

Epigenetics of HIV Infection: Promising Research Areas and Implications for Therapy

Eva Ay¹, Ferenc Banati¹, Maria Mezei¹, Agnes Bakos¹, Hans Helmut Niller², Krisztina Buzás^{1,3} and Janos Minarovits^{1,3*}

¹Microbiological Research Group, National Center for Epidemiology, Budapest, Hungary; ²Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany; ³University of Szeged, Faculty of Dentistry, Department of Oral Biology and Experimental Dental Research, Szeged, Hungary

Abstract

We surveyed current trends in epigenetics in general and epigenetics of HIV infection and AIDS in particular to pinpoint promising areas for translational research. Epigenetic mechanisms mark and affect the structure of chromatin, thereby controlling the activity of promoters. Because epigenetic changes are reversible, epigenetic drugs can be used to modulate gene activity. At present, silenced HIV genomes, the latent HIV reservoir, is a major obstacle for a curative treatment of AIDS patients. Epigenetic therapy aims at the purging of the latent reservoir by switching on transcription of silent HIV genomes. The basic idea is that the cytopathic effect of the replicating virus and the immune system may eliminate the reactivated cells, whereas HAART may block the infection of new target cells. Although current efforts concentrate on long-lived resting memory CD4⁺ T-cells, dormant HIV proviruses also reside in other cell types. Thus, epigenetic characterization of the various HIV-infected host cells and host cell-dependent HIV latency mechanisms is a promising research area and may facilitate the development of cell type-specific epigenetic drugs. HAART itself affects the epigenotype of host cells. This may contribute to the development of drug resistance and unwanted side effects. A pharmacogenetic approach may help to elucidate and revert such phenomena. In addition to latent reservoir purging, epigenetic research offers alternative therapeutic tools as well; although not aimed at the elimination of the virus, targeted silencing of HIV transcription by epigenetic regulators may help HAART to minimize virus replication. (AIDS Rev. 2013;15:181-8)

Corresponding author: Janos Minarovits, minimicrobi@hotmail.com

Key words

DNA methylation. Virus latency. Virus activation. Chromatin. Molecular targeted therapy. Gene silencing.

Epigenetic regulatory mechanisms: Essentials in a nutshell

Epigenetic regulation ensures the inheritance of cell type-specific transcription patterns from cell generation to cell generation. Epigenetic modifications alter DNA and certain histone molecules, the principal components

of chromatin. Binding of distinct non-histone proteins to regulatory regions of the genome may also constitute epigenetic marks that can be inherited to daughter cells. All of these changes affect the structure of chromatin, favoring either promoter silencing or activation (Table 1). Disturbances in epigenetic regulation have pathological consequences, leading to disease development and even microbial pathogens, including HIV, may dysregulate epigenetic mechanisms in their host cells¹⁻⁴.

Promoter silencing and promoter activation

Methylation at the C5-position of cytosine is an important epigenetic regulator of transcriptional activity. In vertebrates, the control regions of inactive promoters

Correspondence to:

Janos Minarovits
University of Szeged, Faculty of Dentistry,
Department of Oral Biology and Experimental Dental Research
H-6720 Szeged, Tisza Lajos krt. 64, Hungary
E-mail: minimicrobi@hotmail.com

HP1 invites HKMT and induces "spreading" of the H3K-9me3 mark to unmodified, newly synthesized histone H3 molecules located to adjacent nucleosomes following DNA replication⁸.

The DNA methylation and histone modifications are reversible. In pluripotent embryonic stem cells, "pioneer" transcription factors bind to highly methylated sequences and induce cytosine demethylation. Their association with tissue-specific enhancers precedes transcriptional activation of the flanking genes^{11,12}. The DNA demethylation can be either active or passive. The active pathway is mediated by the Tet family of dioxygenases: conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) and further to 5-carboxylcytosine (5caC) is followed either by decarboxylation¹³ or excision by thymine-DNA glycosylase (TDG) that triggers the base excision repair (BER) pathway, replacing thereby 5mC with C¹⁴. The passive pathway involves the inhibition of DNMT1 activity during successive cell cycles. Active promoters are frequently un-methylated and located to "open" chromatin areas rich in acetylated histones and other activating histone modifications, such as H3K4me3 (histone H3 trimethylated on lysine 4) produced by HKMT of the trithorax group (TrxG)⁸ (Table 1).

