of Gastroenterology; ACOG: American Congress of Obstetricians and Gynecologists; USPSTF: United States Preventive Services Task Force; gFOBT: guaiac fecal-occult blood test; FIT: fecal immunochemical test.

*If the test is positive, a colonoscopy should be done.

[†]The multiple stool take-home test should be used. One test done by the doctor in the office is not adequate for testing. A colonoscopy should be done if this test is positive.

that those with HIV were less likely to undergo testing (18 vs. 8%; $p = 0.001$). Only 41% of HIV-positive subjects were up to date on their screening, compared to 67% of HIV-negative subjects. The subjects with HIV who did undergo screening were most often given FOBT as the primary screening tool (36 vs. 16.4%; $p = 0.0001$). The HIV-positive patients who underwent colonoscopy were more likely to have visualized lesions than their non-HIV-infected counterparts (50 vs. 23.8%; $p = 0.0281$)¹⁶⁶. Reinhold, et al. also looked at CRC screening among 538 HIV-infected patients, of whom 56% were older than 50 years old. Despite significantly more visits to their primary care provider, HIV-infected patients were less likely to have ever had even one CRC screening compared to the general population (55.6 vs. 77.8%; $p < 0.001$)¹⁶⁷.

Additional research is needed to determine if HIV-positive individuals should be screened differently than

the general population. For example, because patients in this cohort were diagnosed with CRC at an earlier age, perhaps they would have benefitted from CRC screening at an age younger than 50 years. Since many of the carcinomas reported in HIV-infected patients involve the right colon, sigmoidoscopy may not be an adequate screening tool¹⁵⁶. Until more information regarding the natural history and prevalence of CRC in the HIV-infected population is available, healthcare providers should utilize CRC screening in HIV-infected individuals with the same frequency and technique as the general population.

Future research considerations

Cancers of the liver, stomach, testes, and esophagus are not routinely screened for in the general population but may be overrepresented in the HIV-infected

population. The most prevalent of these malignancies is hepatocellular cancer, which accounts for as many as 25% of non-AIDS-related deaths in HIV-infected patients¹⁶⁸. This can be attributed to a 30% prevalence of HCV in the HIV-infected population, and up to 75% prevalence of HCV in HIV-infected injection drug users³⁴. In a recent surveillance study, the use of twice-yearly alpha-fetoprotein and twice-yearly hepatic ultrasound in those with elevated tumor markers of current or previous HCV infection showed a reduced mortality of 37% over five years when compared to no surveillance¹⁶⁹.

The risk for stomach cancer is 70% higher among those with AIDS compared to the general population, and their risk of esophageal cancer is 2.7-times that of the general population¹⁷⁰. Likewise, testicular cancer risk may be as much as eight-times higher in HIV-infected men than in the general population¹⁷¹. More research is needed to determine if screening for these cancers would be cost-effective in the HIV-infected population.

Another area worthy of investigation pertains to cancer prevention. Although vitamin D deficiency is often identified in HIV-infected individuals, the link between low vitamin D levels and cancers is just emerging, and the role of vitamin D supplementation to ameliorate cancer risk is uncertain¹⁷².

Finally, the role of Patient Navigators to educate at-risk groups on the importance of cancer screening and to provide accompaniment in long-term follow-up care may have great utility in disparate communities, including those with HIV-infection¹⁷³.

Conclusion

We have witnessed great advances in the treatment of HIV/AIDS in the HAART era. With proper adherence to antiretroviral treatment, HIV infection can be controlled and infected individuals can now anticipate a near normal life expectancy¹⁷⁴. However, this newly extended life span has brought with it challenges and competing causes of mortality, including non-ADM.

The prevalence of ICC⁴⁰ in women and SCCA^{37,66} in men and women is greater in the HIV-infected population than in the general population. Women with HIV should be screened with a cervical Pap test shortly after the time of HIV diagnosis, with another test six months later. If both of these tests are normal, annual screening should be performed⁴⁸. The screening guidelines for anal cancer are less widely accepted, but the benefits can be extrapolated from the success of cervical cancer screening. We endorse the guidelines initially put forth by the NYSAI⁸³. In addition

to healthcare providers performing an inspection of the perianal region during routine physical exam, three subgroups of HIV-infected individuals should be screened using anal Pap tests. Those groups are MSM, women with a history of abnormal cervical or vulvar histology, and men and women with a history of anogenital warts.

When screening for CRC, some have suggested that HIV-infected individuals begin evaluations before 50 years of age¹⁵⁶. We favor colonoscopy instead of sigmoidoscopy as the preferred screening test because the majority of colonic lesions involve the right side of the colon, out of reach of sigmoidoscopy¹⁵⁶.

Despite the higher prevalence of lung cancer in the HIV-infected population¹³², the benefit of screening is unproven. Furthermore, it is unclear if people with HIV are at a higher risk for breast⁹⁰⁹⁵ and prostate cancer^{20,94,111,112} compared to the general population. We recommend screening HIV-infected patients for these cancers using the same guidelines as the general population.

Promising new screening and prevention techniques, including LDSCT¹³⁸ for lung cancer and HPV vaccination for cervical and anal cancer prevention, are now available for the general population⁷⁶, although their impact on the natural history of these malignancies and their potential utility in the setting of HIV infection remains to be seen. Until then, the priority of healthcare providers should be to stress the importance of the cessation of cancer promoting habits, especially smoking, and compliance with current cancer screening guidelines.

