

Once-Daily Single-Tablet Regimens: A Long and Winding Road to Excellence in Antiretroviral Treatment

Josep M. Libre¹ and Bonaventura Clotet^{1,2}

¹Lluita contra la SIDA Foundation. HIV Unit, University Hospital Germans Trias i Pujol, Badalona, Spain. Universitat Autònoma de Barcelona, Barcelona, Spain; ²IrsiCaixa Foundation, Badalona, Spain

Abstract

Once-daily single-tablet regimens represent the paramount simplification of antiretroviral treatment achieved so far. They include drugs with favorable pharmacokinetics that allow once-daily administration, that do not need dose adjustments, have no additional toxicities, and do not require dissimilar intake conditions. Co-formulated efavirenz/tenofovir disoproxil fumarate/emtricitabine has been a gold standard of initial therapy since its approval in 2006. Galenic research and industry patent agreements may allow availability of single-tablet regimens with HIV-1 nonnucleoside reverse transcriptase inhibitors (efavirenz or rilpivirine), integrase inhibitors (cobicistat-boosted elvitegravir or dolutegravir), and protease inhibitors (cobicistat-boosted darunavir), combined with either tenofovir disoproxil fumarate/emtricitabine or abacavir/lamivudine. The introduction of the new pharmacoenhancer cobicistat as a potential substitution for ritonavir and the investigational agent GS-7340, with one-tenth the tenofovir mass, is a breakthrough in antiretroviral drug development. Many HIV-1-infected patients who are treatment-naïve or treatment-experienced with susceptible virus will potentially have more options to reduce pill burden and optimize dosage schedules with one pill once-daily regimens. (AIDS Rev. 2012;14:168-78)

Corresponding author: Josep M. Libre, jmlibre@flsida.org

Key words

Antiretroviral agents. Antiretroviral therapy. Highly active. Drug therapy. Combination. HIV infection.

Introduction

HIV-1 infection entails lifelong antiretroviral treatment (ART), thereby challenging a patient's continued adherence. Subjects with low adherence are at an increased risk of virologic failure, disease progression, and death¹⁻⁴. Continued simplification of ART during the past decade has achieved increasing reductions in pill burden, daily dosages, and less short- and long-term toxicities, ultimately facilitating treatment adherence⁵⁻⁷.

It has also been associated with reduced rates of treatment failure and resistance selection⁸⁻¹⁰.

Fixed-dose combinations have been pivotal in reducing the risk of treatment errors and selective non-adherence^{11,12}. Except for cases where dose adjustments are required, fixed-dose combinations are recommended for treatment of HIV-1 infection when the agents included in the co-formulation are drugs of choice^{10,13,14}. A single-tablet regimen (STR) co-formulation for once-daily dosing is the highest level of ART simplification achieved so far. In 2006 the US Food and Drug Administration (FDA), and the European Medicines Agency (EMA) in 2007, granted marketing authorization for a tablet containing efavirenz, emtricitabine, and tenofovir disoproxil fumarate (EFV/FTC/TDF), the first STR in the history of HIV treatment. It has been a preferred initial treatment in all guidelines since then^{10,13,15}. Its use has been associated with significantly higher adherence, regimen persistence, and viral suppression rates, in addition to lower risks of

Correspondence to:

Josep M. Libre
Unitat de VIH
Hospital Universitari Germans Trias i Pujol
Ctra de Canyet, s/n
08916 Badalona, España
E-mail: jmlibre@flsida.org

hospitalization, both in the challenging homeless and marginally housed people, as well as in US Medicaid enrollees or the US LifeLink database¹⁶⁻¹⁸. Finally, patients on a STR had significantly lower healthcare costs (17% reduction) compared to patients receiving a two-or-more tablet per day regimen, although patients were not randomized and unmeasured confounding factors might have influenced outcomes¹⁶.

The approval in 2011 of a second STR containing rilpivirine (RPV) plus TDF/FTC and submissions to the Health Authorities in 2012 of a third STR containing elvitegravir/cobicistat (EVG/COBI) plus TDF/FTC significantly expand the possibilities of administering complete ART as a once-daily STR.

This article reviews the efficacy and tolerability of STR, either commercially available or in the advanced pipeline.

Efavirenz/tenofovir disoproxil fumarate/ emtricitabine

The combination of TDF plus FTC has been a preferred nucleoside reverse transcriptase inhibitor (NRTI) regimen since 2003 and has been studied with many different combinations^{10,13,14}. Its efficacy has never been surpassed in any clinical trial. Not only has TDF plus FTC shown non-inferior or superior virologic efficacy compared to abacavir (ABC) plus lamivudine (3TC)¹⁹⁻²³, but it has also shown superior virologic efficacy compared to zidovudine plus 3TC^{24,25} and to stavudine plus 3TC²⁶. Furthermore, co-formulated TDF/FTC has demonstrated potent virologic activity in combination with all other components of preferred regimens²⁷⁻²⁹ and is available in as a once-daily STR with EFV (Table 1).

Nonnucleoside reverse transcriptase inhibitor (NNRTI) recommendations have remained unchanged since EFV was added to the preferred list in late 1998. It has been the gold standard NNRTI since then, and with the approval in 2006 of the first STR, EFV/TDF/FTC has been a preferred regimen in all guidelines^{10,13,14}. In some guidelines, EFV has been the only first-line third component in all patients for some years³⁰. This recommendation was based on its efficacy, durability, toxicity profile, convenience, and cost, while boosted protease inhibitors (PI) should be reserved for specific groups of patients. With similar safety and efficacy, its availability as a STR drives its selection for many patients, making it the simplest and least expensive regimen on the preferred list³¹. Efavirenz, either combined separately with two NRTI or co-formulated in the STR, has not been surpassed for efficacy in any clinical trial so far. It has demonstrated non-inferior efficacy

Table 1. Plasma and intracellular elimination half-lives ($t_{1/2}$) of antiretroviral components of once-daily single-tablet antiretroviral regimens currently approved or in late-stage development¹⁰

Drug	Plasma $t_{1/2}$	Intracellular $t_{1/2}$
Tenofovir	17 h	> 60 h*
Emtricitabine	8.2-10 h	39 h*
Abacavir	1.5 h	12-26 h
Lamivudine	5-7 h	16-22 h
GS 7340	6.5 h†	> 60 h‡
Efavirenz	40-55 h	–
Rilpivirine	50 h	–
Elvitegravir	9.15 h (with COBI 150 mg) ⁶⁰ 11.2 h (with RTV 100 mg) ⁶⁰	–
Dolutegravir	12-15 h ^{76,78}	–
Darunavir	10 h (with COBI 150 mg) ^{§79} 15 h (with RTV 100 mg)	–

$t_{1/2}$: half life; COBI: cobicistat; RTV: ritonavir; h: hours.

*Terminal $t_{1/2}$ of tenofovir diphosphate: 164 hours; terminal $t_{1/2}$ of emtricitabine triphosphate: 39 hours⁸³.

†Result seen in macaques; the shorter $t_{1/2}$ seen with GS 7340 is due to a significantly higher initial C_{max} , albeit subsequent kinetics are pretty similar to those obtained with tenofovir disoproxil fumarate⁸⁴.

‡The administration of GS 7340 results in an increased accumulation of parent tenofovir, up to 7-20 times in lymphatic tissues and PBMC, compared to tenofovir disoproxil fumarate^{74,85}. GS 7340 has a $t_{1/2}$ of 90 minutes in human plasma at 37°C⁷⁴.

§Data calculated with sampling done only 24 hours post-dose, instead of 72 hours; using this method, ritonavir-boosted darunavir should have a terminal $t_{1/2}$ of 12 hours.

Adapted from Thomas Kakuda (Clinical Pharmacology, Infectious Diseases & Vaccines, Janssen), personal communication.

