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Introduction

Besides causing immunodeficiency, HIV infection is 
characterized by hyperactivation of the immune system 
and chronic inflammation. In this regard, HIV infection 
might potentiate other chronic inflammatory diseases 
such as atherosclerosis. Recent studies have dem-
onstrated that HIV infection induces a pro-thrombotic 
state and pro-inflammatory phenomena in the vascu-
lar endothelium, leading to increased cardiovascular 
disease risk (CVDR) independently of traditional risk 
factors1 (Fig. 1). Moreover, high plasma HIV RNA levels 

have been associated to endothelial dysfunction, which 
is a well-established predictor of atherosclerosis1-3. 
More recently, an increased rate and severity of 
coronary atherosclerosis has been found in asymp-
tomatic, HIV-infected young men with long standing 
HIV disease compared with uninfected subjects4.

Vascular integrity results from the equilibrium be-
tween mechanisms of vascular damage and repair. 
The injury of blood vessels is associated with high 
levels of circulating endothelial cells (CEC) and micro
particles (MP) from endothelium (EMP) and platelets 
(PMP). Under normal conditions, the processes in-
volved in the restoration of the vascular integrity 
mainly imply the activity of progenitor cells, plaque 
neovascularization, and reverse cholesterol transport5. 
Interestingly, all these mechanisms seem to be im-
paired in HIV-infected individuals. Uncontrolled HIV 
replication is associated with high levels of CEC and 
MP, all of which are surrogates of vascular damage. 
Altogether, these findings support that HIV replication 
drives disequilibrium in the atherosclerosis process, 
favoring a misbalance in favor of proatherogenic 
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events. The restoration of proper dynamics that may 
ameliorate vascular damage in HIV patients requires a 
better understanding of the pathophysiology of these 
cells and particles during the course of infection.

Endothelial repair by endothelial 
progenitor cells is impaired  
in HIV infection

In 1997 Asahara, et al. identified a distinct subset of 
cells in the peripheral blood involved in the renewal 
of the vascular endothelium6. These were named en-
dothelial progenitor cells (EPC). Since then, several 
studies conducted in HIV-negative patients have dem-
onstrated an inverse association between the amount 
of these cells and CVDR7,8. 

The link between EPC deficiency and CVDR has been 
demonstrated at different stages of the atherosclerotic 
process9,10. Moreover, EPC levels have been inversely 
correlated with the number of distinct cardiovascular 
risk factors in coronary artery disease7, supporting that 
EPC are a good surrogate marker of cumulative cardio-
vascular risk. Endothelial progenitor cells are key deter-
minants of endothelial dysfunction11 and show a high 
predictive value of early vascular disease, even better 
than traditional risk factors12. In this regard, a recent 
study has shown that the cumulative event-free survival 
rate at one year directly increases with baseline EPC 
levels in patients with cardiovascular arterial disease13.

Under normal conditions, as a consequence of en-
dothelial injury, EPC increase to repair the damaged 
vascular endothelium (Fig. 2 A). This physiological 
process is altered in the setting of HIV infection, al-
though only few studies have so far examined EPC 
levels in HIV-infected patients. Recently, two separate 
studies have demonstrated that young, drug-naive, 
HIV-positive individuals with low CVDR have lower 
EPC levels in comparison to HIV-negative subjects 
with similar age and traditional cardiovascular risk 
factors14,15. This observation contrasts with results 
from another study testing a similar population of HIV-
infected individuals, in which the average amount of 
EPC was not significantly decreased in comparison 
to healthy controls16. However, although differences 
in mean EPC levels were not statistically significant, 
a clear trend was noticed for lower EPC in HIV-posi-
tive persons than in controls. Thus, most recent data 
support that the increased CVDR associated with HIV 
infection may be attributed to reduced EPC levels. In 
this regard, the endothelial dysfunction characteristi-
cally seen in HIV infection may result from an impaired 
effective vascular restoration (Fig. 2 B). As a result, 
the mechanisms mediated by EPC that protect against 
development of atherosclerosis could be impaired in 
HIV infection.