Acknowledgements

The authors are indebted to Wayne Dodge for his critical review of this manuscript and insightful recommendations.

References

1. Jones J, Hanson D, Dworkin M, et al. Surveillance for AIDS-defining opportunistic illnesses 1992-1997. *Morb Mortal Wkly Rep*. 1999;48:1-22.
2. Chang Y, Ceserman E, Pessin M, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. *Science*. 1994;266:1865-9.
3. Epstein, M, Achong B, Barr Y. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. *Lancet*. 1965;121:761-70.
4. Zur Hausen H. Papillomaviruses in human cancer. *Appl Pathol*. 1987;5:19-24.
5. Grulich A, van Leeuwen M, Falster M, Vajdic C. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. *Lancet*. 2007;370:59-67.
6. Sackoff J, Hanna D, Pfeiffer M, Torian L. Causes of death among persons with AIDS in the era of highly active antiretroviral therapy: New York City. *Ann Intern Med*. 2006;145:397-406.
7. Palella F, Baker R, Moorman A, et al. Mortality in the highly active antiretroviral therapy era: changing causes of death and disease in the HIV outpatient study. *J Acquir Immune Defic Syndr*. 2006;43:27-34.

8. Shiels M, Cole S, Kirk G, Poole C. A meta-analysis of the incidence of non-AIDS cancers in HIV-infected individuals. *J Acquir Immun Defic Syndr.* 2009;52:611-22.
9. Shiels M, Pfeiffer R, Gail M, et al. Cancer burden in the HIV-infected population in the United States. *J Natl Cancer Inst.* 2011;103:753-62.
10. Bedimo R. Non-AIDS-defining malignancies among HIV-infected patients in the highly active antiretroviral era. *Curr HIV/AIDS Rep.* 2008;5:140-9.
11. Clifford G, Poelsel J, Rickenbach M, et al. Cancer risk in the Swiss HIV cohort: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. *J Natl Cancer Inst.* 2005;97:425-32.
12. Biggar R, Chaturvedi A, Goedert J, Engels E; The HIV/AIDS Cancer Match Study. AIDS-related cancer and severity of immunosuppression in persons with AIDS. *J Natl Cancer Inst.* 2007;99:962-72.
13. Hessel N, Seaberg E, Preston-Martin S, et al; WIHS Collaborative Study Group. Cancer risk among participants of the Women's Interagency HIV Study. *J Acquir Immune Defic Syndr.* 2004;36:978-85.
14. Heard I, Schmitz V, Costagliola D, Orth G, Kazatchkine M. Early regression of cervical lesions in HIV-seropositive women receiving highly active antiretroviral therapy. *AIDS.* 1998;12:1459-64.
15. Schuman P, Ohmit S, Klein R, et al; HIV Epidemiology Research Study Group. Longitudinal study of cervical squamous intraepithelial lesions in human-immunodeficiency virus (HIV)-seropositive and at-risk HIV-seronegative women. *J Infect Dis.* 2003;188:128-36.
16. Gingelmaier A, Grubert T, Kaestner R, et al. High recurrence rate of cervical dysplasia and persistence of HPV infection in HIV-1 infected women. *Anticancer Res.* 2007;27:1795-8.
17. Lehtovirta P, Paavonen J, Heikinheimo O. Risk factors, diagnosis and prognosis of cervical intraepithelial neoplasia among HIV-infected women. *Int J STD AIDS.* 2008;19:37-41.
18. Bower M, Mazhar D, Stebbing J. Should cervical cancer be an acquired immunodeficiency syndrome-defining cancer? *J Clin Oncol.* 2006;24:2417-19.
19. Armitage P, Doll R. The age distribution of cancer and a multi-stage theory of carcinogenesis. *Br J Cancer.* 1954;8:1-12.
20. Burgi A, Brodine S, Wegner S, et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. *Cancer.* 2005;104:1505-11.
21. Barbaro G, Barbarini G. HIV infection and cancer in the era of highly active antiretroviral therapy (Review). *Oncol Reports.* 2007;17:1121-6.
22. Ho G, Bierman R, Beardsley L, Chang C, Burk R. Natural history of cervicovaginal papillomavirus infection in young women. *N Engl J Med.* 1998;338:423-8.
23. Grinsztejn B, Veloso V, Levi J, et al. Factors associated with increased prevalence of human papilloma virus in a cohort of HIV-infected Brazilian women. *Int J Infect Dis.* 2009;13:72-80.
24. Palefsky J, Holly E, Hogeboom C, et al. Virologic, immunologic, and clinical parameters in the incidence and progression of anal squamous intraepithelial lesions in HIV-positive and HIV-negative homosexual men. *J Acquir Immune Defic Syndr.* 1998;17:314-19.
25. Nguyen M, Farrell K, and Gunthel J. Non-AIDS-defining malignancies in patients with HIV in the HAART era. *Curr Infect Dis Rep.* 2010;12:46-55.
26. Stebbing J, Duru O, Bower M. Non-AIDS-defining cancers. *Curr Opin Infect Dis.* 2009;22:7-10.
27. El-Sadr W, Lundgren J, Neaton J, et al. CD4+ count-guided interruption of antiretroviral treatment. *N Engl J Med.* 2006;355:2283-96.
28. Silverberg M, Neuhaus J, Bower M, et al. Risk of cancers during interrupted antiretroviral therapy in the SMART Study. *AIDS.* 2007;21:1957-63.
29. Lichtenstein K. Antiretroviral treatment interruptions and risk of non-opportunistic diseases. *Curr HIV/AIDS Rep.* 2009;6:77-82.
30. World Health Organization. Antiretroviral therapy for HIV-infection and adolescents: recommendations for a public health approach. WHO Press; 2010 (cited 2011 Jun 8). Available from: http://whqlibdoc.who.int/publications/2010/9789241599764_eng.pdf
31. Braithwaite R, Justice A, Change C, et al. Estimating the proportion of patients infected with HIV who will die of comorbid diseases. *Am J Med.* 2005;118:890-8.
32. Justice A, Lasky E, McGinnis K, et al. Medical disease and alcohol use among veterans with human immunodeficiency virus infection: a comparison of disease measurement strategies. *Med Care.* 2006;44(Suppl 2):S52-60.
33. Bräu N, Fox R, Xiao P, et al; The North American Liver Cancer in HIV Study Group. Presentation and outcome of hepatocellular carcinoma in HIV-infected patients: a U.S.-Canadian multicenter study. *J Hepatol.* 2007;47:527-37.
34. Staples C, Rimland D, Dudas D. Hepatitis C in the HIV (human immunodeficiency virus) Atlanta V.A. (Veterans Affairs Medical Center) Cohort Study (HAVACS): the effect of coinfection on survival. *Clin Infect Dis.* 1999;29:150-4.