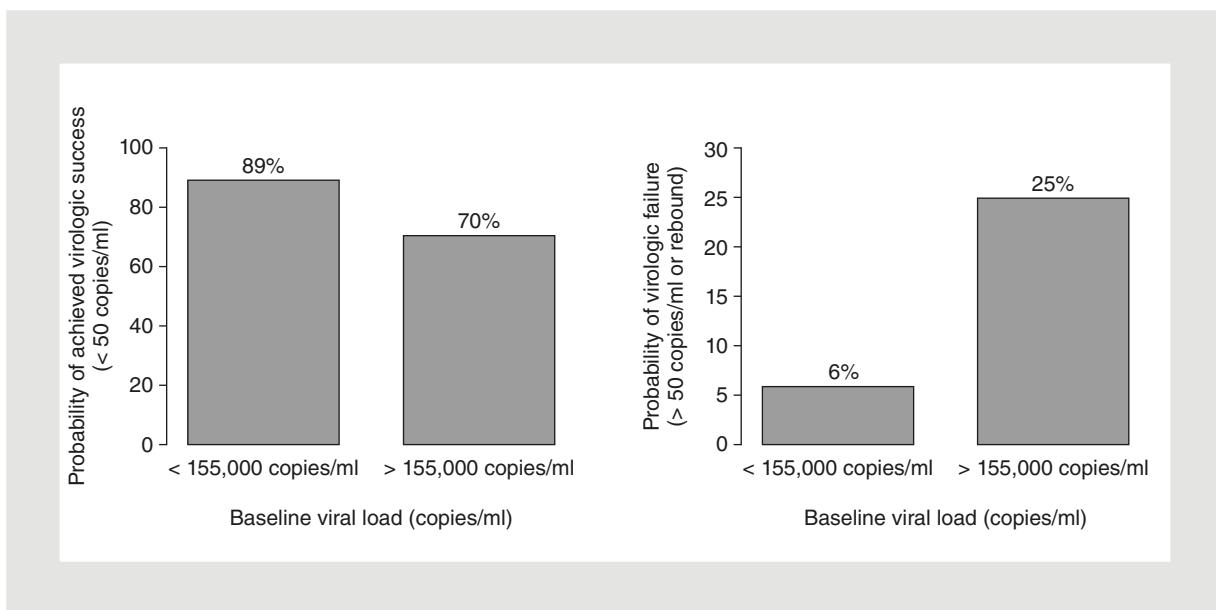
against atazanavir/ritonavir (ATV/r), nevirapine (NVP), maraviroc, raltegravir (RAL), rilpivirine (RPV), elvitegravir (EVG), and dolutegravir (DTG) in treatment-naïve subjects^{19,28,32-38}, as well as superiority against indinavir, nelfinavir, and ritonavir-boosted lopinavir³⁹⁻⁴². There are no randomized controlled trials directly comparing EFV and darunavir/r (DRV/r). The efficacy of EFV is particularly preserved in subjects with a high baseline viral load or in subjects with very advanced immune suppression^{39,40,43-45}.

A major disadvantage of an EFV-based regimen is the low genetic barrier to resistance, since one mutation can render resistance to both EFV and NVP. In addition, resistance selection to both NNRTI and NRTI is common in virologic failures, with variable degrees

of impact on etravirine activity⁴⁶. The main adverse effects of EFV are rash and central nervous system (CNS) effects, such as somnolence, dizziness, and abnormal dreams, all of which are usually transient and manageable in many patients. However, recent trials have shown that these adverse events may persist at 48 weeks in up to 15-20% of EFV-treated subjects^{28,32,33}.

Efavirenz may not be the preferred option for patients with a current or past history of significant mental health problems or patients taking methadone, and should not be used in patients with transmitted NNRTI resistance or when baseline genotypic resistance testing is unavailable^{10,13,14}. Efavirenz should also be avoided in women of reproductive potential not using effective and consistent contraception and during pregnancy. Most of the drawbacks of EFV can be overcome or avoided, and the advantages outweigh the disadvantages in many patients. However, approximately 20% of all individuals commencing EFV/TDF/FTC need to switch therapy at 48 weeks in clinical practice, often for adverse events⁴⁷, verifying the need for alternative STR options.

Rilpivirine/tenofovir disoproxil fumarate/emtricitabine

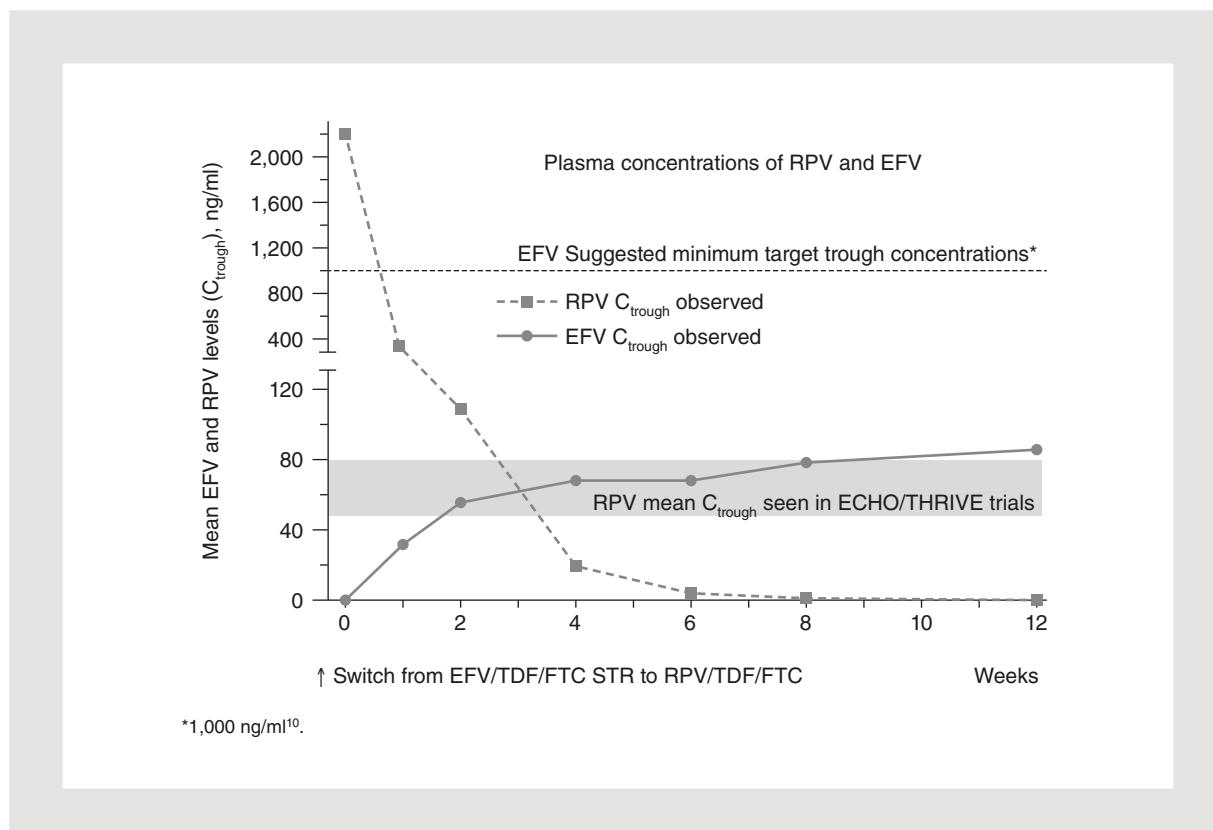

Rilpivirine is a diarylpyrimidine NNRTI active against wild-type and some NNRTI-resistant isolates. It gained FDA and EMA approval in 2011 for treatment-naïve adults as a single tablet or co-formulated in a STR with TDF/FTC. The bioavailability of RPV is pH dependent. Co-administration with omeprazole significantly reduced the steady state exposure of RPV, with a 40% reduction in the area under the concentration-time curve (AUC_{24h}), thus preventing co-administration⁴⁸. Under fasting conditions, the maximum concentration (C_{max}) of RPV decreased by 46% and the AUC decreased by 43%⁴⁹. As a consequence, it must be taken with a standard or high-fat meal.