Emerging concepts of epigenetic memory

In contrast to most transcription factors that dissociate from their binding sites during mitosis, the pioneer transcription factor FoxA1 remained attached to mitotic chromatin¹⁵. It turned out that binding of pioneer transcription factors to mitotic chromosomes marked distinct gene sets and ensured their expression after mitosis ("bookmarking" proteins). Variant histones, like H2A.Z, altered nucleosome occupancy and stable chromatin loops may also mark promoters for activation^{16,17}. These mechanisms are regarded as novel forms of epigenetic memory, ensuring the inheritance of cell type-specific gene expression patterns.

Characterization of the epigenomes of HIV target cells using high-throughput assays

High-throughput assays, especially DNA microarrays and ChIP-Seq (the combination of chromatin immunoprecipitation and next generation sequencing) were used to characterize the epigenomes of the major HIV target cells, CD4⁺ T-cells, monocytes, and macrophages.

There were both transcriptionally repressive and non-repressive hypermethylated regions located approximately 6 or 9 nucleosomes away, respectively, from transcription start sites in the genome of CD4⁺ T-cells of healthy donors¹⁸. Methylome analysis of *in vitro* expanded conventional CD4⁺ T-cells and regulatory T-cells revealed 100 differentially methylated regions associated mainly with promoter-distal enhancer sequences of cell type-specific genes¹⁹. An independent study suggested that alternative distribution of histone H3K4me3 and H3K4me1 epigenetic marks may control cell type-specific gene regulation²⁰. Based on ChIP-Seq data and suitable algorithms, the chromatin boundary elements and nucleosome positions in CD4⁺ T-cells could also be predicted^{21,22}. Dynamic changes of DNA methylation were demonstrated during *in vitro* differentiation of human hemopoietic progenitor cells (HPC): differentiation-specific genes hypermethylated in HPC became demethylated both in monocytes and granulocytes²³. In a study with antiretroviral-naive HIV patients, healthy controls, and HIV patients under antiretroviral therapy (ART), differentially expressed genes were identified in HIV-infected monocytes. Certain genes were dysregulated by ART²⁴. The epigenetic background of these phenomena remains to be elucidated.

Epigenetic silencing of the HIV provirus in latently infected cells

HIV replicates with the help of reverse transcriptase (RT). The RT converts the single stranded viral RNA genome into double-stranded DNA (dsDNA) that integrates into the cellular genome (provirus). In certain target cells, the integrated HIV genomes are dormant (viral latency), due to switching off the viral promoter, located to the 5' long terminal repeat (5' LTR) sequence, by the cellular epigenetic regulatory machinery²⁵ (Table 2). Because the dormant state is reversible, maintenance of the latent HIV proviruses in long-lived host cells rendered curative antiretroviral therapy so far impossible^{26,27}. The factors influencing the decision between promoter silencing or activation remain to be clarified^{28,29}. In case of CD4⁺ T-cells, infection of both activated and resting cells may result in the establishment of HIV latency. In addition to epigenetic mechanisms, limited availability of transcription factors or elongation factors, nuclear retention of multiply spliced viral RNA due to low expression of polypyrimidine tract binding protein (PTB), insufficient Tat activity, and cell type-dependent expression of cellular

Table 2. Mechanisms involved in HIV-1 promoter silencing

Mechanism	Consequence
Cytosine methylation	Binding of MBD2, recruitment of HDAC, build-up of repressive chromatin structure
Binding of YY1, LSF, NF κ B	Recruitment of HDAC and HMT (SUV39HT) increased level of H3K9me3 and HP1 in the region, repressive chromatin structure
Binding of CBF1	Recruitment of HDAC and corepressors
Binding of c-Myc and Sp1	Recruitment of HDAC1
HIV-1 TAR microRNA	Recruitment of HDAC1
Histone H3K4me3 and H3K9me3	Recruitment of LSD1
Binding of polycomb complexes	Histone H3K27 methylation, histone H2A ubiquitination
Binding of BRD2	Association with CRC, blocking transcription
Binding of BRD4	Inhibition of Tat activity
Deacetylated nucleosomes	Blocking the transcriptional start site
Transcriptional interference by transcripts of upstream host genes	Blocking HIV-1 transcription by antisense cellular RNA

BRD2: bromodomain containing protein 2; BRD4: bromodomain containing protein 4; CBF1: C-promoter binding factor-1; CRC: chromatin remodeling complex; HDAC: histone deacetylase; histone H3K9me3: histone H3 trimethylated on lysine 9; histone H3K27: histone H3 lysine 27; LSF: late SV40 factor; MBD2: methyl-CpG-binding domain protein 2; HMT: histone methyltransferase; HP1: heterochromatin-associated protein 1; LSD1: lysine-specific demethylase 1; NF κ B: nuclear factor kappa B; TAR: transactivation responsive (element); Tat: transactivator of transcription; YY1: yin yang 1.