Hypothetically, HIV infection might decrease the num-
ber of EPC by a direct infection of these cells. The EPC 
phenotype is characterized by the expression of the 

HIV-1 infection

Immunodeficiency

TLR 7,8
Nef, gp120

Bacterial
translocation

Viral reactivation
(eg, CMV)

Activation of macrophages and T-cells

↑ Atherosclerosis
Traditional

CVDR factors
Genetic
factors

Figure 1. Factors involved in the interaction between atherosclerosis and HIV infection. CMV: cytomegalovirus; CVDR: cardiovascular 
disease risk.
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chemokine receptors CCR5 and CXCR4 on the cell 
surface, allowing potential HIV infection of these cells. 
Indeed, a recent study has demonstrated that circulat-
ing colony-forming unit-endothelial cells (CFU-EC) are 
infected by HIV17. According to our data15 and results 
from others14, EPC could be a subset of CFU-EC. 
Therefore, direct infection of EPC by HIV might explain 
their reduced amount in the presence of uncontrolled 
viral replication. Interestingly, the use of potent antiret-
roviral therapy may restore EPC levels even above 
levels seen in healthy controls18. Future research must 
focus on the impact of antiretroviral therapy on EPC, 
conducting longitudinal studies. 

Endothelial damage by circulating 
endothelial cells and microparticles is 
increased in HIV infection

Circulating endothelial cells are mature endothelial 
cells discarded from the endothelium in response to 
vascular damage19. Increased levels of CEC have 
been associated to elevated plasmatic endothelial dys-
function markers such as Von Willebrand factor levels20 
and with abnormal vascular responses induced by low-
flow mediated dilatation21. In this regard, high amounts 
of CEC reflect endothelial damage and high CVDR. 

Similar to CEC, microparticles from endothelium 
(EMP) and from platelets (PMP) have been proposed 
as biomarkers of endothelial dysfunction22. Micropar-
ticles of 0.1-2 μm in size are phospholipid and protein-
rich submicron molecules originating from the membrane 
of multiple cells (platelets, leucocytes, erythrocytes, 
and endothelial cells) in response to cellular activation 
and/or apoptosis. On their surface, MP expresses pro-
teins of cells from which they came, allowing their 
characterization. Increased numbers of EMP and PMP 
have been noticed in patients with high CVDR23-25. 
Thus, vascular damage is generally associated with 
high levels of CEC, EMP, and PMP.

Two recent studies have examined the level of CEC15, 
EMP and PMP14,26 in patients with uncontrolled HIV 
infection. Interestingly, the proportion of CEC and the 
amount of EMP were significantly increased in HIV-in-
fected individuals compared to healthy controls with 
similar ages. Altogether, these findings suggest that a 
reduced effect of CEC and EMP on the restoration of 
endothelial damage might potentiate CVDR in HIV in-
fection independently of traditional cardiovascular risk 
factors. Table 1 records the list of biological mecha-
nisms that contribute to abnormal vascular integrity in 
HIV infection. 

Although PMP levels seem to be similar in HIV-infect-
ed individuals and healthy subjects, levels of activated 
PMP are increased in the subset of HIV-infected pa-
tients on antiretroviral therapy27 and in untreated HIV-
infected patients26. This fact results from the existence 
of two different subsets of PMP, one of which is repre-
sented by activated PMP. This subset of cells might be 
a more sensitive marker of CVDR, being increased 
even in patients with suppressed HIV replication due 
to antiretroviral therapy. Similar studies testing the 
impact of suppressed viremia due to antiretroviral ther-
apy on CEC and EMP are lacking, and therefore their 
influence on vascular integrity is unknown in this 
situation and warrants further investigation.

Misbalance in vascular integrity  
as a result of uncontrolled  
HIV replication

Under normal conditions, the endothelial vascular 
integrity results from a balance between endothelial 
damage and repair. Any variation in this equilibrium 
may result in damage of the endothelium integrity. In 
order to estimate the extent of endothelial dysfunction, 
several indexes have been developed, most of which 
consider EPC and injury markers28,29. Conditions as-
sociated with increased CVDR generally go with deple-
tion of cells involved in the reparation of endothelium. 
A combination of high levels of EMP and/or CEC along 
with reduced EPC levels impairs the necessary com-
pensatory responses favoring atherosclerosis and de-
velops and progresses.