In a large phase IIb dose-ranging study, RPV (TMC278-C204) demonstrated potent and sustained efficacy comparable to EFV in treatment-naïve subjects over 96 weeks⁵⁰. No RPV dose-response relationship for efficacy was observed in this trial (25, 75, or 150 mg once-daily). Thus, given that doses of RPV 75 mg once-daily and 300 mg once-daily prolonged the QTc interval of the electrocardiogram in healthy subjects, the 25 mg dose was chosen⁵¹.

Two twin, double-blind, double-dummy phase III trials evaluated the efficacy of RPV 25 mg once daily compared to EFV, each combined with TDF/FTC

(ECHO)³² or any NRTI co-formulation (THRIVE; AZT/3TC, ABC/3TC, or TDF/FTC)³⁷, with approximately 340 patients in each arm and 686 total subjects treated with RPV. In the ECHO trial, 83% of patients with either RPV or EFV had a confirmed virologic response at 48 weeks (viral load < 50 copies/ml, ITT-TLOVR algorithm) with a -0.4 difference (95% CI: -5.9 to 5.2), confirming non-inferiority with a 12% margin (primary endpoint). The THRIVE trial had similar results with 86 and 82% efficacy rates, a difference of 3.5% (95% CI: -1.7 to 8.8). Non-inferiority was also demonstrated in the pooled analysis of both trials⁵². Increases in CD4 cell counts were similar with RPV and EFV. Virologic response was similar for each of the NRTI regimens, albeit only 35 (10%) subjects received RPV together with ABC/3TC in the THRIVE trial. Efficacy was similar by race and gender. The higher rates of virologic failure observed in the RPV arm were counterbalanced by the lower rates of discontinuations due to adverse events^{32,37}. Grade 2-4 treatment-related adverse events were less common with RPV (16%) than with EFV (31%; p < 0.0001), including rash and dizziness (p < 0.0001 for both). Discontinuation due to adverse events was also more common with EFV (8%) than with RPV (2%). In the pooled analysis, EFV showed higher increases in total, HDL, and LDL cholesterol, as well as triglycerides (p < 0.0001 for all), with no differences between groups in the total/HDL cholesterol ratio at 96 weeks⁵². Limb fat changes and bone mineral density (DEXA Sub-study) at week 96 in the pooled analysis showed no differences between RPV and EFV⁵³.

In the pooled analysis, RPV-treated subjects showed higher rates of virologic failure at 48 weeks vs. EFV-treated subjects: 11 vs. 5%, respectively, both as never-suppressed or rebounders^{32,37,52}. Rilpivirine failures occurred mostly in subjects with baseline viral load > 100,000 copies/ml. The efficacy of RPV dropped from 90% in subjects with baseline viral load < 100,000 copies/ml to 77% in subjects with viral load > 100,000 copies/ml, while EFV maintained similar efficacy in both groups (84 and 81%, respectively). In this subset of patients, RPV failures occurred predominantly in subjects with suboptimal adherence⁵⁴. Even though RPV demonstrated non-inferiority in the subset of patients with high baseline viral load in the pooled analysis (77 vs. 81%; treatment difference -3.6; 95% CI: -9.8, 2.5), resistance was frequently selected in subjects failing RPV, and these failures with resistance selection were overrepresented among subjects with higher baseline viral load⁵⁴. Actually, the FDA sought a sensitivity regression tree analysis to determine if 100,000 copies/ml


Figure 1. A FDA-sought regression tree analysis identified a cutoff point for rilpivirine virologic success (left) or virologic failure (right) based on baseline viral load in the ECHO and THRIVE studies. Based on this cutoff point, 89% (398/446) of patients with baseline viral load < 155,000 copies/ml achieved virologic success, compared to 72% (164/229) of patients with baseline viral load > 155,000 copies/ml. Similarly, 6% (25/446) of patients with baseline viral load < 155,000 copies/ml had virologic failure compared to 24% (55/229) of patients with baseline viral load > 155,000 copies/ml^{32,37,55}.

was indeed an accurate representation of the inflection point separating virologic successes from non-successes. This analysis identified 155,000 copies/ml as the baseline viral load cutoff point associated with the greatest change between groups for virologic success and failure (Fig. 1)⁵⁵. Subjects with high and low viral load selected NNRTI resistance mutations at failure with RPV in 72 and 38% of the cases, respectively, and with EFV 63 and 42%, respectively. The NRTI resistance rates were 76 and 44%, respectively, in the RPV arm, and 44 and 17%, respectively, in the EFV arm. Therefore, selection of NRTI resistance with RPV failures was nearly double that with EFV failures⁵⁶.

The most common treatment-emergent NNRTI resistance-associated mutation in the RPV group was E138K, a previously uncommon mutation, followed by K101E, H221Y, V90I, Y181C, and V189I. The prevalence of E138 mutants is very rare in subjects failing NVP- or EFV-based regimens, and E138K was not found in a Spanish database analysis⁵⁷. Most of the resistance-associated mutations selected in RPV failures have a significant impact on etravirine activity, significantly higher than the fold change driven by EFV-selected resistance-associated mutations. Regarding NRTI resistance-associated mutations, M184I was by far the most commonly selected change. The E138K/M184I double mutants are mutually compensatory and

have a significant replicative advantage, thereby explaining their frequent occurrence in RPV failures⁵⁸. K65R selection was similar in both arms⁵⁴. The proportion of virologic failures that developed resistance from 48 to 96 weeks was low and similar between groups⁵². Based on this information, RPV has been ranked as an alternative regimen for antiretroviral-naïve patients in the US DHHS Guidelines, and its indication restricted to subjects with baseline viral load < 100,000 copies/ml in the EMA label¹⁰.

Reproductive animal studies optimistically show no teratogenic effects (FDA pregnancy category B), but whether RPV can be used safely in pregnant women remains to be seen. Rilpivirine is seemingly associated with fewer side effects and has a better lipid profile than EFV. Therefore, it could also be a good option for virologically suppressed subjects with EFV intolerance. In a pilot study, all 49 subjects switching from EFV/TDF/FTC to RPV/TDF/FTC were virologically suppressed at week 12. The pharmacokinetic analysis indicated that brief EFV inductive effects on RPV metabolism mediated by CYP3A induction may not be clinically relevant in suppressed patients, as subjects had therapeutic levels of EFV or RPV during the switch (Fig. 2). Another study in 20 HIV-negative adults also confirmed that the pharmacokinetic interaction between EFV and RPV during the first weeks of the change do not greatly

Figure 2. Rilpivirine and efavirenz pharmacokinetics in the setting of switching virologically suppressed HIV-1-infected patients from EFV/TDF/FTC single-tablet regimen to RPV/TDF/FTC single-tablet regimen. Rilpivirine mean C_{trough} remains within target range by two weeks, and EFV mean C_{trough} above IC_{90} (> 10 ng/ml, protein-binding adjusted) for four weeks (modified from Mills A, et al.⁸².) RPV: rilpivirine; EFV: efavirenz; TDF: tenofovir disoproxil fumarate; FTC: emtricitabine; STR: single-tablet regimen.

affect the total combined antiviral activity during this period⁵⁹. These data support the safety of a direct switch from EFV to RPV in suitable patients.

Elvitegravir/cobicistat/tenofovir disoproxil fumarate/emtricitabine

A STR with COBI (150 mg)-boosted EVG plus TDF/FTC demonstrated bioequivalence to ritonavir-boosted EVG and the individual agents⁶⁰. The discovery of COBI kicks off the pharmacokinetic enhancement of non-PI antiretroviral drugs and a potential alternative to ritonavir boosting. The principal patents for ritonavir expire in two years, at which time companies could produce generic ritonavir that could be co-formulated with other drugs. However, its safety profile, which is well understood after 14 years of experience, may fall short of friendly. In addition, low-dose ritonavir poses a theoretical risk of resistance if ritonavir sees wider use boosting drugs other than PI. Cobicistat is a novel pharmacokinetic enhancer without anti-HIV activity⁶¹. It

selectively inhibits CYP3A (with enzyme kinetic parameters similar to those of ritonavir), the main pathway by which EVG undergoes metabolism in the intestine and liver (secondarily metabolized by glucuronidation). The inhibition of midazolam clearance, a known selective CYP3A probe substrate, was comparable between COBI and ritonavir 100 mg. Cobicistat is also a weak inhibitor of CYP2D6 and has no effect on other major cytochrome isoenzymes or P-glycoprotein. Thus, it seemingly lacks undesirable, off-target drug interactions involving uridine diphospho-glucuronosyltransferase (UGT), P-glycoprotein, and a stronger inhibition and/or induction of CYP2D6^{61,62}. On the other hand, extensive clinical experience and pharmacokinetic data with ritonavir boosting and concomitant medications are available. Data regarding the effect of COBI on concomitant medications, particularly CYP3A substrates, are lacking.