35. D'Jaen G, Pantanowitz L, Bower M, et al. Human immunodeficiency virus-associated primary lung cancer in the era of highly active antiretroviral therapy: a multi-institutional collaboration. *Clin Lung Cancer.* 2010;11:396-404.
36. Wilson J, Junger G. Principles and practice of screening for disease. *Public Health Papers.* 1968;4:26-39.
37. Frisch M, Biggar R, Goedert J. Human papilloma virus-associated cancers in patients with human immunodeficiency virus infection and acquired immunodeficiency syndrome. *J Natl Cancer Inst.* 2000;92:1500-10.
38. Rellition M, Darby D, Burk T, Berkland M, Longfield R. Rapidly progressive cervical cancer in a patient with human immunodeficiency virus infection. *Gynecol Oncol.* 1990;36:435-8.
39. Castro K, Ward J, Slutsker L, Buehler J, Jaffe H, Berkelman R; National Center for Infectious Diseases Division of HIV/AIDS. 1993 revised classification system for HIV infection and expanded surveillance case definition for AIDS among adolescents and adults. *Morb Mortal Wkly Rep.* 1992;41:1-19.
40. Denny L, Boa R, Williamson A, et al. Human papillomavirus infection and cervical disease in human immunodeficiency virus-1-infected women. *Obstet Gynecol.* 2008;111:1380-7.
41. Soncini E, Zoncada A, Condemi V, Antoni A, Bocchialini E, Soregotti P. Reduction of the risk of cervical intraepithelial neoplasia in HIV-infected women treated with highly active antiretroviral therapy. *Acta Biomed.* 2007;78:36-40.
42. Heard I, Palefsky J, Kazatchkine M. The impact of HIV antiviral therapy on human papillomavirus (HPV) infections and HPV-related diseases. *Antivir Ther.* 2004;9:13-22.
43. Ahdieh-Grant L, Li R, Levine A, et al. Highly active antiretroviral therapy and cervical squamous intraepithelial lesions in human immunodeficiency virus-positive women. *J Natl Cancer Inst.* 2004;96:1070-6.
44. American Academy of Family Physicians. 2011. (Updated 2003; cited 2011 Jun 7). A-E: Recommendations for Clinical Preventive Services (about screen 7). Available from: <http://www.aafp.org/online/en/home/clinical/exam/a-e.html>
45. Barclay, Laurie. ACOG issues revised cervical cancer screening guidelines. *Medscape Medical News.* 2009 (cited 2011 Jun 10). Available from: <http://www.medscape.com/viewarticle/712840>
46. American Cancer Society. 2011 (updated 2010 Dec 23; cited 2011 Jun 9). Cervical cancer; (screens 11-17) Available from: <http://www.cancer.org/acs/groups/cid/documents/webcontent/003167-pdf.pdf>
47. U.S. Preventive Services Task Force; (updated 2003 Jan; cited 2011 Jun 6). Screening for cervical cancer; (about 1 screen). Available from: <http://www.upservicestaskforce.org/uspstf/uspsserv.htm>
48. Centers for Disease Control (updated 2011 Jan 28; cited 2011 Jun 10). Cervical cancer screening for women who attend STD clinics or have a history of STDs; (about 5 screens). Available at: <http://www.cdc.gov/std/treatment/2010/cc-screening.htm>
49. Engels E, Biggar R, Hall H, et al. Cancer risk in people infected with human immunodeficiency virus in the United States. *Int J Cancer.* 2008;123:187-94.
50. Ellerbrock T, Chiasson M, Bush T, et al. Incidence of cervical squamous intraepithelial lesions in HIV-infected women. *JAMA.* 2000;283:1031-7.
51. Anderson J, Paramsothy P, Heilig C, Jamieson D, Shah K, Duerr A; HIV Epidemiology Research Study Group. Accuracy of Papanicolaou test among HIV-infected women. *Clin Infect Dis.* 2006;42:562-8.
52. Maiman M, Fruchter R, Sedlis A, et al. Prevalence, risk factors, and accuracy of cytologic screening for cervical intraepithelial neoplasia in women with the human immunodeficiency virus. *Gynecol Oncol.* 1998;68:233-9.
53. Wright T, Massad L, Dunton C, et al; 2006 American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference. 2006 consensus guidelines for managing of women with abnormal cervical screening tests. *Am J Obstet Gynecol.* 2007;197:346-55.
54. Kaplan J, Benson C, Holmes K, Brooks J, Pau A, Masur H; Centers for Disease Control and Prevention. Guidelines for prevention and treatment of opportunistic infections in HIV-infected adults and adolescents. *MMWR Recomm Rep.* 2009;58:70-1.
55. New York State Department of Health AIDS Institute. Promoting GYN care for HIV-infected women: best practices for New York State. 2000 (cited 2011 Jun 11). Available from: <http://www.ihii.org/IHI/Topics/HIV/AIDS/HIVDisease-General/Tools/PromotingGynecologicalGYNCareforHIVInfectedWomen.htm>
56. U.S. Public Health Service and the Infectious Diseases Society of America Prevention of Infections Working Group. Guidelines for the prevention of opportunistic infections among HIV-infected persons. National Center for HIV, STD, and TB Prevention; 2002 (cited 2011 Jun 11). Available from: <http://aidsinfo.nih.gov/contentfiles/OIpreventionGL>
57. Goldie S, Weinstein M, Kuntz K, Freedberg K. The costs, clinical benefits, and cost-effectiveness of screening for cervical cancer in HIV-infected women. *Ann Intern Med.* 1999;130:97-107.
58. Massad L, Evans C, Strickler H, et al. Outcome after negative colposcopy among human immunodeficiency virus-infected women with borderline cytologic abnormalities. *Obstet Gynecol.* 2005;106:525-32.
59. Swierczynski S, Lewis-Chambers S, Anderson J, Keller J, Hinkle D, Ali S. Impact of liquid-based gynecologic cytology on an HIV-positive population. *Acta Cytol.* 2004;48:165-72.
60. Boardman L, Cotter K, Raker C, Cu-Uvin S. Cervical intraepithelial neoplasia grade 2 or worse in human immunodeficiency virus-infected women with mildly abnormal cervical cytology. *Obstet Gynecol.* 2008;112:238-43.
61. Kitchener H, Nelson L, Adams J, et al. Colposcopy is not necessary to assess the risk to the cervix in HIV-positive women: an international cohort study of cervical pathology in HIV-1 positive women. *Int J Cancer.* 2007;121:2484-91.