Table 1. Mechanisms involved in the alteration of vascular 
integrity in HIV infection

–  Reduction and dysfunction of EPC

–  Increase of CEC

–  Increase of EMP

–  Increased microbial translocation

–  High levels of proinflammatory mediators

–  Hyperactivation of macrophages and T-cells
  •  Increased expression of soluble CD163
  •  High tissue factor levels

–  Reduction of reverse cholesterol transport
  •  Reduction and dysfunction of HDL
  •  Down-modulation of ABCA1 by Nef

EPC: endothelial progenitor cells; CEC: circulating endothelial cells;  
EMP: endothelial microparticles; HDL: high-density lipoprotein.
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A reduced activity of EPC in HIV infection may 
result in insufficient endothelial repair. Likewise, an 
increase in CEC, EMP and activated PMP levels, all of 
which are involved in endothelial injury, might contrib-
ute to the accelerated vascular disease progression 
characteristically seen in HIV-infected patients (Table 1). 
No studies so far have assessed the consideration 
of these four parameters together in the prediction of 
CVDR in HIV infection. However, two separate reports 
have shown a misbalance between repair mecha-
nisms mediated by EPC and endothelial damage 
associated to CEC or EMP in uncontrolled HIV rep-
lication14,15. The mechanism by which HIV increases 
the number of CEC and also EMP is unknown. HIV 
replication might induce the activation of endothelial 
surfaces directly or via upregulation of proinflamma-
tory mediators30,31. This effect could lead to endothe-
lium injury with release of CEC and activated PMP. 
This process, along with the possibility of direct HIV 
infection of EPC, might induce apoptosis of EPC and, 
as a consequence, increased release of EMP. At this 
time, the contribution of each apoptotic endothelial 
cell subset to the total EMP level is unknown. Longi-
tudinal studies examining both quantitative and quali-
tative aspects of EPC, CEC, activated PMP and EMP 
are warranted in HIV-infected patients.

Hyperactivated macrophages  
and plaque vulnerability in HIV infection

Activated macrophages are a key component of 
the atherosclerotic process and have been shown to 
migrate towards the atherosclerotic plaque32. In this 
regard, the activation of the innate immune system 
contributes to cardiovascular disease. The macro-
phages get out of lipid-rich plaques and stabilize ath-
erosclerotic plaques33. However, plaque neovessels 
can break easily, allowing for extravasation of erythro-
cytes33. Lysis of red cells contributes to lipid expan-
sion, release of free hemoglobin (free-Hb) and reactive 
oxygen species (ROS) and ultimately to lipid peroxida-
tion and macrophage activation within the atheroscle-
rotic plaque. However, free-Hb links to haptoglobin 
(Hp) forming Hp-Hb complexes, which are cleared by 
the macrophage receptor CD16334. Thus, the ability of 
macrophages to remove Hp-Hb complexes may influ-
ence plaque stability. 

Soluble CD163 (sCDC163) is shed via proteolytic 
cleavage at the monocyte/macrophage surface. It is 
released in plasma in response to lipopolysaccha-
ride (LPS) and oxidative stress mediators35,36. In this 

regard, sCD163 has also been proposed as a surro-
gate biomarker of coronary atherosclerosis37. 

HIV infection is characterized by a hyperactivation 
of both innate and acquired immune systems, includ-
ing macrophages, natural killer, natural killer T-cells, 
B-cells, and T-cells among others. In early studies, 
T-cell activation associated to atherosclerosis was in-
tensively examined in HIV-infected patients. T-cell ac-
tivation in untreated HIV-infected patients is indirectly 
associated with a high carotid artery intimamedia thick-
ness, a well-established index of subclinical athero-
sclerosis38,39. Moreover, T-cell activation has been cor-
related with endothelial dysfunction, high levels of 
procoagulant tissue factor40, and antigen-specific 
CD8+ T-cell responses41. 