Cobicistat inhibits active tubular secretion of creatinine facilitated by the transporter MATE1⁶³. Therefore, it is associated with small increases in serum creatinine

and a corresponding reduction in estimated glomerular filtration rate (GFR) without real changes in actual GFR, confirmed with iohexol-estimated GFR, which exclusively undergoes glomerular filtration and is not secreted or reabsorbed. These changes typically occur within the first days of dosing and resolve upon stopping COBI.

A phase II double-blind, placebo-controlled study demonstrated comparable rates of virologic suppression and CD4 count increases with ATV boosted by either COBI or ritonavir⁶⁴. However, STR containing ATV and COBI are not under development so far.

Elvitegravir (GS-9137) is a potent HIV-1 integrase inhibitor with full activity against NRTI-, NNRTI-, and PI-resistant strains⁶⁵. A phase II dose-ranging study evaluated three doses of ritonavir-boosted EVG in treatment-experienced subjects. Elvitegravir was non-inferior (50 mg) or superior (125 mg) to the comparator PI/r arm in the time-weighted average change in HIV-1 RNA⁶⁶. The EVG 20 mg arm was stopped by the independent data monitoring committee due to higher rates of virologic failure.

In a phase III double-blind study, EVG plus a PI/r in treatment-experienced patients met the criterion for non-inferiority against RAL, with virologic responses through 48 weeks of 59 and 58%, respectively (treatment difference 1·1%; 95% CI: -6.0 to 8.2)⁶⁷. Elvitegravir had a safety profile comparable with RAL, with the advantage of once-daily dosing.

In initial treatment of HIV-1 infection, EVG has been studied in a co-formulated STR containing EVG 150 mg/COBI 150 mg/FTC 200 mg/TDF 300 mg (known as QUAD). The double-blind phase II GS-US-236-0104 study was the first in the history of HIV medicine to compare two STR regimens: QUAD vs. EFV/TDF/FTC in treatment-naïve subjects⁶⁸. Participants receiving EVG/COBI/FTC/TDF exhibited a more rapid decline in HIV-1 RNA and a greater proportion suppressed viral load to < 50 copies/ml than participants receiving EFV/TDF/FTC. Administration of QUAD resulted in an unexpectedly high proportion of subjects with suppressed viral load at both 24 and 48 weeks (90 vs. 83% in the EFV/TDF/FTC arm). In addition, once-daily administration of EVG/COBI/FTC/TDF provided a mean EVG C_{trough} 10-fold over its protein binding-adjusted IC_{95} across study visits.

Phase III studies GS-US-236-0102 and GS-US-236-0103 have compared QUAD to both EFV/TDF/FTC and ATV/r plus TDF/FTC in treatment-naïve subjects^{33,34}. Both randomized studies were conducted in parallel and included 700 subjects each in a double-blind, double-dummy design, randomized 1:1, stratified by HIV-1 RNA (> 100,000 copies/ml), and with an estimated

GFR \geq 70 ml/min (Cockcroft-Gault equation). The primary endpoint was the proportion with HIV-1 RNA < 50 copies/ml at week 48 by US FDA snapshot analysis (12% non-inferiority margin). The mean baseline CD4 cell counts were remarkably high in both studies (391 and 364 in both QUAD arms, respectively, and similar in the comparator arms), and only 12-15% of the subjects in the QUAD arms had \leq 200 cells/mm³. QUAD was non-inferior to EFV/TDF/FTC at week 48, with 88 vs. 84% treatment success (difference 3.6; 95% CI: -1.6 to 8.8) (Table 2)³³. QUAD was also non-inferior to ATV/r plus TDF/FTC at week 48, with 90 vs. 87% treatment success (difference 3.0; 95% CI: -1.9 to 7.8)³⁴. These efficacy results are the highest seen so far in phase III studies of ART. Unfortunately, the double-dummy design did not allow investigation of the full advantages of a STR, as all participants took a second placebo STR pill.

In both studies, QUAD efficacy was comparable in high and low HIV-1 RNA and across CD4 cell count baseline strata, even though the cutoff for defining "low" CD4 counts was established at 350 cells/mm³ due to the low number of subjects with \leq 200 cells/mm³. Further studies are needed to clarify the efficacy of QUAD in subjects with \leq 100 cells/mm³. Efficacy has been shown across protocol-specified subgroups, including race, gender, and age. The CD4 cell count response was significantly greater with QUAD than with the EFV arm (increase 239 vs. 206 cells/mm³ at 48 weeks, respectively; $p = 0.009$) and similar to the ATV/r arm.

Toxicity-driven discontinuation rates were low and similar between QUAD and EFV or ATV/r arms. As expected, the QUAD arm experienced significantly less typical EFV-related adverse events (abnormal dreams, insomnia, dizziness, and rash; $p < 0.05$ for all), but nausea was more common with QUAD (21 vs. 14%; $p < 0.05$). Only subjects with HIV-1 RNA \geq 400 copies/ml were analyzed for HIV-1 resistance, with low rates in both QUAD arms (4 and 3% in the 102 and 103 studies, respectively), as well as in the EFV (5%) and ATV/r (2%) arms. Although this represents a very low number of treated patients, the behavior of these three regimens upon virologic failure, and therefore their genetic barriers to resistance, is dissimilar.

In the pooled analysis, virologic failures in the QUAD arms had selected integrase resistance mutations (mainly E92Q, Q148R, and N155H, and occasionally T66I) in all subjects showing any resistance mutation (13 out of 26 subjects were analyzed), together with M184V/I in all, and K65R in one of every three. In the EFV/TDF/FTC arm, NNRTI mutations developed in all

Table 2. Main efficacy data of pivotal phase III studies evaluating new single-tablet regimens or components in treatment-naïve HIV-1-infected individuals (all studies have included co-formulated nucleoside/tide reverse transcriptase inhibitors)

Study Code	Third drug	NRTI	N	Viral load < 50 c/ml at 48 weeks*	AE D/C rates	STR used in study
ECHO ³²	RPV	TDF/FTC	346	83%	2%	No
	EFV	TDF/FTC	344	83%	7%	No
THRIVE ³⁷	RPV	TDF/FTC, ZDV/3TC, or ABC/3TC [†]	340	86%	3%	No
	EFV		338	82%	7%	No
GS-US-236-0102 ³³	EVG	TDF/FTC	348	88% [‡]	3.5%	Yes
	EFV	TDF/FTC	352	84% [‡]	5.1%	Yes
GS-US-236-0102 ³⁴	EVG	TDF/FTC	353	90% [‡]	3.7%	Yes
	ATV/r	TDF/FTC	355	87% [‡]	5.1%	No
SPRING-2 ³⁸	DTG	ABC/3TC or TDF/FTC	411	88%	2%	No
	RAL		411	85%	2%	No

*ITT-TLOVR unless otherwise specified.

†60, 30, and 10% respectively, in both arms.

‡FDA snapshot analysis. Arms receiving single-tablet regimens shaded in light grey.

NRTI: nucleoside/tide reverse transcriptase inhibitors; N: number of subjects randomized and treated; AE D/C rates: toxicity-driven discontinuation rates at 48 weeks; STR: single-tablet regimen used through the study; RPV: rilpivirine; EVG: elvitegravir; TDF: tenofovir disoproxil fumarate; FTC: emtricitabine; Efavirenz; ATV/r: ritonavir-boosted atazanavir; DTG: dolutegravir; RAL: raltegravir; ZDV: zidovudine; 3TC: lamivudine; ABC: abacavir.

subjects showing any resistance mutation (8 out of 17 subjects were analyzed) and NRTI mutations (M184V/I or K65R) developed in half. On the other hand, no subject treated with ATV/r plus TDF/FTC (n = 355) selected any PI or NRTI resistance mutations, in agreement with prior results seen in the CASTLE and ACTG 5202 trials^{19,27}. With the pattern of mutations selected in EVG-treated subjects, DTG would be a suitable option in all of them, as long as treatment is withdrawn early on virologic failure and further mutations, such as Q148R, do not accumulate (seen in one subject)⁶⁹.