62. Womack S, Chirenje Z, Gaffikin L, et al. HPV-based cervical cancer screening in a population at high risk for HIV infection. *Int J Cancer*. 2000;85:206-10.
63. Kuhn L, Wang C, Wei-Tsai W, Wright T, Denny L. Efficacy of human papillomavirus-based screen-and-treat for cervical cancer prevention among HIV-infected women. *AIDS*. 2010;24:255361.
64. Cuschieri K, Wentzensen N. Human papillomavirus mRNA and p16 detection as biomarkers for the improved diagnosis of cervical neoplasia. *Cancer Epidemiol Biomarkers Prev*. 2008;17:253645.
65. Johnson Z, Madeleine M, Newcomer L, Schwartz S, Daling J. Anal cancer incidence and survival, epidemiology, and end results experience, 1973-2000. *Cancer*. 2004;101:281-8.
66. Margolies L, Gooren B. Anal cancer, HIV, and gay/bisexual men. *New York: Gay Men's Health Crisis*; 2009 (cited 2011 Jun 12). Available from: www.gmhc.org/files/editor/file/it_0909.pdf.
67. Patel P, Hanson D, Sullivan P, et al.; Adult and Adolescent Spectrum of Disease Project and HIV Outpatient Study Investigators. Incidence types of cancer among HIV-infected persons compared with the general population in the United States, 1992-2003. *Ann Intern Med*. 2008;148:728-36.
68. Etienne I, Vuong S, Daniel F, et al. Prevalence of anal cytological abnormalities in a French referral population: a prospective study with special emphasis on HIV, HPV, and smoking. *Dis Colon Rectum*. 2008;51:67-72.
69. Clark M, Hartley A, Geh J. Cancer of the anal canal. *Lancet Oncol*. 2004;5:149-57.
70. Piketty C, Darragh T, Da Costa M, et al. High prevalence of anal human papillomavirus infection and anal cancer precursors among HIV infected persons in the absence of anal intercourse. *Ann Intern Med*. 2003;138:453-9.
71. Crum-Cianflone N, Hullsiek K, Marconi V, et al.; Infectious Disease Clinical Research Program HIV Working Group. Anal cancers among HIV-infected persons: HAART is not slowing rising incidence. *AIDS*. 2010;24:535-43.
72. Zanet E, Berreta M, Martellotta F, et al. Anal cancer: focus on HIV-positive patients in the HAART era. *Curr HIV Res*. 2011;9:70-81.
73. D'Souza G, Wiley D, Li X, et al. Incidence and epidemiology of anal cancer in the multicenter AIDS cohort study. *J Acquir Immune Defic Syndr*. 2008;48:491-9.
74. Abramowitz L, Benabderrahmane D, Ravaud P, et al. Anal squamous intraepithelial lesions and condyloma in HIV-infected heterosexual men, homosexual men and women: prevalence and associated factors. *AIDS*. 2007;21:1457-65.
75. U.S. Food and Drug Administration. Gardasil approved to prevent anal cancer. United States Department of Health and Human Services; 2010 (cited 2011 Jun 11). Available from: <http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm237941.htm>.
76. Giuliano A, Palefsky J, Goldstone S, et al. Efficacy of quadrivalent HPV vaccine against HPV infection and disease in males. *N Eng J Med*. 2011;364:401.
77. Wilkin T, Lee J, Lensing S, et al. Safety and immunogenicity of the quadrivalent human papillomavirus vaccine in HIV-1 infected men. *J Infect Dis*. 2010;202:1246-53.
78. Bower M, Collins S, Cottrill C, et al.; AIDS Malignancy Subcommittee, British HIV Association guidelines for HIV-associated malignancies 2008. *HIV Med*. 2008;9:336-88.
79. Phillips A, Justman J. Screening HIV-infected patients for non-AIDS-defining malignancies. *Curr HIV/AIDS Rep*. 2009;6:83-92.
80. Chiao E, Giordano T, Palefsky J, Tyring S, El Serag H. Screening HIV-infected individuals for anal cancer precursor lesions: a systematic review. *Clin Infect Dis*. 2006;43:223-33.
81. Cranston R, Hart S, Gornbein J, Hirschowitz S, Cortina G, Moe A. The prevalence, and predictive value, of abnormal anal cytology to diagnose anal dysplasia in a population of HIV-positive men who have sex with men. *Int J STD AIDS*. 2007;18:77-80.
82. Arain S, Walts A, Thomas P, Bose S. The anal Pap smear: cytmorphology of squamous intraepithelial lesions. *Cytotechnology*. 2005;2:4.
83. National AIDS Treatment Advocacy Project. NYS Guidelines recommendations on anal pap smears. 2010 (cited 2011 Jun 12). Available from: http://www.natap.org/2010/HIV/032510_01.htm.
84. Czoski-Murray C, Karon J, Jones R, Smith K, Kinghorn G. Cost-effectiveness of screening high-risk HIV-positive men who have sex with men (MSM) and HIV-positive women for anal cancer. *Health Technol Assess*. 2010;53:iii-iv,ix-x,1-101.
85. Highleyman L. Human Papillomavirus. BETA. 2007:35-9.
86. American Cancer Society. 2011 (updated 2011 Feb 9; cited 2011 Jun 6). Breast cancer; (screens 9-19) Available from: <http://www.cancer.org/acs/groups/cid/documents/webcontent/003090-pdf.pdf>.
87. Palmer J, Boggs D, Adams-Campbell L, Rosenberg L. Family history of cancer and risk of breast cancer in the Black Women's Health study. *Cancer Causes Control*. 2009;20:1733-7.
88. Key T, Appleby P, Barnes I, Reeves G; Endogenous Hormones and Breast Cancer Collaborative Group. Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. *J Natl Cancer Inst*. 2002;94:606-16.
89. Colditz G, Rosner B. Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses' Health Study. *Am J Epidemiol*. 2000;152:950-64.
