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Introduction

The central nervous system (CNS) and its surround-
ing cerebrospinal fluid (CSF) are separated from the 
circulatory system by the blood-brain barrier (BBB). 
During primary HIV infection, the integrity of the BBB 
is affected by viral components such as transcription-
al activator (Tat) and the structural envelope glyco-
protein 120 (gp120), enabling HIV to enter the CNS1. 

HIV infection also induces the release of proinflamma-
tory cytokines, rendering the BBB more permeable. As 
such, leukocytes, including those which are HIV infected, 
can migrate towards chemoattractants released in the 
CNS1. Other proposed mechanisms of viral penetration 
of the BBB include HIV infection of endothelial cells 
and astrocytes1,2. 

Once HIV has entered the CNS it is situated in an 
environment distinct from blood and lymphoid tissue. 
Within the CNS, perivascular macrophages and mi-
croglia rather than T lymphocytes are the main source 
of infection3-10. Although it was originally thought that 
HIV variants using the CCR5 coreceptor mainly infect 
macrophages and microglia, it is now known that vi-
ruses using the CCR5 coreceptor can be either T-cell 
(T)-tropic or macrophage (M)-tropic, depending on 
the density of CD4 levels on the cell surface. Lower CD4 
density is associated with M-tropism and higher CD4 den-
sities with T-tropism11. Viruses using CXCR4 are most often 
T-tropic since the CXCR4 coreceptor is most abundantly 
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present on T lymphocytes12, although infection via 
CXCR4 of macrophages has been reported as well13. 
Additionally, alternative coreceptors such as CCR3 
(in conjunction with CCR5) and CXCR6 may play a 
more pronounced role in CNS target cells than in per
ipheral cells14. These differences in CD4 and corecep-
tor expression set the boundaries in which M-tropic 
strains are preferentially replicating in the CNS and 
T-tropic strains in plasma and lymphoid tissue15,16. This 
implies that besides the V3 region, which determines 
coreceptor usage, other determinants within the viral 
envelope gene (env) also play an important role in 
determining neurotropism17. The specific viral charac-
teristics determining neurotropism are unknown but are 
reflected by genotypic patterns in env10,18, and possi-
bly by tat19 or other genes. 

Differences in evolution between HIV quasispecies 
in CNS and plasma may be reinforced upon initiation of 
antiretroviral drugs, since not all antiretroviral drugs pass 
the BBB and enter the CSF in equal concentrations20. 
In an attempt to quantify and categorize these differ-
ences, the CNS Penetration Effectiveness (CPE) score 
has been introduced21. The CPE score is a measure of 
estimated penetration and effectiveness in the CNS. A 
higher CPE score is generally associated with more 
inhibition of HIV replication and subsequent lower viral 
loads in CSF22. The efficacy of antiretroviral drugs may 
also be influenced by differences in cell surface drug 
efflux transporters on macrophages and possibly mi-
croglia as compared to T lymphocytes23. A general 
observation is that after initiation of combination anti-
retroviral therapy (cART), viral loads in CSF tend to 
decline at a slower pace than the viral load in plasma. 
This may be explained by less drug penetration and 
the lower death rate of HIV-infected cells in CNS or 
CSF as compared to the death rate of HIV-infected 
CD4+ T-cells in plasma24,25. 

Based upon these anatomical, cellular, and pharma-
cological differences, it has often been suggested that 
the CNS serves as a potential viral reservoir, which is 
clinically relevant as this may be associated with neu-
rological symptoms. Although the prevalence of major 
opportunistic CNS infections has diminished due to 
cART, the prevalence of HIV-associated neurocogni-
tive disorders has remained high26. It is hypothesized 
that cognitive impairment is a result of ongoing neuro-
pathological processes involving viral production, viral 
replication, immune activation, effects of toxins and 
drugs, vascular-related problems, or accelerated ag-
ing of the brain27. The presence of HIV RNA in CSF, 
either derived from viral production or replication, is 

often, but not always, reported in the presence of neu-
rological symptoms28. 

Several studies and case reports show that detect-
able HIV RNA in CSF is not always associated with 
detectable viremia in plasma28-33. The CNS may as such 
be an unnoticed source for low-level viremia30,32,34,35 
and selection of antiretroviral resistance affecting non/nu-
cleoside reverse transcriptase inhibitors (N/NRTI)29,34,35, 
protease inhibitors (PI)29,31, integrase inhibitors33, and 
fusion inhibitors32. 