Not unexpectedly, QUAD was associated in both studies with a 48-week median increase in serum creatinine of 0.12-0.14 mg/dl, which was greater compared to EFV (0.01 mg/dl; p < 0.001) and ATV/r (0.08 mg/dl; p < 0.001), albeit it lacked clinical significance. The increase was apparent at week 2 and remained stable thereafter. Five (1.4%) and one subjects discontinued QUAD in studies 102 and 103, respectively, due to renal events, compared to none in the EFV arm and one in the ATV/r arm.

QUAD displayed a safe lipid profile, with significantly lower increases in total, HDL, and LDL cholesterol than EFV (p ≤ 0.001 for all them, although the total/HDL cholesterol ratio remained unchanged), and a lower triglyceride increase than ATV/r (p < 0.006). Finally, bone mineral density changes at both spine and hip were similar between QUAD and the ATV/r arm³⁴. The non-inferiority demonstrated in these studies suggests

that QUAD may be another suitable option for STR in patients with high or low viral load.

Concentrations of EVG remained in a range consistent with potent anti-HIV activity in 32 healthy volunteers after a switch from EFV/TDF/FTC (EFV induces both CYP3A and UGT)⁷⁰. Elvitegravir C_{trough} levels were about threefold above 45 ng/ml (the protein binding-adjusted wild-type HIV-1 IC₉₅) immediately after the switch (one week) and the EVG AUC was lower (63.1%), showing a continuous increase thereafter. A phase IIb trial assessing a switch from an NNRTI plus TDF/FTC (including EFV and RPV) to QUAD is underway⁷¹.

A new combination including EVG/FTC/COBI/GS-7340 is also under study. GS-7340 is a novel prodrug of tenofovir, which leads to significantly greater decreases in HIV-1 RNA compared with TDF 300 mg, with 86% lower plasma tenofovir exposures (AUC), and sevenfold higher intracellular tenofovir-diphosphate concentrations both in PBMC and lymphatic tissues, compared with TDF 300 mg in 10-day monotherapy studies⁷²⁻⁷⁴. This could allow a significant reduction in the total dose of tenofovir, thereby minimizing systemic exposure, while at the same time increasing antiviral activity. Furthermore, COBI doubles to triple exposure of GS-7340 when co-formulated with EVG/FTC/COBI/GS-7340, driving tenofovir exposures much higher than with GS-7340 alone⁷⁵. The AUC of GS-7340 shows a 222 (95% CI: 200-246) increase, and C_{max} a 223 (187-265) increase, probably through COBI inhibition of intestinal

P-glycoprotein-mediated secretion of GS-7340. In the same study, GS-7340 at 10 mg in the 4-in-1 tablet yielded similar GS-7340 exposure as GS-7340 at 25 mg with FTC. These findings suggest that a co-formulation including COBI and GS-7340 could contain as little as 10 mg of GS-7340 (instead of 300 mg of TDF).

Dolutegravir/lamivudine/abacavir

Dolutegravir (S/GSK1349572) is the first integrase inhibitor dosed once daily without pharmacokinetic boosting. It has a higher barrier to resistance compared to RAL and EVG, retaining activity against many viral strains harboring major integrase resistance mutations selected for by both of them. In a phase IIa study, mean decreases in HIV-1 RNA of 1.51-2.46 \log_{10} copies/ml were observed with 10-day DTG monotherapy⁷⁶. A well characterized dose-response relationship was observed for viral load decrease, and antiviral response was sustained between day 11 and 14, despite discontinuation on day 10. Amazingly, most patients (7 of 10; 70%) receiving DTG 50 mg achieved plasma HIV-1 RNA < 50 copies/ml.

In a phase IIb dose-ranging study in treatment-naïve adults, doses of 10, 25, or 50 mg once daily were effective and well tolerated at all assessed doses, with either TDF/FTC or ABC/3TC; EFV was the comparator drug⁷⁷. Three virologic failures were identified among 155 subjects treated with DTG, and no integrase mutations were selected in any of them. The proportion of participants with viral load < 50 copies/ml at 48 weeks (ITT-TLOVR algorithm) in subjects treated with DTG was an impressive 88-91% (82% in the EFV arm)⁶⁹. As seen with other integrase inhibitors, initial viral load decay and achievement of viral suppression occurred significantly faster in the DTG arm through week 24^{28,33,34}.

More participants in the EFV group experienced well described neuropsychiatric adverse events and rash and discontinued because of tolerability or safety events. Small, non-progressive increases in serum creatinine were recorded across DTG doses, consistent with the strong pharmacological inhibition of tubular creatinine secretion via the organic cation transporter OCT2 (similar to cimetidine or trimethoprim), with no significant effect on actual GFR⁶⁹.

The 50 mg once-daily dose was chosen for phase III trials with treatment-naïve subjects, while 50 mg twice daily was selected for pretreated subjects⁷⁸. A phase III study (SPRING-2) has included 822 HIV-1-infected treatment-naïve participants. The study compares the efficacy and safety of DTG and RAL, both administered

with either ABC/3TC or TDF/FTC. Although confirmation of the results is necessary, a company press release has announced that DTG demonstrates non-inferiority to RAL³⁸. Through 48 weeks, 88% of study participants on DTG were virologically suppressed (< 50 copies/ml) vs. 85% of participants on RAL (95% CI for the difference: -2.2% to 7.1%). The tolerability of DTG was similar to that of RAL, with rates of adverse events leading to withdrawal of 2% in both arms. Obviously, the efficacy results seen in subjects treated with ABC/3TC will be analyzed with special interest, particularly those with high baseline viral load. If no caveats are encountered, a STR containing DTG/ABC/3TC has the potential to constitute the first STR without TDF/FTC and a suitable option in HLA-B*5701-negative subjects without hepatitis B coinfection.

Darunavir/cobicistat/emtricitabine/GS-7340

Gilead Sciences has entered into a license agreement with Tibotec Pharmaceuticals for the development and commercialization of a STR combining DRV with COBI, the investigational agent GS-7340, and FTC. If approved, it will be the first time a STR would include a PI that with 800 mg poses fabulous challenges to Galenic developers. Pharmacokinetic studies indicate that least square mean ratios were virtually identical for DRV (800 mg once-daily) C_{max} and AUC_{24h} boosted by either 100 mg of ritonavir or 150 mg of COBI (90% CI for those comparisons were all within 80 to 125%, which indicates bioequivalence)^{79,80}. Darunavir C_{trough} concentrations were 26% lower with COBI 150 mg than with ritonavir (least square means ratio 0.74; 90% CI: 0.63-0.86). On the basis of limited data on DRV troughs below 550 ng/ml and modeling studies that suggest no loss of antiviral activity with a 50% drop in C_{trough} , the researchers do not consider these moderately lower DRV troughs with COBI to be clinically relevant. However, they do fall outside the generally accepted bioequivalence range of 80 to 125%.

The small mass of GS-7340 (one tenth of TDF 300 mg) has been of great help in the compaction of the ingredients. This novel prodrug of tenofovir led to significantly greater decreases in HIV-1 RNA, compared with TDF 300 mg, with 86% lower plasma tenofovir exposures (AUC), and sevenfold higher intracellular tenofovir-DP concentrations both in PBMC and lymphatic tissues, compared with TDF 300 mg in 10-day monotherapy studies⁷²⁻⁷⁴. This could reduce the total dose of tenofovir, thereby minimizing systemic exposure, while at the same time increasing antiviral activity. It remains to

be seen if the double to triple exposures of GS-7340 driven by COBI when co-formulated with EVG and FTC are also observed when co-formulated with DRV and FTC⁷⁵. Cobicistat could inhibit the intestinal P-glycoprotein-mediated secretion of GS-7340, and a co-formulation including COBI and as little as 10 mg of GS-7340 could provide tenofovir exposures similar to GS-7340 alone at 25 mg.