90. Amir H, Kaaya E, Kwasigabo G, Kitinya J. Breast cancer before and during the AIDS epidemic in women and men: a study of Tanzanian Cancer Registry Data 1968 to 1996. *J Natl Med Assoc*. 2000;92:301-5.
91. Intra M, Gentilini O, Brenelli F, Chagas E, Veronesi U, Sandri M. Breast cancer among HIV-infected patients: The experience of the European Institute of Oncology. *J Surg Oncol*. 2005;91:141-2.
92. Stuart T, Tsai S, Grayson H, Henderson T, Opelz G. Incidence of de novo breast cancer in women chronically immunosuppressed after organ transplantation. *Lancet*. 1995;346:796-8.
93. Birkeland S, Storm H, Lamm L, et al. Cancer risk after renal transplantation in the Nordic countries, 1964-1986. *Int J Cancer*. 1995;60:183-9.
94. Frisch M, Biggar R, Engels E, Goedert J; AIDS-Cancer Match Registry Study Group. Association of cancer with AIDS-related immunosuppression in adults. *JAMA*. 2001;285:1736-45.
95. Latif N, Rana F, Guthrie T. Breast cancer and HIV in the era of highly active antiretroviral therapy: two case reports and review of the literature. *Breast J*. 2011;17:87-92.
96. Hessol N, Napolitano L, Smith D, et al. HIV tropism and decreased risk of breast cancer. *PLoS ONE*. 2010;5:e14349.
97. Pantanowitz L, Schecht H, Dezube B. The growing problem of non-AIDS defining malignancies in HIV. *Curr Opin Oncol*. 2006;18:469-78.
98. Olowole S, Ali A, Shaface Z, DePaz H. Breast cancer in women with HIV/AIDS: report of five cases with a review of literature. *J Surg Oncol*. 2005;89:23-7.
99. Voutsadakis I, Silverman L. Breast cancer in HIV-positive women: a report of four cases with a review of literature. *Cancer Invest*. 2002;20:452-7.
100. Sullivan MG. Change in mammography guidelines may adversely affect young minority women. Elsevier BV; 2011 (cited 2011 Jun 12). Available from: <http://www.medconnect.com.sg/tabid/92/s3/Oncology/p12/Breast-Cancer/c1/c41047/Change-in-Mammography-Guidelines-May-Adversely-Affect-Young-Minority-Women-/Default.aspx>.
101. AAFP News Now. Updated AAFP breast cancer screening recommendations stress communication. American Academy of Family Physicians; 2010 (cited 2011 Jun 6). Available from: <http://www.aafp.org/online/en/home/publications/news/newsnow/clinical-care-research/20100115aafp-brca-recs.html>.
102. The American Congress of Obstetricians and Gynecologists. Lippincott Williams & Wilkins. 2011(updated 2009 Nov 16; cited 2011 Jun 6). Interpreting the U.S. Preventive Services Task Force breast cancer screening recommendations for the general population; (about 2 screens). Available from: http://www.acog.org/from_home/Misc/uspstfinterpretation.cfm.
103. American Cancer Society. 2011 (updated 2010 Sep 17; cited 2011 Jun 12). American Cancer Society recommendations for early breast cancer detection; (about 7 screens). Available from: <http://www.cancer.org/Cancer/BreastCancer/DetailedGuide/breast-cancer-detection>.
104. U.S. Preventive Services Task Force (updated 2009 Nov; cited 2011 Jun 12). Screening for breast cancer; (about 1 screen). Available from: <http://www.uspreventiveservicestaskforce.org/uspstf/uspssrca.htm>.
105. Saslow D, Boetes C, Burke W, et al.; American Cancer Society Breast Cancer Advisory Group. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. *CA Cancer J Clin*. 2007;57:75-89.
106. Wingerter L. Breast cancer screening in 2025: Mammography, MRI, or more? London: UBM Medica; 2011 (cited 2011 Jun 12). Available from: <http://www.diagnosticimaging.com/conferencereports/ecr2011/content/article/113619/1816244>.
107. Seth A, Moore R, Gebo K. Provision of general and HIV-specific health maintenance in middle aged adults and older patients in an urban HIV clinic. *AIDS Patient Care STDS*. 2006;20:318-25.
108. Preston-Martin S, Kirstein L, Pogoda J, et al. Use of mammographic screening by HIV-infected women in the Women's Interagency HIV Study (WIHS). *Prev Med*. 2002;34:386-92.
109. Brawley O. Prostate cancer screening. *Principl Prac Oncol*. 2010;24:1.
110. American Cancer Society. 2011 (updated 2011 May 22; cited 2011 Jun 6). Prostate cancer; (screens 4-7). Available from: <http://www.cancer.org/acs/groups/cid/documents/webcontent/003134-pdf.pdf>.
111. Hessol N, Pipkin S, Schwarcz S, Cress R, Bacchetti P, Scheer S. The impact of highly active antiretroviral therapy on non-AIDS-defining cancers among adults with AIDS. *Am J Epidemiol*. 2007;165:1143-53.
112. Shiels M, Goedert J, Moore R, Platz E, Engles E. Reduced risk of prostate cancer in U.S. men with AIDS. *Cancer Epidemiol Biomarkers Prev*. 2010;19:2910-15.
113. Biggar R, Kirby K, Atkinson J, McNeel T, Engels E.; the AIDS Cancer Match Study Group. Cancer risk in elderly persons with HIV/AIDS. *J Acquir Immune Defic Syndr*. 2004;36:861-8.
114. Levinson A, Nagler E, Lowe F. Approach to management of clinically localized prostate cancer in patients with human immunodeficiency virus. *Urology*. 2005;65:91-4.
115. Illic D, O'Connor D, Green S, Wilt T. Screening for prostate cancer: an updated Cochrane Database systematic rev. *BJU Int*. 2011;107:882-91.