Strategy and definitions 

We systematically reviewed cases with paired CSF 
and plasma samples from literature to investigate to 
what extent the CNS constitutes a distinct virological 
compartment by comparing host cell tropism and re-
sistance associated mutations in relation to HIV RNA 
levels and neurological symptoms (for methodological 
details see Supplementary data). After critical ap-
praisal, 35 studies describing a total of 671 samples 
from 555 subjects could be included in this review (Fig. 1). 
Depending on the analysis, different numbers of paired 
samples and subjects were compared. Discordance 
was defined as one or more resistance associated 
mutations (RAM) in blood not present in CSF or vice 
versa in a paired sample. Only drug resistance associ-
ated mutations defined by the IAS-USA drug resis-
tance panel were considered relevant (IAS USA, 2011). 
In this study, genetic divergence was defined as the 
accumulation of independent genetic changes (RAM) in 
CSF and plasma. A relevant difference in viral load was 
defined as a 0.5 log10 copies/ml difference between 
CSF and plasma. In accordance with a previous re-
port, a CPE cutoff value > 7 was used to define effec-
tive penetration in the CNS22. 

Compartmentalization of HIV RNA levels 

A total of 509 samples from 397 subjects could be 
used to compare HIV-1 RNA viral loads (Table 1 and 2). 
The HIV RNA levels in CSF and plasma of all paired 
samples are depicted in figure 2 and show moderate 
correlation (r = 0.40; p < 0.001). Median plasma viral 
load (4.70 log10 copies/ml; IQR: 3.90-5.33) was signifi-
cantly higher than CSF viral load (3.67 log10 copies/ml; 
IQR: 2.84-4.50) (p < 0.001). Similar results were ob-
served if only the first sample pair of a patient was ana-
lyzed: median plasma viral load 4.83 log10 copies/ml; 
median CSF viral load 3.76 log10 copies/ml. Overall, 
60% (305/509) of the sample pairs had a higher viral 
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load in plasma than in CSF. Only in 13% (67/509) of 
the pairs was a higher viral load seen in CSF. 

The presence or absence of neurological symptoms 
was reported for 274 out of 397 subjects (69%) and 
these cases were included in the analyses regarding 
neurological symptoms. Neurological symptoms were 
reported as present in 181 out of 274 subjects (66%). 
Within this subgroup, the median viral load in plasma 
was 4.90 log10 copies/ml compared to 4.18 log10 cop-
ies/ml in CSF, resulting in a CSF/plasma viral load ratio 
of 0.85. In the remaining 93 patients without neuro-
logical symptoms (34%), a greater difference be-
tween median viral load in plasma (4.69 log10 cop-
ies/ml) and CSF (3.17 log10 copies/ml) was observed, 
leading to a CSF/plasma viral load ratio of 0.68. The 
difference in median CSF viral load between subjects 

with or without neurological symptoms was statistical 
significant (p < 0.01), but the difference in median 
plasma viral load was not (p = 0.123). The differences 
in viral load ratio were also significant between subjects 
with and without neurological symptoms (p < 0.01). In 
subjects with detectable viral loads in CSF, the most 
frequent diagnoses associated with neurological symp-
toms were HIV encephalitis, progressive multifocal leu-
koencephalopathy, and HIV-associated dementia. 

In the cases where the CSF viral load exceeded that 
of plasma (n = 67; 13%), a majority of the samples 
(n = 49; 73%) was taken from subjects with neuro-
logical symptoms. Only one sample (1%) was taken 
from a subject without neurological symptoms and, for 
the remaining, the presence or absence of symptoms 
were not reported (n = 17; 25%) (Fig. 2). In the group 

Search strategy: 
Search #1: HIV OR "human immunodeficiency virus" OR aids
Search #2: CSF OR "cerebrospinal fluid" OR CNS OR "central nervous system"
Search #3: resistant OR resistance OR tropism OR CXCR4 OR CCR5
Final search: #1 AND #2 AND #3 [Title/Abstract]; limitations: English/humans
Total yield: 671 titles from PubMed (January 2013)

Exclusion step one (on basis of title)

235 titles

109 abstracts

70 articles included in review

35 studies included in analysis for 
comparison of CSF-plasma drug-resistance 
mutations or env patterns