A phase II study (GS-US-299-0102) is recruiting 150 subjects to compare the efficacy of DRV/COBI/FTC/GS-7340 against DRV/COBI/FTC/TDF⁸¹. The phase II study GS-US-292-0102 will compare the efficacy and safety of QUAD vs. EVG/COBI/FTC/GS-7340.

Conclusions

Once-daily STR embody the highest level of ART simplification achieved so far. Galenic research and industry patent agreements allow for the availability of STR based on NNRTI (EFV or RPV), integrase inhibitors (COBI-boosted EVG, DTG), and protease inhibitors (COBI-boosted DRV), combined with either FTC/TDF or ABC/3TC. Many HIV-1-infected treatment-naïve and pretreated subjects may soon have many options to control their virus with safe one pill once-daily regimens.

Potential conflicts of interest

Josep M. Llibre has received funding for research or payment for conferences or participation on advisory boards from Abbott, Boehringer Ingelheim, Bristol-Myers Squibb, Gilead Sciences, Jansen-Cilag, Merck Sharp & Dohme, Tibotec, and ViiV Healthcare.

Bonaventura Clotet has served during the past two years as a consultant on advisory boards or participated in speakers' bureaus or conducted clinical trials with BMS, Abbott, Gilead, Janssen, Merck, Siemens and ViiV.

US FDA Disclaimer

The contents of this presentation do not necessarily reflect the view and/or policies of the Food and Drug Administration or its staff. The Food and Drug Administration will not be bound by any of the comments or information contained in this presentation.

Acknowledgements

Authors would like to extend their grateful thanks to Sarita Boyd (Silver Spring, MD, USA) for her thorough revision of the manuscript.

This work was supported by 'CHAIN, Collaborative HIV and Anti-HIV Drug Resistance Network', Integrated

Project no. 223131, funded by the European Commission Framework 7 Program; and by "Gala contra la Sida. Barcelona 2011".

References

1. Garcia de Olalla P, Knobel H, Carmona A, Guelar A, Lopez-Colomes J, Cayla J. Impact of adherence and highly active antiretroviral therapy on survival in HIV-infected patients. *J Acquir Immune Defic Syndr*. 2002;30:105-10.
2. Wood E, Hogg R, Yip B, Harrigan P, O'Shaughnessy M, Montaner J. Effect of medication adherence on survival of HIV-infected adults who start highly active antiretroviral therapy when the CD4+ cell count is 0.200 to 0.350 x 10(9) cells/L. *Ann Intern Med*. 2003;139:810-16.
3. Bangsberg D, Perry S, Charlebois E, et al. Non-adherence to highly active antiretroviral therapy predicts progression to AIDS. *AIDS*. 2001;15:1181-3.
4. Paterson D, Swindells S, Mohr J, et al. Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. *Ann Intern Med*. 2000;133:21-30.
5. Parienti J, Bangsberg D, Verdon R, Gardner E. Better adherence with once-daily antiretroviral regimens: a meta-analysis. *Clin Infect Dis*. 2009;48:484-8.
6. Walensky R, Paltiel A, Losina E, et al. The survival benefits of AIDS treatment in the United States. *J Infect Dis*. 2006;194:11-19.
7. Lima V, Hogg R, Harrigan P, et al. Continued improvement in survival among HIV-infected individuals with newer forms of highly active antiretroviral therapy. *AIDS*. 2007;21:685-92.
8. Llibre J, Schapiro J, Clotet B. Clinical implications of genotypic resistance to the newer antiretroviral drugs in HIV-1-infected patients with virological failure. *Clin Infect Dis*. 2010;50:872-81.
9. Charpentier C, Lambert-Niclot S, Larrouy L, et al. Evolution of the K65R, K103N and M184V/I Reverse Transcriptase Mutations Prevalence in HIV-1-infected Patients Experiencing Virologic Failure between 2005 and 2010. In: 19TH CROI. Seattle, WA, 2012. [Abstract 726].
10. Panel on Antiretroviral Guidelines for Adults and Adolescents. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. Department of Health and Human Services. March 3, 2012; 1-239. Available at: <http://www.aidsinfo.nih.gov/ContentFiles/AdultandAdolescentGL.pdf>. [Accessed: April 3, 2012].
11. Llibre J, Arribas J, Domingo P, et al. Clinical implications of fixed-dose coformulations of antiretrovirals on the outcome of HIV-1 therapy. *AIDS*. 2011;25:1683-90.
12. Bangalore S, Kamalakkannan G, Parkar S, Messerli F. Fixed-dose combinations improve medication compliance: a meta-analysis. *Am J Med*. 2007;120:713-19.
13. European AIDS Clinical Society (EACS) Guidelines. Clinical Management and Treatment of HIV Infected Adults in Europe. Version 6-0. October 2011. Available at: <http://europeanaidsclinicalsociety.org/>. [Accessed January 12, 2012].
14. National Consensus Document by GESIDA/National Aids Plan on Antiretroviral Treatment in Adults Infected by the Human Immunodeficiency Virus (January 2012 Update). Available at: <http://www.gesida.seimc.org>. [Accessed Jan 12, 2012].
15. Boyd S. Management of HIV infection in treatment-naïve patients: a review of the most current recommendations. *Am J Health Syst Pharm*. 2011;68:991-1001.
16. Sax P, Meyers J, Mugavero M, Davis K. Adherence to antiretroviral treatment and correlation with risk of hospitalization among commercially insured HIV patients in the United States. *PLoS One*. 2012;7:e31591.
17. Bangsberg D, Ragland K, Monk A, Deeks S. A single tablet regimen is associated with higher adherence and viral suppression than multiple tablet regimens in HIV+ homeless and marginally housed people. *AIDS*. 2010;24:2835-40.
18. Cohen C, Davis K, Meyers J. Association between daily antiretroviral pill burden and hospitalization risk in a Medicaid population with HIV. In: 51st ICAAC, 2011. Chicago, Illinois, USA. [Abstract H2-791].
19. Daar E, Tierney C, Fischl M, et al. Atazanavir plus ritonavir or efavirenz as part of a 3-drug regimen for initial treatment of HIV-1. *Ann Intern Med*. 2011;154:445-56.
20. Sax P, Tierney C, Collier A, et al. Abacavir-lamivudine versus tenofovir-emtricitabine for initial HIV-1 therapy. *N Engl J Med*. 2009;361:2230-40.
21. Sax P, Tierney C, Collier A, et al. Abacavir/lamivudine versus tenofovir DF/emtricitabine as part of combination regimens for initial treatment of HIV: final results. *J Infect Dis*. 2011;204:1191-201.
22. Smith K, Patel P, Fine D, et al. Randomized, double-blind, placebo-matched, multicenter trial of abacavir/lamivudine or tenofovir/emtricitabine with lopinavir/ritonavir for initial HIV treatment. *AIDS*. 2009;23:1547-56.
23. Post F, Moyle G, Stellbrink H, et al. Randomized comparison of renal effects, efficacy, and safety with once-daily abacavir/lamivudine versus

tenofovir/emtricitabine, administered with efavirenz, in antiretroviral-naïve, HIV-1-infected adults: 48-week results from the ASSERT study. *J Acquir Immune Defic Syndr.* 2010; 55:49-57.