The interplay between HIV, macrophages, and ath-
erosclerosis has attracted much interest (Fig. 1 and 3). 
Activated macrophages have been proposed as the 
link between atherosclerosis and HIV infection42. HIV 
preferentially infects CD4+ T-cells in the gut-associated 
lymphoid tissue (GALT)43, inducing a structural altera-
tion of the gastrointestinal mucosa, which results in LPS 
release to the bloodstream and activation of macro-
phages44. Levels of activated macrophages express-
ing tissue factor or CD163 in GALT and levels of tissue 
factor and sCD163 in plasma have been correlated 
with markers of microbial translocation40,45. Based on 
these findings, high levels of sCD163 might be ex-
pected in untreated HIV infection and favor atheroscle-
rosis phenomena. A recent report has highlighted that 
sCD163 levels are increased in HIV-infected individu-
als with low or undetectable viremia in comparison with 
HIV-uninfected subjects45, and high sCD163 levels are 
significantly associated with increased non-calcified 
plaque burden. This plaque modality is the most vul-
nerable plaque to rupture, regardless of traditional 
CVDR factors. 

The current knowledge of the biological mechanisms 
involved in the atherosclerosis process in HIV infection 
is summarized in figure 3. Microbial translocation and 
HIV replication might enhance the activation of mono-
cytes/macrophages expressing tissue factor and/or 
CD163 and increase tissue factor and sCD163 in plas-
ma. This process might induce a pro-coagulation state 
and impaired clearance of Hb-Hp complexes, increas-
ing plaque vulnerability and, indirectly, activation of 
T-cells. Hyperactivation of T-cells might stimulate fur-
ther proinflammatory processes and result in endo-
thelial dysfunction. The circle is closed with further 
stimulation of microbial translocation in GALT, and 
ultimately increased CVDR.
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Figure 2. Vascular integrity results from the equilibrium between endothelial injury and repair. CEC: circulating endothelial cells; 
EMP: endothelial microparticles; EPC: endothelial progenitor cells.

Figure 3. Novel biological mediators involved in atherosclerosis in HIV infection. Novel biological mediators involved in atherosclerosis in 
HIV infection are enhanced. CMV: cytomegalovirus; TF: tissue factor; IL-6: interleukin-6; TNF: tumor necrosis factor; CVDR: cardiovascular 
disease risk; CEC: circulating endothelial cells; MPE/P: microparticles from endothelium and platelets; EPC: endothelial progenitor cells.
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HIV infection drives early cardiovascular disease 
through its impact on the immune system, leading to 
chronic inflammation. The macrophage activation 
that characterizes HIV infection, independently of tra-
ditional CVDR factors, contributes to subclinical ath-
erosclerosis, predisposing HIV-infected individuals to 
plaque rupture and premature cardiovascular disease. 

Abnormal reverse cholesterol transport  
in HIV infection

The last step involved in the repair of damaged 
blood vessels is reverse cholesterol transport46, a pro-
cess by which extrahepatic cholesterol is transported 
by high-density lipoprotein (HDL) to the liver for excre-
tion throughout the bile and feces. The free choles-
terol efflux from macrophages out of the vessel wall 
occurs mainly by interaction with the ABCA1 trans-
porter. ABCA1-deficient macrophages display signifi-
cantly reduced reverse cholesterol transport47. This is 
the major mechanism by which HDL could protect 
against atherosclerosis. The reverse cholesterol trans-
port reflects HDL function and/or quality of HDL. The 
cholesterol efflux capacity mediated by HDL is only 
partially estimated by levels of HDL cholesterol or apo-
lipoprotein A-I48. Moreover, the cholesterol efflux ca-
pacity mediated by HDL is influenced by both the 
presence and extent of atherosclerosis. These findings 
reinforce the notion that that the quality of HDL largely 
influence athero-protection. 

HIV infection is associated with abnormalities in the 
HDL metabolism that could impair reverse cholesterol 
transporting49. Moreover, HIV reduces cholesterol re-
moval from macrophages by downregulation of ABCA1, 
an effect that is mediated by the viral Nef protein. The 
consequence of this impaired cholesterol efflux from 
infected macrophages is an accumulation of choles-
terol into these cells, promoting their conversion into 
foam cells50. This finding has been confirmed by ex-
amining atheromatous plaques in HIV-infected indi-
viduals, taking as comparison uninfected controls. In 
fact, HIV-infected patients show an increased plaque 
lipid content with respect to controls51. 