microRNAs modulating viral protein expression also favor latency versus productive infection²⁹. Epigenetic mechanisms may play an important role in HIV promoter silencing during transition of activated CD4 $^{+}$ T-cells to resting memory CD4 $^{+}$ T-cells, whereas during the infection of quiescent cells factor availability and post-transcriptional mechanisms may contribute significantly to the downregulation of HIV transcription²⁹. The epigenetic mechanisms silencing the HIV 5' LTR were recently reviewed^{30,31} (see also the references therein). Here we give only a brief summary.

CpG methylation inhibited the activity of the HIV promoter both directly, by blocking transcription factor binding, and indirectly, via attracting MBD2, a methyl-CpG binding protein that facilitated the build-up of a repressive chromatin structure through recruitment of histone deacetylases. Repressive chromatin structures were also established by yin-yang-1 (YY1), late SV40 factor (LSF), nuclear factor kappa B (NF κ B), other transcription factors, and a microRNA derived from the transactivation responsive (TAR) element of the HIV-1 RNA genome. All of them recruited HDAC1, a histone deacetylase to the viral promoter. In monocytes and microglial cells, the repressor protein COUP-TF interacting protein 2 (CTIP2) also recruited HDAC2 and the histone methyltransferase SUV39HT to the proviral LTR. G9a, another histone lysine methyltransferase, as

well as the PRC2 component EZH2 and the PRC1 complex played a role in HIV-1 latency, too. Bromodomain containing protein BRD4 blocked HIV transcription by interfering with Tat, the viral regulator of transcriptional elongation, whereas BRD2 acted as a Tat-independent suppressor. In addition, nucleosomal structure also affected transcriptional initiation and elongation. There were two deacetylated nucleosomes called Nuc-(0) and Nuc-(+1) flanking the enhancer region of the HIV-1 LTR. Nuc-(+1), which blocked the transcriptional start site in repressive chromatin, underwent remodeling upon binding of activating transcription factors.

HIV frequently integrates into euchromatic domains of the genome near to transcriptionally active promoters. Open chromatin favors switching on the viral promoter. In contrast, integration into heterochromatic regions around centromeres or into the repressive chromatin environment of gene deserts apparently favors the establishment of latency. Silencing of the HIV promoter may occur, however, in euchromatic domains as well, due to transcriptional interference by read-through transcripts originating at upstream host genes (Table 2).

Epigenetic silencing of HIV LTR could be reverted by various means, including DNA methyltransferase inhibitors, histone deacetylase inhibitors, inhibitors of BRD4, NF κ B inducers, and Tat, the HIV transactivator³²⁻³⁷. These data formed the basis of a novel therapeutic

approach, also called “shock and kill” therapy, that aimed at the reactivation of latent HIV proviruses (shock), disrupting thereby the latent viral reservoir, combined with an intensified HAART to block the infection of new target cells by viral particles released from the reactivated cells²⁶. Infected cells were expected to be destroyed (kill) by the reactivated virus or the immune system³⁸. Purguing of HIV-1 from the latent reservoir was attempted using HDAC inhibitors³⁹⁻⁴¹. In *ex vivo* experiments SAHA, a selective inhibitor of Class I HDAC, could induce, indeed, HIV outgrowth in CD4⁺ T-cells⁴² and disrupted HIV-1 latency in a group of preselected patients on antiretroviral therapy³². The CD4⁺ T-cells derived from patients on HAART could survive, however, the reversal of HIV latency even in the presence of autologous cytolytic T lymphocytes (CTL)⁴³. Efficient killing of reactivated CD4⁺ T-cells could only be achieved by antigen-specific stimulation of the autologous CTL prior to the disruption of HIV latency⁴³.

Epigenetic dysregulation in HIV-infected cells

HIV was the first human pathogen implicated in the induction of an epigenetic change in host cells⁴. Mikovits, et al. observed that HIV infection of CD4⁺ T-cells *in vitro* downregulated interferon gamma (IFN- γ) expression⁴. In parallel, there was an increased DNA methyltransferase expression and the methylation level of the IFN- γ promoter was also elevated⁴. Switching off transcription of IFN- γ may block the host immune response. HIV infection also increased *de novo* methylation at the promoter of the *P16/INK4A* tumor suppressor gene and *GNE*, coding for UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase that generates the sialyl-donor substrate for cellular sialyl-transferases (reviewed¹). The “early” HIV proteins, Nef and Tat were responsible for DNMT1 upregulation⁴⁴. The HIV protein Vpr (viral protein R) bound p300/CBP (CREB binding protein), a coactivator with HAT activity⁴⁵, and recruited it to the centromeres of mitotic chromosomes, resulting in increased histone acetylation and displacement of heterochromatin binding protein 1- α (HP1- α) and HP1- γ , causing premature chromatid separation, a hallmark of aneuploidy.