9 studies included in 
analysis via references

Inclusion of relevant background 
information via references

Exclusion step three (b) (full text content)
(not paired, no information about mutations, 

resistance or HIV envelope)

Exclusion step two (on basis of abstract) 
(in vitro, post-mortem, focus on pharmacology)

Exclusion step three (a) 
(articles not relevant for background information)

Figure 1. Search strategy and study selection. Out of 671 titles, 35 studies are selected for the analysis. CSF: cerebrospinal fluid; CNS: 
central nervous system.
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Figure 2. HIV-RNA levels in plasma and CSF in relation to neurological symptoms. Paired samples are depicted as a dot (A) in the absence 
of neurological symptoms and as a triangle (B) in the presence of neurological symptoms. The middle line resembles identical values in 
cerebrospinal fluid and plasma. The two dotted lines resemble the borders of 0.5 log10 difference (r = 0.40). 

of 305 samples taken from 234 subjects in whom the 
viral load in plasma exceeded that of CSF, a more 
equal distribution of neurological symptoms was seen. 
A third (31%; n = 96) of the samples were from subjects 
with neurological symptoms, while 25% (n = 75) were 
from patients without such symptoms, and for 44% 
(n = 134) of the samples it was not reported (Fig. 2). 

A total of 12 subjects (3%) had detectable CSF viral 
load without a detectable load in plasma (< 50 copies/ml36 
or < 400 copies/ml37. All these 12 patients had neuro-
logical complaints and were on antiretroviral therapy, 
of which four (33%) on a regimen had a CPE score ≤ 7. 
When all samples with detectable HIV RNA in CSF, 
irrespective of plasma values, were analyzed, the pro-
portion having a CPE score ≤ 7 was 70% (70/100 sam-
ples). In the group with suppressed CSF HIV RNA levels, 
irrespective of plasma values, the proportion with a 
CPE score ≤ 7 was also high (78%; 21/27). 

It would be of interest to relate HIV RNA levels in CSF 
and plasma with certain antiretroviral regimens; how-
ever, no fair comparison of HIV RNA levels in CSF or 
plasma and type of antiretroviral regimen could be 
made based on available literature. Of the subjects, 
33% were not receiving antiretroviral treatment at sam-
pling time and 13% of the subjects were on therapies 
that are not considered appropriate in current clinical 

practice (e.g. monotherapy). In 11%, a PI-based regimen 
was reported, compared to only 1% receiving a NNRTI-
based regimen. Additionally, 1% used advanced com-
bination therapy with four or more compounds or a 
combination including fusion-, entry-, or integrase inhibi-
tors. In 40%, the use of antiviral therapy or its exact 
combination was not reported. 

Compartmentalization  
of resistance associated mutations 

Genotypic resistance associated mutation patterns 
were reported for 324 samples from 300 subjects out 
of 23 studies (Table 1). A majority of the samples (63%; 
204/324) showed similar mutation patterns, with 35% 
of the samples (114/324) having concordant resistance 
associated mutations and 28% (90/324) having no re-
sistance associated mutations in both compartments. 
A total of 37% (120/324) had different mutation patterns 
in plasma and CSF. Overall, resistance mutations were 
more often detected in plasma than in CSF; 16% had 
resistance mutations in plasma which were not found 
in CSF and 11% had resistance mutations in CSF which 
were not present in plasma. Divergent resistance 
patterns were observed in 10%; in these patients, spe-
cific resistance mutations were only observed in plasma 
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while other resistance mutations were solely seen in 
CSF (Table 1). As can be expected, most discordant 
mutations were seen in subjects under treatment, but 
no significant correlation between CPE score of the 
regimen at sampling time and the number of discor-
dant mutations in either CSF (p = 0.08) or plasma 
(p = 0.38) could be found. Discordant or concordant 
mutation patterns were not significantly linked to 
neurological disease. In samples taken from sub-
jects with neurological symptoms, 60% (104/174) 
concordant resistant or wild-type viral populations 
were observed, which was comparable to samples 
taken from neurologically asymptomatic subjects (66%; 
45/68) (p = 0.36). 

The most frequently reported mutations were reverse 
transcriptase mutations on position 41, 184, 210, 215, 
and protease mutations on position 36 and 63 in both 
CSF and plasma. These mutations were not always 
found within the same sample pair as several of these 
mutations were also the mutations most often found to 
be discordant. Hence, discordance in pol was most 
often seen at the following resistance related positions: 
184 (20 only in plasma, 9 only in CSF); 215 (19, 12); 
41 (13, 11); 70 (13, 7); and 69 (15, 0) in reverse 
transcriptase; and the subtype-related position 36 (0, 5) 
in protease.