Soluble Nef, which is released from HIV-infected cells, 
might also affect cholesterol efflux from uninfected cells, 
including macrophages and hepatocytes52. This alterna-
tive effect of Nef on atherogenesis could induce altera-
tions in the HDL metabolism, further contributing to 
increase the CVDR in HIV-infected patients49 (Table 1). 

The effect of antiretroviral agents on reverse choles-
terol transport has recently been examined53. None of 

seven compounds affected cholesterol efflux from 
macrophages at non-cytotoxic concentrations, sug-
gesting that the virus itself is the most likely responsible 
for the impaired athero-protective pathway (reverse 
cholesterol transport) characteristically seen in HIV in-
fection. 

Statins

Statins are HMG-CoA reductase inhibitors. They re-
duce atherosclerosis by lowering low-density lipopro-
tein cholesterol (LDL-c) levels. However, statins do not 
affect the quality and/or quantity of HDL-c. Statins 
might also exhibit pleiotropic effects, including anti-
atherogenic and anti-inflammatory properties. Interest-
ingly, statins mediate the release of EPC from the bone 
marrow, leading to an increase in the number as well as 
stimulating these cells54,55. In patients treated with ator-
vastatin with stable coronary artery disease, a 1.5-fold 
increase in EPC has been recognized55. Similar find-
ings have been obtained in patients with chronic heart 
failure treated with simvastatin56 and in patients treated 
with rosuvastatin57,58.

Statins could enhance endothelial nitric oxide (NO) 
bioavailability by both promoting endothelial NO produc-
tion and preventing NO inactivation by free radicals59. 
Nitric oxide derived from endothelial-NO-synthase 
(eNOs) displays an important role in EPC functionality60. 
Thus, the effects of statins on EPC could be due to an 
increase in NO bioavailability. However, distinct statins 
might exhibit differential effects on EPC functions. In 
this regard, rosuvastatin in vitro increases EPC levels, 
causing an anti-inflammatory polarization of these 
cells61. In injured animal models, simvastatin induces 
EPC mobilization, contributing to re-endothelization 
in vivo54. Likewise, cerivastatin restores the impaired 
neovascularization characteristically seen with aging62. 
Therefore, further studies are required to elucidate the 
potential mechanism used by different statins for in-
creasing both the quantity and quality of EPC and their 
impact on CVDR. Given that no association has been 
found between markers of inflammation and oxidative 
stress and the characteristic increase in EPC levels with 
statins, the mechanism of their effect remains unclear.
In HIV-infected patients, statins reduce LDL-c and 

diminish the activation of T-cells63,64, which is a funda-
mental mechanism involved in the pathogenesis of HIV 
infection. A recent in vitro study has shown that the 
anti-inflammatory effect of simvastatin on LPS-stimulat-
ed macrophages (as it occurs in HIV infection) oc-
curs through inhibition of NOS expression, release of 
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pro-inflammatory mediators, including tumor necrosis 
factor-α, nitrite, and free radicals. This effect occurs 
along with an increase in anti-inflammatory mediators, 
such as interleukin-1065. Thus, there is a potential 
benefit of statins in HIV-infected patients that goes 
beyond control of dyslipidemia. Studies examining the 
effects of statins on cells and molecules involved in 
the vascular integrity (EPC, CEC, and MP) as well as 
their influence on inflammation and activation have to 
be conducted in the HIV setting.

Summary

The interplay between HIV replication, chronic hy-
peractivation of the innate immune system, systemic 
inflammation, quantitative and qualitative defects in 
endothelial cells, abnormalities in the cholesterol me-
tabolism, and subclinical atherosclerosis is being un-
veiled. Besides classical cardiovascular risk factors, 
these new parameters, typically altered in uncontrolled 
HIV replication, may contribute to the increased CVDR 
typically seen in HIV-infected patients.
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