Epigenetic mechanisms of drug resistance in HIV-infected cells

Mutant viral genomes are regularly generated during HIV replication, causing alterations of the viral enzymes

reverse transcriptase, protease, integrase, and certain structural proteins. These changes result in the development of clinical resistance to antiretroviral drugs⁴⁶. However, a cell-mediated mechanism of drug resistance was also described in case of nucleoside analogue reverse transcriptase inhibitors that require metabolic activation to the nucleotide form⁴⁷. The basis of the latter phenomenon was the drug-induced silencing of the cellular thymidine kinase gene (*TK*). *TK* codes for the activating enzyme that phosphorylates 3'-Azido-3'-dideoxythymidine (AZT), generating AZT monophosphate. Further phosphorylation by thymidylate kinase and pyrimidine nucleoside diphosphate kinase generate AZT diphosphate and the active AZT triphosphate analogue, respectively. The latter acts both as a chain terminator, blocking RT-mediated DNA synthesis, and as an inhibitor of cellular DNA replication⁴⁸. Similarly to other drugs inhibiting cellular DNA synthesis, AZT induced DNA hypermethylation and inactivated *TK* in tissue culture⁴⁷. The epigenetically altered cells (epimutants) were highly resistant to the cytotoxic effects of AZT and their capacity to activate AZT to AZT 5'-monophosphate became severely reduced. A suboptimal AZT level may favor the generation of AZT-resistant HIV variants^{47,49}. Even low, nontoxic levels of AZT induced site-specific hypermethylation and silencing of *TK*⁵⁰.

AZT administered to HIV-1-infected pregnant women to prevent mother-to-child transmission of the virus altered the organization of constitutive heterochromatin in leukocytes of children born to such mothers⁵¹. Relocation of chromatin domains away from the nuclear periphery favors the activation of lymphoid-specific gene sets (reviewed⁵²). Thus, by perturbing the structure of constitutive heterochromatin, AZT treatment may elicit epigenetic changes long after perinatal exposure⁵¹.

Perspectives and implications for therapy

Although the epigenetics of HIV promoter silencing has been intensely studied, high-throughput characterization of the epigenomes of HIV-infected cells is still a promising research area. Characterization of the epigenomes of CD4⁺ T-cells, monocytes, and macrophages and other HIV target cells before and after HIV infection may have pathogenetic and therapeutic implications. In untreated patients, the vast majority of HIV particles are produced by activated CD4⁺ T-cells. In patients on HAART, however, monocytes are an important site of HIV-1 replication⁵³. In addition,

HIV-infected peripheral blood monocytes may differentiate to tissue macrophages. Activation, alternative activation, or deactivation of macrophages by cytokines resulted in distinct cellular phenotypes (M1, M2, dM)⁵⁴ and possibly epigenotypes that either favor or curtail the formation of HIV reservoirs.

At present, epigenetic therapies based on reactivation of silent HIV genomes focus on long-lived resting memory CD4⁺ T-cells that are regarded as a major obstacle to curative treatment^{25-27,39,55-59}. However, HIV latency mechanisms may differ, depending on the host cell phenotype^{31,60}, which may necessitate the development and use of cell type-specific epigenetic drugs to activate silent HIV proviruses. In addition, the phenotype of the host cell may also affect its sensitivity to the cytopathic effect of the replicating virus. Tat activated apoptotic pathways in CD4⁺ T-cells⁶¹, but up-regulated the expression of the antiapoptotic *Bcl-2* gene in macrophages, and other cell types^{62,63}. HIV-1 Nef, a pleiotropic regulatory protein⁶⁴, also protected macrophages from apoptosis⁶⁵. Nerve growth factor (NGF) produced by HIV-infected macrophages rescued human monocytes/macrophages from the cytopathic effect of HIV infection, too⁶⁶. Differentiation of monocytes to macrophages was associated with the development of resistance to apoptosis induction by Vpr⁶⁷. Thus, various mechanisms may prevent killing and ensure long-term survival of HIV-infected, reactivated macrophages^{68,69}. Because HIV-infected cells may escape immune-mediated killing as well, getting rid of the monocyte/macrophage reservoir seems to be a formidable task. In addition, cells carrying silent HIV proviruses may reside in compartments that are not easily accessible for epigenetic therapy and HAART⁷⁰, necessitating the development of novel drugs or carriers of drugs, efficiently penetrating such compartments⁷¹.