116. Sandblom G, Varenhorst E, Rosell J, Löfman O, Carlsson P. Randomised prostate cancer screening trial: 20 year follow-up. *BMJ*. 2011;342:d1539.

117. Schröder F, Hugosson J, Roobol M, et al.; ERSPC Investigators. Screening and prostate-cancer mortality in a randomized European study. *N Engl J Med*. 2009;360:1320-8.

118. Mulcahy N. 'Excessive' PSA screening in elderly men. *Medscape Medical News*; 2011 (cited 2011 Jun 12). Available from: <http://www.medscape.com/viewarticle/739842>.

119. American Urological Association. American Urological Society Education and Research, Inc; 2009 (cited 2011 Jun 13) Prostate-specific antigen best practice statement: 2009 Update. Available from: <http://www.auanet.org/content/guidelines-and-quality-care/clinical-guidelines/main-reports/psa09.pdf>.

120. American Cancer Society. 2011 (updated 2011 May 22; cited 2011 Jun 13). American Cancer Society recommendations for early detection of prostate cancer; (about 5 screens). Available from: <http://www.cancer.org/Cancer/ProstateCancer/DetailedGuide/prostate-cancer-detection>.

121. U.S. Preventive Services Task Force (updated 2008 Aug; cited 2011 Jun 13). Screening for prostate cancer; (about 1 screen). Available from: <http://www.uspreventiveservicestaskforce.org/uspstf/uspsprca.htm>.

122. Crum N, Spencer C, Amling C. Prostate carcinoma among men with human immunodeficiency virus infection. *Cancer*. 2004;101:294-9.