24. Gallant J, DeJesus E, Arribas J, et al. Tenofovir DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine, and efavirenz for HIV. *N Engl J Med.* 2006;354:251-60.
25. Pozniak A, Gallant J, DeJesus E, et al. Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naïve patients: virologic, immunologic, and morphologic changes—a 96-week analysis. *J Acquir Immune Defic Syndr.* 2006;43:535-40.
26. Gallant J, Staszewski S, Pozniak A, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naïve patients: a 3-year randomized trial. *JAMA.* 2004;292:191-201.
27. Molina J, Andrade-Villanueva J, Echevarria J, et al. Once-daily atazanavir/ritonavir versus twice-daily lopinavir/ritonavir, each in combination with tenofovir and emtricitabine, for management of antiretroviral-naïve HIV-1-infected patients: 48 week efficacy and safety results of the CASTLE study. *Lancet.* 2008;372:646-55.
28. Lennox J, DeJesus E, Lazzarin A, et al. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naïve patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. *Lancet.* 2009;374:796-806.
29. Ortiz R, DeJesus E, Khanlou H, et al. Efficacy and safety of once-daily darunavir/ritonavir versus lopinavir/ritonavir in treatment-naïve HIV-1-infected patients at week 48. *AIDS.* 2008;22:1389-97.
30. Gazzard B, Anderson J, Babiker A, et al. British HIV Association Guidelines for the treatment of HIV-1-infected adults with antiretroviral therapy 2008. *HIV Med.* 2008;9:563-608.
31. Blasco A, Arribas J, Boix V, et al. [Costs and cost efficacy analysis of preferred GESIDA regimens in 2012 for initial antiretroviral therapy]. *Enferm Infect Microbiol Clin.* 2012;30:283-93.
32. Molina J, Cahn P, Grinsztejn B, et al. Rilpivirine versus efavirenz with tenofovir and emtricitabine in treatment-naïve adults infected with HIV-1 (ECHO): a phase 3 randomised double-blind active-controlled trial. *Lancet.* 2011;378:238-46.
33. Sax PE, DeJesus E, Mills A, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. *Lancet.* 2012;379:2439-48.
34. DeJesus E, Rockstroh JK, Henry K, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir disoproxil fumarate versus ritonavir-boosted atazanavir plus co-formulated emtricitabine and tenofovir disoproxil fumarate for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3, non-inferiority trial. *Lancet.* 2012;379:2429-38.
35. van Leth F, Phanuphak P, Ruxrungtham K, et al. Comparison of first-line antiretroviral therapy with regimens including nevirapine, efavirenz, or both drugs, plus stavudine and lamivudine: a randomised open-label trial, the 2NN Study. *Lancet.* 2004;363:1253-63.
36. Cooper D, Heera J, Goodrich J, et al. Maraviroc versus efavirenz, both in combination with zidovudine-lamivudine, for the treatment of antiretroviral-naïve subjects with CCR5-tropic HIV-1 infection. *J Infect Dis.* 2010;201:803-13.
37. Cohen C, Andrade-Villanueva J, Clotet B, et al. Rilpivirine versus efavirenz with two background nucleoside or nucleotide reverse transcriptase inhibitors in treatment-naïve adults infected with HIV-1 (THRIVE): a phase 3, randomised, non-inferiority trial. *Lancet.* 2011;378:229-37.
38. Shionogi ViV Healthcare. Initial data from pivotal phase III study of dolutegravir in HIV. Issued April 2, 2012. Available at: <http://www.gsk.com/media/pressreleases/2012/2012-pressrelease-1013597.htm>.
39. Riddler S, Haubrich R, DiRenzo A, et al. Class-sparing regimens for initial treatment of HIV-1 infection. *N Engl J Med.* 2008;358:2095-106.
40. Sierra-Madero J, Villasis-Keever A, Mendez P, et al. Prospective, randomized, open label trial of Efavirenz vs Lopinavir/Ritonavir in HIV+ treatment-naïve subjects with CD4+<200 cell/mm³ in Mexico. *J Acquir Immune Defic Syndr.* 2010;53:582-8.
41. Staszewski S, Morales-Ramirez J, Tashima K, et al. Efavirenz plus zidovudine and lamivudine, efavirenz plus indinavir, and indinavir plus zidovudine and lamivudine in the treatment of HIV-1 infection in adults. Study 006 Team. *N Engl J Med.* 1999;341:1865-73.
42. Robbins G, De Gruttola V, Shafer R, et al. Comparison of sequential three-drug regimens as initial therapy for HIV-1 infection. *N Engl J Med.* 2003;349:2293-303.
43. Arribas J, Pulido F, Miro J, et al. High effectiveness of efavirenz-based highly active antiretroviral therapy in HIV-1-infected patients with fewer than 100 CD4 cells/microl and opportunistic diseases: the EfaVIP Study (Efavirenz in Very Immunosuppressed Patients). *AIDS.* 2002;16:1554-6.
44. Pulido F, Arribas J, Miro J, et al. Clinical, virologic, and immunologic response to efavirenz-or protease inhibitor-based highly active antiretroviral therapy in a cohort of antiretroviral-naïve patients with advanced HIV infection (EfaVIP 2 study). *J Acquir Immune Defic Syndr.* 2004;35:343-50.
45. Miro J, Manzardo C, Pich J, et al. Immune reconstitution in severely immunosuppressed antiretroviral-naïve HIV type 1-infected patients using a nonnucleoside reverse transcriptase inhibitor-based or a boosted protease inhibitor-based antiretroviral regimen: three-year results (The AdvanZ Trial): a randomized, controlled trial. *AIDS Res Hum Retroviruses.* 2010;26:747-57.
46. Llibre J, Santos J, Puig T, et al. Prevalence of etravirine-associated mutations in clinical samples with resistance to nevirapine and efavirenz. *J Antimicrob Chemother.* 2008;62:909-13.
47. Scourfield A, Zheng J, Chinthapalli S, et al. Discontinuation of Atripla(R) as first-line therapy in HIV-1 infected individuals. *AIDS.* 2012; 26(11):1399-401.
48. Crauwels H, van Heeswijk R, Kestens D, et al. The pharmacokinetic interaction between omeprazole and TMC278, an investigational NNRTI. 9th International Congress on Drug Therapy in HIV Infection. 2008. Glasgow, UK. [Abstract 239].
49. Crauwels H, van Heeswijk R, Bollen A, et al. The effect of different types of food on the bioavailability of TMC278, an investigational NNRTI. 9th International Workshop on Pharmacology of HIV Therapy. 2008. New Orleans, USA. [Abstract 32].
50. Pozniak A, Morales-Ramirez J, Katabira E, et al. Efficacy and safety of TMC278 in antiretroviral-naïve HIV-1 patients: week 96 results of a phase IIb randomized trial. *AIDS.* 2010;24:55-65.
51. FDA Label for Rilpivirine. Available at: <http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm>. [Accessed April 27, 2012].
52. Cohen C, Molina J, Cassetti I, et al. Pooled week 96 efficacy, resistance and safety results from the double-blind, randomised, phase III trials comparing rilpivirine (RPV, TMC278) versus efavirenz (EFV) in treatment-naïve, HIV-1-infected adults. 6th International AIDS Society Conference on HIV Pathogenesis, Treatment and Prevention, Rome, Italy, 2011. [Abstract TULBPE032].
53. Tebas P. Results from the pooled DEXA substudies of the double-blind, randomised, phase III trials comparing rilpivirine (RPV, TMC278) versus efavirenz (EFV) in treatment-naïve, HIV-infected adults. 13th International Workshop on Adverse Drug Reactions and Co-morbidities in HIV. Rome, Italy, 2011. [Oral 23].
54. Rimsky L, Vingerhoets J, Van Eygen V, et al. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients on rilpivirine therapy experiencing virologic failure in the phase 3 ECHO and THRIVE studies: 48-week analysis. *J Acquir Immune Defic Syndr.* 2012;59:39-46.
55. Centre for Drug Evaluation and Research. Addendum to ONDQA Biopharmaceutics Review of Rilpivirine. Application number 202022Orig1s000. Page 383. Available at: http://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202022Orig1s000ClinPharmR.pdf. [Accessed April 26, 2012].
56. Rimsky L, Voronin E, Eron L, et al. Genotypic and phenotypic characterization of HIV-1 isolates obtained from patients failing rilpivirine (RPV, TMC278) in the Phase III studies ECHO and THRIVE: 48 week analysis. 20th International Workshop on HIV & Hepatitis Virus Drug Resistance and Curative Strategies, Los Cabos, Mexico, 2011. [Abstract 9].
57. Anta L, Llibre J, Poveda E, et al. Rilpivirine resistance mutations in HIV-1 infected patients failing NNRTI therapy in the Drug Resistance Database of the Spanish AIDS Research Network (RIS). 19th CROI. Seattle, WA, USA. 2012. [Abstract 710].
58. Hu Z, Kuritzkes D. Interaction of reverse transcriptase (RT) mutations conferring resistance to lamivudine and etravirine: effects on fitness and RT activity of human immunodeficiency virus type 1. *J Virol.* 2011;85:11309-14.
59. Crauwels H, Vingerhoets J, Ryan R, Witek J, Anderson D. Pharmacokinetic parameters of once-daily rilpivirine following administration of efavirenz in healthy subjects. *Antivir Ther.* 2012;17:439-46.
60. German P, Warren D, West S, Hui J, Kearney B. Pharmacokinetics and bioavailability of an integrase and novel pharmacoenhancer-containing single-tablet fixed-dose combination regimen for the treatment of HIV. *J Acquir Immune Defic Syndr.* 2010;55:323-9.
61. Mathias A, German P, Murray B, et al. Pharmacokinetics and pharmacodynamics of GS-9350: a novel pharmacokinetic enhancer without anti-HIV activity. *Clin Pharmacol Ther.* 2010;87:322-9.
62. Xu L, Liu H, Murray B, et al. Cobicistat (GS-9350): A potent and selective inhibitor of human CYP3A as a novel pharmacoenhancer. *ACS Med Chem Lett.* 2010;1:209-13.
63. Lepist E, Murray B, Tong L, Roy A, Bannister R, Ray A. Effect of cobicistat and ritonavir on proximal renal tubular cell uptake and efflux transporters. 51st ICAAC. 2011. Chicago, IL, USA. [Abstract A1-1724].
64. Elion R, Cohen C, Gathe J, et al. Phase 2 study of cobicistat versus ritonavir each with once-daily atazanavir and fixed-dose emtricitabine/tenofovir DF in the initial treatment of HIV infection. *AIDS.* 2011;25:1881-6.
65. DeJesus E, Berger D, Markowitz M, et al. Antiviral activity, pharmacokinetics, and dose response of the HIV-1 integrase inhibitor GS-9137 (JTK-303) in treatment-naïve and treatment-experienced patients. *J Acquir Immune Defic Syndr.* 2006;43:1-5.
66. Zolopa A, Berger D, Lampiris H, et al. Activity of elvitegravir, a once-daily integrase inhibitor, against resistant HIV Type 1: results of a phase 2, randomized, controlled, dose-ranging clinical trial. *J Infect Dis.* 2010;201: 814-22.
67. Molina J, Lamarca A, Andrade-Villanueva J, et al. Efficacy and safety of once daily elvitegravir versus twice daily raltegravir in treatment-experienced