Although pioneering studies on AZT, the very first drug used in ART, described how it silenced the *TK* gene in HIV-infected cells, there are no data regarding the epigenetic effects of other RT inhibitors, or drugs targeting other molecules involved in HIV replication. A pharmacoepigenetic approach⁷², i.e. exploring the epigenetic consequences of ART, may help to understand the molecular basis of certain side effects of HAART. A basic step in this direction was a recent transcriptome analysis of ritonavir-exposed adipocytes⁷³.

In addition to latent reservoir purging, epigenetic research offers alternative therapeutic tools and strategy as well; targeted epigenetic silencing of HIV transcription may curb HIV replication in concert with HAART.

Epigenetic regulators, including antisense oligonucleotides, oligonucleotide-intercalator conjugates, hairpin-loop structured oligodeoxynucleotides, polyamide nucleic acids, antisense RNA and small interfering RNA in association with or encapsulated within novel, nano- or micro-sized delivery systems ensure nontoxic and selective inhibition of the HIV promoter^{74,75}. Targeting other regions of the dsDNA genome or viral RNA by antisense technologies may also block HIV replication⁷⁶⁻⁸⁰. Silencing of the HIV-1 LTR/promoter by antisense strand-specific small interfering RNA (siRNA) targeting the U3 region was associated with an increased level of H3K27me3⁷⁵. Thus, one of the antisense technologies apparently induced both silencing and epigenetic modification of the HIV-1 LTR promoter. Targeted epigenetic silencing of the HIV promoter does not aim at reservoir purging. However, it may help HAART to curb HIV replication.

Conclusion

A detailed analysis of HIV proviral epigenotypes in major HIV-infected host cells may facilitate the optimization of epigenetic therapy and the development of cell type-specific epigenetic drugs or drug combinations. Because cells carrying silent HIV proviruses may reside in compartments inaccessible for current epigenetic and antiretroviral therapy, development of novel drugs or drug carriers efficiently penetrating such compartments appears to be a fruitful new research area, too. In addition, a pharmacoepigenetic approach may clarify the molecular basis for certain side effects of antiretroviral drugs and provide important clues as to their combination with epigenetic drugs. In addition to current forms of epigenetic therapy that are based on the activation of latent HIV proviruses, there are also alternative research efforts to establish selective epigenetic silencing of HIV transcription.

Acknowledgements

Our review was based on a work initiated by and performed in the framework of HIVERA, an EU-funded ERA-NET project established in 2010. We adapted a HIVERA foresight study on "Epigenetics of HIV infection: Implications for therapy" to a review format. We highly appreciate the support and encouragement of Dr. Roxane Brachet, ANRS (Agence Nationale de Recherches sur le SIDA et les Hépatites Virales), Paris, France. We also thank Ms. Zsófia Papp for her help in the preparation of the manuscript.

Disclosure

The authors have nothing to disclose that might lead to bias or conflict of interest related to this review.