123. Vianna L, Lo Y, Klein R. Serum prostate-specific antigen levels in older men with or at risk for HIV. *HIV Med*. 2006;7:471-6.

124. American Cancer Society. 2011 (updated 2010 Dec 16; cited 2011 Jun 13). Lung cancer; (screens 6-12). Available from: <http://www.cancer.org/acs/groups/cid/documents/webcontent/003115-pdf.pdf>.

125. Lavolé A, Wislez M, Antoine M, Mayaud C, Milleron B, Cadranel J. Lung cancer, a new challenge in the HIV-infected population. *Lung Cancer*. 2006;51:1-11.

126. Spano J, Massiani M, Bentata M, et al. Lung cancer in patients with HIV infection and review of the literature. *Med Oncol*. 2004;21:109-15.

127. Cadranel J, Garfield D, Lavolé A, Wislez M, Milleron B, Mayaud C. Lung cancer in HIV infected patients: facts, questions and challenges. *Thorax*. 2006;61:1000-8.

128. Hakimian R, Fang H, Thomas L, Edelman M. Lung cancer in HIV-infected patients in the era of highly active antiretroviral therapy. *J Thorac Oncol*. 2007;2:268-72.

129. Giardano T, Kramer I. Does HIV infection independently increase the incidence of lung cancer? *Clin Infect Dis*. 2005;40:490-1.

130. Silverberg M, Chao C, Leyden W, et al. HIV infection and the risk of cancers with and without a known infectious cause. *AIDS*. 2009;23:2337-45.

131. Engels E, Pfeiffer R, Goedert J, et al.; HIV/AIDS Cancer Match Study. Trends in cancer risk among people with AIDS in the United States 1980-2002. *AIDS*. 2006;20:1645-54.

132. Kirk G, Merlo C, O'Driscoll P, et al. HIV infection is associated with an increased risk for lung cancer, independent of smoking. *Clin Infect Dis*. 2007;45:103-10.

133. Brock M, Hooker C, Engels E, et al. Delayed diagnosis and elevated mortality in an urban population with HIV and lung cancer: implications for patient care. *J Acquir Immune Defic Syndr*. 2006;43:47-55.

134. Pastorino U. Lung cancer screening. *Br J Cancer*. 2010;102:1681-6.

135. Marcus P, Bergstrahl E, Zweig M, Harris A, Offord K, Fontana R. Extended lung cancer incidence follow-up in the Mayo Lung Project and overdiagnosis. *J Natl Cancer Inst*. 2006;98:74856.

136. NCI Division of Cancer Prevention. The National Cancer Institute; 2011 (cited 2011 Jun 6). Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial; (about 1 screen). Available from: <http://prevention.cancer.gov/plco>.

137. Henschke C, McCauley D, Yankelevitz D, et al. Early Lung Cancer Action Project: overall design and findings from baseline screening. *Lancet*. 1999;354:99-105.

138. National Cancer Institute. Lung cancer trial results show mortality benefit with low-dose CT. National Institutes of Health; 2010 (cited 2011 Jun 14). Available from: <http://www.cancer.gov/newscenter/pressreleases/2010/NLSTResultsRelease>.

139. Kuehn B. Lung cancer screening. *JAMA*. 2010;304:2687.

140. Vidrine D, Arduino R, Lazev A, Gritz E. A randomized trial of a proactive cellular telephone intervention for smokers living with HIV/AIDS. *AIDS*. 2006;20:253-60.

141. Ingersoll K, Cropsey K, Heckman C. A test of motivational plus nicotine replacement interventions for HIV positive smokers. *AIDS Behav*. 2009;13:545-54.

142. American Cancer Society. 2011 (updated 2011 Mar 2; cited 2011 Jun 6). Colorectal cancer; (screens 4-9). Available from: <http://www.cancer.org/acs/groups/cid/documents/webcontent/003096-pdf.pdf>.

143. Yeguez J, Martinez S, Sands D, Sands L, Hellinger M. Colorectal malignancies in HIV-positive patients. *Am Surg*. 2003;69:981-7.

144. Grulich A, Li Y, McDonald A, Correll P, Law M, Kaldor J. Rates of non-AIDS defining cancers in people with HIV infection before and after AIDS diagnosis. *AIDS*. 2002;16:1155-61.

145. Dal Maso L, Franceschi S, Polesel J, et al. Cancer and AIDS Registry Linkage Study. Risk of cancer in persons with AIDS in Italy, 1985-1998. *Br J Cancer*. 2003;89:94-100.

146. Cooksley C, Hwang L, Waller D, Ford C. HIV-related malignancies: community-based study using linkage of cancer registry and HIV registry data. *Int J STD AIDS*. 1999;10:795-802.

147. Bedimo R, Chen R, Accortt N, et al. Trends in AIDS-defining and non-AIDS-defining malignancies among HIV-infected patients: 1989-2002. *Clin Infect Dis*. 2004;39:1380-4.

148. Bini E, Green B, Poles M. Screening colonoscopy for the detection of neoplastic lesions in asymptomatic HIV-infected subjects. *Gut*. 2009;58:1129-34.

149. Bonnet F, Lewden C, May T, et al. Malignancy-related causes of death in human immunodeficiency virus-infected patients in the era of highly active antiretroviral therapy. *Cancer*. 2004;101:317-24.