Of the 67 samples with a higher viral load in CSF 
than in plasma, information on resistance patterns was 
available for comparison in 29 sample pairs. Within this 
subgroup, 86% (25/29) of the pairs had similar muta-
tion patterns, whereas discordance was observed in 
four pairs with mutations in CSF that were not present 
in plasma; one of those also had mutations in plasma 
not seen in CSF. None of the subjects with an undetect-
able viral load in plasma and a detectable viral load in 
CSF could be evaluated for discordant mutations in the 
sample pair since resistance analysis could not be 
performed on the plasma samples. Of interest, 75% 
(9/12) of these pairs had resistance mutations in CSF 
either in this paired sample or a previous CSF sample. 

Longitudinal data regarding resistance associated 
mutations were reported in 18 subjects38-42. The major-
ity (61%) of these patients had similar viral evolution 
patterns in plasma and CSF. In two subjects, resistance 
associated mutations in CSF emerged later than in 
plasma38,41. In another two patients, samples showed 
signs of divergence, reflected by accumulation or per-
sistence of more resistance mutations in plasma38,41. 
True independent evolution with major differences in 
evolution patterns was observed in only three out of 
17 subjects42. 

Compartmentalization of HIV  
coreceptor preference

Results of studies that compare HIV env in CSF and 
plasma are depicted in table 2. Fifteen studies are 
included, with a total of 252 subjects and 287 sample 
pairs. Most studies included in this review compared 
coreceptor preference (n = 228), but some studies also 
investigated broader genotypic compartmentalization 
demonstrated by phylogenetic trees and Slatkin-
Maddison tests. All studies show that in a subgroup of 
patients, signs of env compartmentalization can be 
observed most often associated with HIV-associated 
dementia during advanced disease43,44, but occasionally 
also early in infection45. 

For 228 samples, coreceptor comparison was per-
formed, either genotypically or phenotypically (Table 2). 
In 164 samples (72%), the viral populations were re-
ported to be R5-tropic in both CSF and plasma, while 
25 subjects (11%) had dual-mixed or X4 tropism in 
both compartments. In 86% of the samples, R5-tropic 
virus populations were detected in CSF. Discordant 
tropism was observed in 39 samples (17%), with mostly 
R5-tropic virus (82%; 32/39) in CSF and X4 or dual-
mixed virus in plasma. The presence of X4-tropic virus 
in CSF was occasionally reported or predicted based 
on genotype, mainly in cases with low CD4 levels and 
advanced disease stage. Discordant tropism predic-
tion, with X4 in CSF, was also reported during primary 
infection46. There was no significant difference be-
tween the viral load levels of X4 or R5 viral populations 
in CSF (p = 0.24). 

Differential evolution of HIV quasispecies 

This systematic review combined all published data 
on HIV resistance associated mutations and tropism 
from paired plasma and CSF samples. The results 
confirms the existence of a distinct HIV compartment 
in the CNS, as reflected by differences in HIV RNA 
levels, resistance associated mutations, and envelope 
characteristics. 

In general, viral loads were higher in plasma than in 
CSF, most probably due to the relative abundance of 
HIV-susceptible CD4+ cells in plasma compared to 
less plentiful microglia and perivascular macrophages 
in the CNS. Thus, the subset of patients with higher 
viral loads in CSF than in plasma is of particular inter-
est. In patients that are not on effective therapy, this 
may be associated with HIV-associated neurological 
conditions and an influx of CD4+ T-cells with active HIV 
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production or replication in the brain, resulting in higher 
concentrations of HIV RNA in CSF compared to plas-
ma47. This influx might also explain the existence of a 
low but significant correlation between plasma and 
CSF viral load. In subjects on antiretroviral treatment, 
detectable HIV RNA levels in CSF are mostly, but not 
exclusively28, seen in those with neurological symp-
toms, but these symptoms tend to be milder than in 
the untreated group. In these patients, the discrepancy 
in viral loads between plasma and CSF may be due to 
differences in effective concentrations of antiretroviral 
drugs or slower decay rates of HIV-infected cells in the 
CNS compared to plasma upon initiation of therapy. 
Activated immune cells in the CNS could also contrib-
ute to local viral production and higher viral loads in CSF. 
Finally, the selection of resistance associated variants 
within the CNS could also contribute to a higher viral 
load in CSF. 