References

- Minarovits J. Microbe-induced epigenetic alterations in host cells: the coming era of patho-epigenetics of microbial infections. A review. *Acta Microbiol Immunol Hung.* 2009;56:1-19.
- Niller H, Banati F, Ay E, Minarovits J. Epigenetic changes in virus-associated neoplasms. In: *Patho-Epigenetics of Disease*; Minarovits J, Niller H, (Eds); Springer: New York, 2012;179-225.
- Niller H, Banati F, Ay E, Minarovits J. Microbe-induced epigenetic alterations. In: *Patho-Epigenetics of Disease*; Minarovits J, Niller H, (Eds); Springer: New York, 2012;419-55.
- Mikovits J, Young H, Vertino P, et al. Infection with human immunodeficiency virus type 1 upregulates DNA methyltransferase, resulting in de novo methylation of the gamma interferon (IFN-gamma) promoter and subsequent downregulation of IFN-gamma production. *Mol Cell Biol.* 1998;18:5166-77.
- Robertson K. DNA methylation, methyltransferases, and cancer. *Oncogene.* 2001;20:3139-55.
- Nan X, Ng H, Johnson C, et al. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. *Nature.* 1998;393:386-9.
- Ng H, Zhang Y, Hendrich B, et al. MBD2 is a transcriptional repressor belonging to the MeCP1 histone deacetylase complex. *Nat Genet.* 1999;23:58-61.
- Blomen V, Boonstra J. Stable transmission of reversible modifications: maintenance of epigenetic information through the cell cycle. *Cell Mol Life Sci.* 2011;68:27-44.
- Ringrose L, Paro R. Polycomb/Triborox response elements and epigenetic memory of cell identity. *Development.* 2007;134:223-32.
- Fischle W, Wang Y, Jacobs S, Kim Y, Allis C, Khorasanizadeh S. Molecular basis for the discrimination of repressive methyl-lysine marks in histone H3 by Polycomb and HP1 chromodomains. *Genes Dev.* 2003;17:1870-81.
- Xu J, Pope S, Jazirehi A, et al. Pioneer factor interactions and unmethylated CpG dinucleotides mark silent tissue-specific enhancers in embryonic stem cells. *Proc Natl Acad Sci USA.* 2007;104:12377-82.
- Xu J, Watts J, Pope S, et al. Transcriptional competence and the active marking of tissue-specific enhancers by defined transcription factors in embryonic and induced pluripotent stem cells. *Genes Dev.* 2009;23:2824-38.
- Ito S, Shen L, Dai Q, et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. *Science.* 2011;333:1300-3.
- He Y, Li B, Li Z, et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. *Science.* 2011;333:1303-7.
- Zaret K, Watts J, Xu J, Wandzioch E, Smale S, Sekiya T. Pioneer factors, genetic competence, and inductive signaling: programming liver and pancreas progenitors from the endoderm. *Cold Spring Harb Symp Quant Biol.* 2008;73:119-26.
- Burke L, Zhang R, Bartkuhn M, et al. CTCF binding and higher order chromatin structure of the H19 locus are maintained in mitotic chromatin. *EMBO J.* 2005;24:3291-300.
- Kelly T, Jones P. Role of nucleosomes in mitotic bookmarking. *Cell Cycle.* 2011;10:370-1.
- Hughes T, Webb R, Fei Y, Wren J, Sawalha A. DNA methylome in human CD4+ T cells identifies transcriptionally repressive and non-repressive methylation peaks. *Genes Immun.* 2010;11:554-60.
- Schmidl C, Klug M, Boeld T, et al. Lineage-specific DNA methylation in T cells correlates with histone methylation and enhancer activity. *Genome Res.* 2009;19:1165-74.
- Tian Y, Jia Z, Wang J, et al. Global mapping of H3K4me1 and H3K4me3 reveals the chromatin state-based cell type-specific gene regulation in human Treg cells. *PLoS One.* 2011;6:e27770.
- Wang J, Lunyak V, Jordan I. Genome-wide prediction and analysis of human chromatin boundary elements. *Nucleic Acids Res.* 2012;40:511-29.
- Zhang Y, Shin H, Song J, Lei Y, Liu X. Identifying positioned nucleosomes with epigenetic marks in human from ChIP-Seq. *BMC Genomics.* 2008;9:537.
- Bocker M, Hellwig I, Breiling A, Eckstein V, Ho A, Lyko F. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. *Blood.* 2011;117:e182-9.
- Van den Berg R, Florence E, Vlieghe E, et al. Transcriptome analysis of monocyte-HIV interactions. *Retrovirology.* 2010;7:53.
- Karn J. The molecular biology of HIV latency: breaking and restoring the Tat-dependent transcriptional circuit. *Curr Opin HIV AIDS.* 2011;6:4-11.
- Richman D, Margolis D, Delaney M, Greene W, Hazuda D, Pomerantz R. The challenge of finding a cure for HIV infection. *Science.* 2009;323:1304-7.
- Siliciano R, Greene W. HIV latency. *Cold Spring Harb Perspect Med.* 2011;1:a007096.
- Pearson R, Kim Y, Hokello J, et al. Epigenetic silencing of human immunodeficiency virus (HIV) transcription by formation of restrictive chromatin structures at the viral long terminal repeat drives the progressive entry of HIV into latency. *J Virol.* 2008;82:12291-303.