150. Cappell M, Yao F, Cho K. Colonic adenocarcinoma associated with the acquired immune deficiency syndrome. *Cancer*. 1988;62:616-9.

151. Ravalli S, Chabon A, Khan A. Gastrointestinal neoplasia in young HIV antibody-positive patients. *Am J Clin Pathol*. 1989;91:458-61.

152. Monfardini S, Vaccher E, Pizzocaro G, et al. Unusual malignant tumors in 49 patients with HIV infection. *AIDS*. 1989;3:449-52.

153. Klugman A, Schaffner J. Colon adenocarcinoma in HIV infection: A case report and review. *Am J Gastroenterol*. 1994;89:254-6.

154. Demopoulos B, Vamvakas E, Ehrlich J, Demopoulos R. Non-acquired immunodeficiency syndrome-defining malignancies in patients infected with human immunodeficiency virus. *Arch Pathol Lab Med*. 2003;127:589-92.

155. Bini E, Park J, Francois F. Use of flexible sigmoidoscopy to screen for colorectal cancer in HIV-infected patients 50 years of age and older. *Arch Intern Med*. 2006;166:1626-31.

156. Chapman C, Aboulafia D, Dezube B, Pantanowitz L. Human immunodeficiency virus-associated adenocarcinoma of the colon: clinicopathologic findings and outcome. *Clin Colorectal Cancer*. 2009;8:215-9.

157. Howlader N, Noone A, Krapcho M, et al. SEER Cancer Statistics Review, 1975-2008. National Cancer Institute. 2011 (cited 2011 Jun 14). Available at: <http://seer.cancer.gov/statfacts/html/colorect.html>.

158. Wood N, Feller L. The malignant potential of HIV-associated Kaposi sarcoma. *Cancer Cell Int*. 2008;8:14.

159. Botteri E, Iodice S, Bagnardi V, Raimondi S, Lowenfels A, Maisonneuve P. Smoking and colorectal cancer. *JAMA*. 2008;300:23:2765-78.

160. Liang P, Chen T, Giovannucci E. Cigarette smoking and colorectal cancer incidence and mortality: Systematic review and meta-analysis. *Int J Cancer*. 2009;124:2406-15.

161. Recommendations from the 2009 ACG guideline for colorectal cancer screening. ACG Update. 2009 (cited 2011 Jun 6); 18(1): (about 1 screen). Available from: <http://www.acg.org/2010Convention/Cornette-ColorectalCancerScreeningRecommendations.pdf>.

162. American College of Obstetricians and Gynecologists Committee on Gynecologic Practice. Committee opinion no. 482: colonoscopy and colorectal cancer screening strategies. *Obstet Gynecol*. 2011;117:766-71.

163. U.S. Preventive Services Task Force (updated 2008 Oct; cited 2011 Jun 6). Screening for colorectal cancer; (about 1 screen). Available from: <http://www.uspreventiveservicestaskforce.org/uspstf/uspscolo.htm>.

164. Rabeneck L, Paszat L, Saskin R, Stukel T. Association between colonoscopy rates and colorectal cancer mortality. *Am J Gastroenterol*. 2010;105:7:1627-32.

165. Chustecka Z. Screening for colorectal cancer saves lives -- no debate, says ACS. *Medscape Medical News*; 2011 (cited 2011 Jun 7). Available from: <http://www.medscape.com/viewarticle/738728>.

166. Iqbal S, Browne-McDonald V, Cerulli M. Recent trends for colorectal cancer screening in HIV-infected patients. *Dig Dis Sci*. 2010;55:761-6.

167. Reinbold J, Moon M, Tenner C, Poles M, Bini E. Colorectal cancer screening in HIV-infected patients 50 years of age and older: missed opportunities for prevention. *Am J Gastroenterol*. 2005;100:1805-12.

168. Rosenthal E, Poiree M, Pradier C, et al.; GERMIVIC Joint Study Group. Mortality due to hepatitis C-related liver disease in HIV-infected patients in France (Mortavic 2001 study). *AIDS*. 2003;17:1803-9.

169. Zahng B, Yang B, Tang Z. Randomized controlled trial of screening for hepatocellular carcinoma. *J Cancer Res Clin Oncol*. 2004;130:417-22.

170. Nelson R. AIDS patients face higher risk for gastric and esophageal cancers. *Medscape Medical News*; 2011(cited 2011 Jun 6). Available from: <http://www.medscape.com/viewarticle/740694?src=mpnews&spon=7>.

171. Newcomb- Fernandez J. Cancer in the HIV-infected population. The Center for AIDS information and Advocacy; 2003 (cited 2011 Jun 7). Available from: <http://www.thebody.com/content/art16834.html>.

172. Manson J, Mayne S, Clinton S. Vitamin D and prevention of cancer-ready for prime time? *N Engl J Med*. 2011;364:1385-7.

173. Freund K, Battalia T, Calhoun E, et al. National Cancer Institute Patient Navigation Research Program. *Cancer*. 2008;113:3391-9.

174. Harrison K, Song R, Zhang X. Life expectancy after HIV diagnosis based on National HIV Surveillance data From 25 states, United States. *Journ of Aquir Imm Def Synd*. 2010;53:124-30.

175. Aboulafia DM. Immunodeficiency virus-acquired immune deficiency syndrome and cancer: implications for cancer screening in HIV and aging. In: Lee SW, editor. *HIV and Aging*. New York: Informa Healthcare. 2008;103-30.