patients with HIV-1 receiving a ritonavir-boosted protease inhibitor: randomised, double-blind, phase 3, non-inferiority study. *Lancet Infect Dis.* 2012;12:27-35.

68. Cohen C, Elion R, Ruane P, et al. Randomized, phase 2 evaluation of two single-tablet regimens elvitegravir/cobicistat/emtricitabine/tenofovir disoproxil fumarate versus efavirenz/emtricitabine/tenofovir disoproxil fumarate for the initial treatment of HIV infection. *AIDS.* 2011;25:F7-12.
69. Soriano V, Cox J, Eron J, et al. Dolutegravir treatment of HIV subjects with raltegravir resistance: viral suppression at week 24 in the VIKING study. 13th European AIDS Conference. 2011. Serbia, Belgrade. [Abstract PS1/2].
70. Ramanathan S, Wang H, Custodio J, et al. Pharmacokinetics of EVG/COBI/FTC/TDF single tablet regimen following treatment with EFV/FTC/TDF (Atripla) in healthy subjects. 13th International Workshop on Clinical Pharmacology of HIV Therapy, 2012, Barcelona. [Abstract O_21].
71. Phase 3b open label study to evaluate switching from regimens consisting of a non-nucleoside reverse transcriptase inhibitor plus emtricitabine and tenofovir DF to the elvitegravir/cobicistat/emtricitabine/tenofovir DF single-tablet regimen in virologically suppressed, HIV-1 infected patients. Available at: <http://www.clinicaltrials.gov/ct2/show/NCT01495702>.
72. Ruane P, DeJesus E, Berger D, et al. GS-7340 25 mg and 40 mg demonstrate greater antiviral activity compared with TDF 300 mg in a 10-day monotherapy study of HIV-1 infected patients. 19th CROI. 2012. Seattle, WA, USA. [Abstract 103].
73. Markowitz M, Zolopa A, Ruane P, et al. GS-7340 demonstrates greater declines in HIV-1 RNA than tenofovir disoproxil fumarate during 14 days of monotherapy in HIV-1 infected subjects. 18th CROI. 2011. Boston, MA, USA. [Abstract 152LB].
74. Lee W, He G, Eisenberg E, et al. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. *Antimicrob Agents Chemother.* 2005;49:1898-906.
75. Ramanathan S, Wei L, Custodio J, et al. Pharmacokinetics of a novel EVG/COBI/FTC/GS-7340 single tablet regimen. 13th International Workshop on Clinical Pharmacology of HIV Therapy. 2012, Barcelona. [Abstract O_13].
76. Min S, Sloan L, DeJesus E, et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of dolutegravir as 10-day monotherapy in HIV-1-infected adults. *AIDS.* 2011;25:1737-45.
77. van Lunzen J, Maggioli F, Arribas J, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naïve adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. *Lancet Infect Dis.* 2012;12:111-18.
78. Min S, Song I, Borland J, et al. Pharmacokinetics and safety of S/GSK1349572, a next-generation HIV integrase inhibitor, in healthy volunteers. *Antimicrob Agents Chemother.* 2010;54:254-8.
79. Kakuda T, Opsomer M, Timmers M, et al. Bioavailability of two FDC formulations of darunavir/cobicistat 800/150mg compared with darunavir/ritonavir 800/100mg co-administered as single agents. 13th International Workshop on Clinical Pharmacology of HIV Therapy, 2012. Barcelona, Spain. [Abstract O 20].
80. Matias A, Liu H, Warren D, Sekar V, Kearney B. Relative bioavailability and pharmacokinetics of darunavir when boosted with the pharmacoenhancer GS-9350 versus ritonavir. 11th International Workshop on Clinical Pharmacology and HIV Therapy. 2010. Sorrento. [Abstract 28].
81. Safety and efficacy of darunavir/cobicistat/emtricitabine/GS-7340 single tablet regimen versus cobicistat-boosted darunavir plus emtricitabine/tenofovir disoproxil fumarate fixed dose combination in HIV-1 infected, antiretroviral treatment naïve adults. Available at: <http://clinicaltrials.gov/ct2/show/NCT01565850>. [Accessed April 26, 2012].
82. Mills A, Cohen C, DeJesus E, et al. Switching from efavirenz/emtricitabine/tenofovir disoproxil fumarate (EFV/FTC/TDF) single tablet regimen (STR) to emtricitabine/rilpivirine/tenofovir disoproxil fumarate (FTC/RPV/TDF) STR in virologically suppressed, HIV-1 infected subjects. 51st ICAAC. 2011. Chicago, IL, USA. [Abstract H2-794c].
83. Jackson A, Moyle G, Watson V, et al. Tenofovir (TFV), emtricitabine (FTC) intracellular (IC) and plasma, and efavirenz (EFV) plasma concentration decay following drug intake cessation: implications for HIV treatment and prevention. 19th CROI. Seattle, WA, USA. 2012. [Abstract 585].
84. Garcia-Lerma J, Aung W, Cong M, et al. Natural substrate concentrations can modulate the prophylactic efficacy of nucleotide HIV reverse transcriptase inhibitors. *J Virol.* 2011;85:6610-17.
85. Birkus G, Wang R, Liu X, et al. Cathepsin A is the major hydrolase catalyzing the intracellular hydrolysis of the antiretroviral nucleotide phosphonooamidate prodrugs GS-7340 and GS-9131. *Antimicrob Agents Chemother.* 2007;51:543-50.