- Donahue D, Wainberg M. Cellular and molecular mechanisms involved in the establishment of HIV-1 latency. *Retrovirology.* 2013;10:11.
- Taube R, Peterlin M. Lost in transcription: molecular mechanisms that control HIV latency. *Viruses.* 2013;5:902-27.
- Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. *Retrovirology.* 2013;10:67.
- Archin N, Liberty A, Kashuba A, et al. Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. *Nature.* 2012;487:482-5.
- Duverger A, Jones J, May J, et al. Determinants of the establishment of human immunodeficiency virus type 1 latency. *J Virol.* 2009;83:3078-93.
- Kauder S, Bosque A, Lindqvist A, Planelles V, Verdin E. Epigenetic regulation of HIV-1 latency by cytosine methylation. *PLoS Pathog.* 2009;5:e1000495.
- Lin S, Zhang Y, Ying H, Zhu H. HIV-1 reactivation induced by apicidin involves histone modification in latently infected cells. *Curr HIV Res.* 2011;9:202-8.
- Margolis D. Histone deacetylase inhibitors and HIV latency. *Curr Opin HIV AIDS.* 2011;6:25-9.
- Wolschendorf F, Duverger A, Jones J, et al. Hit-and-run stimulation: a novel concept to reactivate latent HIV-1 infection without cytokine gene induction. *J Virol.* 2010;84:8712-20.
- Deeks S. HIV: Shock and kill. *Nature.* 2012;487:439-40.
- Margolis D. Eradication therapies for HIV Infection: time to begin again. *AIDS Res Hum Retroviruses.* 2011;27:347-53.
- Matalon S, Rasmussen T, Dinarello C. Histone deacetylase inhibitors for purging HIV-1 from the latent reservoir. *Mol Med.* 2011;17:466-72.
- Choi B, Lee H, Oh Y, et al. Novel histone deacetylase inhibitors CG05 and CG06 effectively reactivate latently infected HIV-1. *AIDS.* 2010;24:609-11.
- Archin N, Espeseth A, Parker D, Cheema M, Hazuda D, Margolis D. Expression of latent HIV induced by the potent HDAC inhibitor suberoyl-anilide hydroxamic acid. *AIDS Res Hum Retroviruses.* 2009;25:207-12.
- Shan L, Deng K, Shroff N, et al. Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. *Immunity.* 2012;36:491-501.
- Youngblood B, Reich N. The early expressed HIV-1 genes regulate DNMT1 expression. *Epigenetics.* 2008;3:149-56.
- Shimura M, Toyoda Y, Iijima K, et al. Epigenetic displacement of HP1 from heterochromatin by HIV-1 Vpr causes premature sister chromatid separation. *J Cell Biol.* 2011;194:721-35.
- Shafer R, Rhee S, Pillay D, et al. HIV-1 protease and reverse transcriptase mutations for drug resistance surveillance. *AIDS.* 2007;21:215-23.
- Nyce J, Leonard S, Canupp D, Schulz S, Wong S. Epigenetic mechanisms of drug resistance: drug-induced DNA hypermethylation and drug resistance. *Proc Natl Acad Sci USA.* 1993;90:2960-4.
- Olivero O. Mechanisms of genotoxicity of nucleoside reverse transcriptase inhibitors. *Environ Mol Mutagen.* 2007;48:215-23.
- Wu S, Liu X, Solorzano M, Kwock R, Avramis V. Development of zidovudine (AZT) resistance in Jurkat T cells is associated with decreased expression of the thymidine kinase (TK) gene and hypermethylation of the 5' end of human TK gene. *J Acquir Immune Defic Syndr Hum Retrovir.* 1995;8:1-9.
- Lucarelli M, Palitti F, Carotti D, et al. AZT-induced hypermethylation of human thymidine kinase gene in the absence of total DNA hypermethylation. *FEBS Lett.* 1996;396:323-6.
- Senda S, Blanche S, Costagliola D, et al. Altered heterochromatin organization after perinatal exposure to zidovudine. *Antivir Ther.* 2007;12:179-87.
- Gyory I, Minarovits J. Epigenetic regulation of lymphoid specific gene sets. *Biochem Cell Biol.* 2005;83:286-95.
- Zhu T. HIV-1 in peripheral blood monocytes: an underrated viral source. *J Antimicrob Chemother.* 2002;50:309-11.
- Herbein G, Varin A. The macrophage in HIV-1 infection: from activation to deactivation? *Retrovirology.* 2010;7:33.
- Chun T, Justement J, Murray D, et al. Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication. *AIDS.* 2010;24:2803-8.
- Finzi D, Hermankova M, Pierson T, et al. Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. *Science.* 1997;278:1295-300.
- Margolis D. Mechanisms of HIV latency: an emerging picture of complexity. *Curr HIV/AIDS Rep.* 2010;7:37-43.
- Mbonye U, Karn J. Control of HIV latency by epigenetic and non-epigenetic mechanisms. *Curr HIV Res.* 2011;9:554-67.
- Siliciano J, Kajdas J, Finzi D, et al. Long-term follow-up studies confirm the stability of the latent reservoir for HIV-1 in resting CD4+ T cells. *Nat Med.* 2003;9:727-8.
- Marban C, Suzanne S, Dequiedt F, et al. Recruitment of chromatin-modifying enzymes by CTIP2 promotes HIV-1 transcriptional silencing. *EMBO J.* 2007;26:412-23.
- Kim N, Kukkonen S, Gupta S, Aldovini A. Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. *PLoS Pathog.* 2010;6:e1001103.