In more than half of the subjects, the same resis-
tance associated mutations could be observed in 
plasma and CSF, reflecting comparable selective pres-
sures in CSF and plasma or a more permeable BBB, 
allowing the exchange of viral populations and T lym-
phocytes between CSF and plasma. However, in a 
substantial part of the subjects, the barriers were 
seemingly intact as discordant genotypic mutation pat-
terns were observed, with resistance mutations more 
often in plasma than in CSF. A correlation between 
CPE score and the number of discordant mutations 
could neither be established for CSF nor plasma. Al-
though rare, it has been shown that a resistant variant 
can arise in the CSF with subsequent high CSF viral 
loads in the context of undetectable plasma viremia, 
ultimately resulting in virological failure in both com-
partments32. The overall findings suggest that distinct 
evolution patterns in blood and CSF cannot exclusively 
be attributed to inadequate pharmacological pressure, 
but can also arise by a founder effect in the CNS or 
env based selection due to target cell differences. 

Tropism was mostly concordant in both CSF and 
plasma, with a great majority of R5-tropic virus in the 
CNS. This reflects the predominance of microglia and 
perivascular macrophages in the CNS, which all pos-
sess the CCR5 coreceptor and are most susceptible 
to M-tropic virus. However, dual tropic and X4 variants 
could also be found in the CSF, probably reflecting 
T-cell influx in the CNS. The presence of X4 variants 
was not reflected by a higher viral load in CSF. Geno-
typic partitioning of env sequences in CSF and plasma 
was often reported15,45. It has been described that 
a trend of more segregation between CSF and plasma 

sequences is seen during advanced disease and dur-
ing chronic inflammation10, with signs of independent 
HIV-1 replication and evolution regarding env in the 
CNS, especially during HIV dementia, but not during 
less severe forms of HIV-1 neurological disease40,44. 
It has also been postulated that astrocytes and endo-
thelial cells, that lack the CD4 receptor, can be infected 
by HIV. This would imply other mechanisms of env 
binding and cell fusion or uptake than in immune cells. 
This review has some limitations. Firstly, most reports 
describe analyses in subjects who suffered from neu-
rological symptoms, reflecting the selection criteria of 
most studies that are included in this review. Therefore 
it seems that neurocognitive complaints are more like-
ly when there is viral replication in the CNS, but selec-
tion bias may be of influence here. Also, in current 
clinical practice, the prescribed cART is often not 
similar to the regimens reported in the included litera-
ture. Our goal was to provide a comprehensive over-
view on the topic of plasma/CSF compartmentalization 
and therefore we accepted that studies with different 
methodologies and study designs were combined as 
long as they compared paired plasma and CSF sam-
ples and analyzed resistance or env characteristics 
in both samples. As a consequence of this strict and 
conservative selection method, we may have missed 
subjects with signs of HIV compartmentalization be-
cause no results on paired samples were reported.

Conclusions

The CNS forms a distinct compartment in which the 
host’s integrity of the BBB, its cellular compartment, 
external pharmacological influences, and viral determi-
nants all play a role. On the one hand, compartmen-
talization can be reduced by a more permeable BBB 
or by adequate therapeutic management and full sup-
pression of HIV RNA in both compartments. On the 
other hand, a well-functioning BBB, differences in 
target cells, and different pharmacological pressures 
between the CNS and plasma are likely to contribute 
to more HIV compartmentalization. HIV compartmen-
talization should therefore be considered a dynamic 
process, influenced by the course of the disease and 
its management, and is likely to be reflected by differ-
ences in viral load, resistance associated mutations, 
and env characteristics. This dynamic nature explains 
the differences seen at an individual level with, on one 
side of the spectrum, subjects without clear signs of 
compartmentalization and, on the other side of the 
spectrum, subjects with virological failure due to 
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the selection of a drug-resistant variant in the CNS. 
Within this continuum, varying degrees of CNS com-
partmentalization may exist, depending on the involved 
viral determinants and selective pressures. In clinical 
practice there should be awareness that monitoring 
HIV in plasma does not always correspond with the 
situation in the CNS and that deterioration of neuro-
logical or cognitive status could imply a clinically rele
vant compartmentalization with active HIV replication.
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