62. Zauli G, Gibellini D. The human immunodeficiency virus type-1 (HIV-1) Tat protein and Bcl-2 gene expression. *Leuk Lymphoma*. 1996;23:551-60.
63. Zhang M, Li X, Pang X, et al. Bcl-2 upregulation by HIV-1 Tat during infection of primary human macrophages in culture. *J Biomed Sci*. 2002;9:133-9.
64. Balog K, Minarovits J. Nef: a pleiotropic modulator of primate lentivirus infectivity and pathogenesis. *Acta Microbiol Immunol Hung*. 2006;53:51-75.
65. Olivetta E, Federico M. HIV-1 Nef protects human-monocyte-derived macrophages from HIV-1-induced apoptosis. *Exp Cell Res*. 2006;312:890-900.
66. Garaci E, Caroleo M, Aloe L, et al. Nerve growth factor is an autocrine factor essential for the survival of macrophages infected with HIV. *Proc Natl Acad Sci USA*. 1999;96:14013-18.
67. Busca A, Saxena M, Kumar A. Critical role for antiapoptotic Bcl-xL and Mcl-1 in human macrophage survival and cellular IAP1/2 (cIAP1/2) in resistance to HIV-Vpr-induced apoptosis. *J Biol Chem*. 2012;287:15118-33.
68. Aquaro S, Bagnarelli P, Guenci T, et al. Long-term survival and virus production in human primary macrophages infected by human immunodeficiency virus. *J Med Virol*. 2002;68:479-88.
69. Fenyo E, Albert J, Asjo B. Replicative capacity, cytopathic effect and cell tropism of HIV. *AIDS*. 1989;3(Suppl 1):S5-12.
70. Richman D. Introduction: challenges to finding a cure for HIV infection. *Curr Opin HIV AIDS*. 2011;6:1-3.
71. Iglesias-Ussel M, Romero F. HIV reservoirs: the new frontier. *AIDS Rev*. 2011;13:13-29.
72. Peedicayil J. Pharmacoepigenetics and pharmacoepigenomics. *Pharmacogenomics*. 2008;9:1785-6.
73. Adler-Wailes D, Guiney E, Koo J, Yanovski J. Effects of ritonavir on adipocyte gene expression: evidence for a stress-related response. *Obesity (Silver Spring)*. 2008;16:2379-87.
74. Fattal E, Barratt G. Nanotechnologies and controlled release systems for the delivery of antisense oligonucleotides and small interfering RNA. *Br J Pharmacol*. 2009;157:179-94.
75. Weinberg M, Villeneuve L, Ehsani A, et al. The antisense strand of small interfering RNAs directs histone methylation and transcriptional gene silencing in human cells. *RNA*. 2006;12:256-62.
76. Helene C, Giovannangeli C, Guietysse-Peugeot A, Praseuth D. Sequence-specific control of gene expression by antigen and clamp oligonucleotides. *Ciba Found Symp*. 1997;209:94-106.
77. Kwok T, Heinrich J, Jung-Shiu J, Meier M, Mathur S, Moelling K. Reduction of gene expression by a hairpin-loop structured oligodeoxynucleotide: alternative to siRNA and antisense. *Biochim Biophys Acta*. 2009;1790:1170-8.
78. Lisziewicz J, Sun D, Weichold F, et al. Antisense oligodeoxynucleotide phosphorothioate complementary to Gag mRNA blocks replication of human immunodeficiency virus type 1 in human peripheral blood cells. *Proc Natl Acad Sci USA*. 1994;91:7942-6.
79. Moelling K, Abels S, Jendis J, Matskevich A, Heinrich J. Silencing of HIV by hairpin-loop-structured DNA oligonucleotide. *FEBS Lett*. 2006;580:3545-50.
80. Peng H, Callison D, Li P, Burrell C. Long-term protection against HIV-1 infection conferred by tat or rev antisense RNA was affected by the design of the retroviral vector. *Virology*. 1996;220:377-89.