

Impact of Immigration on HIV-1 Molecular Epidemiology in West Africa, Maghreb and Southern Europe

Lamia Miri¹, Lahcen Wakrim¹, Hassène Kassar², Kari Hemminki³ and Meriem Khyatti¹

¹Pasteur Institute of Morocco, Casablanca, Morocco; ²Centre of Studies and Research Perspectives, Faculty of Humanities and Social Sciences of Tunis, Tunis, Tunisia; ³German Cancer Research Center, Heidelberg, Germany

Abstract

There is global concern about the relation between international migration and the course of the AIDS epidemic. Maghreb is a North African region, which lies between sub-Saharan Africa and Europe. It has been turned recently into a region of immigration, since there are more and more flows of West African migrants hoping to reach European countries. Here we provide an overview on HIV-1 molecular epidemiology particularly in West African countries, Maghreb (Morocco, Algeria, Tunisia) and southern European countries (Spain, France, and Italy). The studies conducted in several countries of the region revealed different features of HIV-1 molecular epidemiology, especially for the distribution of viral subtypes and for transmitted drug resistance profiles. Furthermore, migration from West Africa to Europe seems to be a potential source of non-B subtype mobility to Maghreb and eventually to southern Europe, where HIV-1 non-B variants significantly increased in the last 10 to 15 years. As genetic differences between subtypes might impact the drug resistance pathways, it is important to provide continuous surveillance programs for the early detection of new variants spreading in the population before they become more prevalent, and to identify resistance profiles in different infected populations, especially migrants. (AIDS Rev. 2014;16:109-16)

Corresponding author: Meriem Khyatti, meriem.khyatti@pasteur.ma

Key words

HIV-1. Diversity. Subtype. Resistance. Immigration.

Introduction

The HIV type-1 pandemic is one of the leading causes of death worldwide and remains a serious challenge to global public health. At the end of 2011, the United Nations Programme on HIV/AIDS (UNAIDS) estimated that there were 34.2 million people living with HIV and that 2.5 million people became newly infected every year¹. More than 96% of new HIV-1 infections occurred in low- and middle-income countries.

As the AIDS pandemic progresses, HIV-1 exhibits considerable genetic diversity, which leads to several distinct genetic strains or subtypes within the main group of the virus. With increasing levels of population movement across different regions in the world, the global HIV-1 epidemic is becoming increasingly heterogeneous. While many factors have contributed to the clinical success of antiretroviral therapy, HIV-1 variability remains one of the major obstacles for HIV/AIDS disease control and for the effectiveness of antiretroviral drugs.

The Maghreb is usually defined as the region of North West Africa, including the countries of Morocco, Algeria, and Tunisia. As Maghreb lies between sub-Saharan Africa and Europe, it has been turned recently into a region of immigration², since there are flows of West African migrants hoping to reach European countries, with Spain and Italy as the main destinations. From there, migrants often make their way to other European countries, particularly France.

Correspondence to:

Meriem Khyatti
Institut Pasteur du Maroc
1, Place Louis Pasteur
20360 Casablanca, Morocco
E-mail address: meriem.khyatti@pasteur.ma

Table 1. HIV-1 estimations in Maghreb, sub-Saharan Africa and Western and Central Europe

Regions and countries	Sub-Saharan Africa*	Western and Central Europe*	Maghreb		
			Morocco	Tunisia	Algeria
Adults living with HIV	23.5 million (22.1-24.8)	900,000 (830,000-1,000,000)	31,000* (20,000-44,000)	1,700* (1,500-1,900)	20,000* (12,000-28,000)
Newly infected adults and children	1.8 million (1.6-2.0)	30,000 (21,000-40,000)	3,600* (2,000-5,000)	39†	684‡
AIDS-related deaths	1.2 million (1.1-1.3)	7,000 (7,600-9,000)	1,600* (< 1,000-2,500)	< 100*	1,100* (< 1,000-1,500)

*UNAIDS estimations (2012)¹; †Annual average of new cases since 1997⁶³; ‡Registered in 2009 from LNR/IPA (Laboratoire National de Reference, Institut Pasteur d'Alger)⁶⁴.

The HIV-1 epidemic in sub-Saharan Africa is characterized by genetically diverse viral subtypes. In fact, all known HIV-1 subtypes and groups have been detected in this part of the world. The migration from West Africa to Europe may thus have an influence on the HIV-1 genetic diversity, not only in southern Europe as the destination region, but also in Maghreb as a transit region.

This paper provides an overview of the features of HIV-1 molecular epidemiology by presenting a synthesis of HIV-1 subtype distribution and transmitted drug resistance (TDR) mutations. We focus particularly on the available data from West African countries, Maghreb, and southern European countries (Spain, France, and Italy). We provide an analysis of studies conducted in some European countries about possible connections between major migratory flows from Africa and the course of the HIV-1 epidemic and diversity. The present study employed an initial literature review of peer-reviewed articles in PubMed, UNAIDS, and WHO databases. Original articles written in French and data from institutional reports were included in this extensive review.

Trends in the prevalence of HIV-1 infection in West Africa, Maghreb and southern Europe

The HIV/AIDS epidemic is a major problem in developing countries, especially in sub-Saharan Africa where 69% of the world's infection is harbored. In 2011, there were an estimated 23.5 million people living with HIV in sub-Saharan Africa (Table 1)¹. Countries with the largest epidemics are in southern Africa. In the countries of West and Central Africa, the prevalence of HIV remains low, with an adult HIV prevalence estimated at 2% or less in 2009 compared to the other sub-Saharan countries. This prevalence is higher in Cameroon

(5.3%), Gabon (5.2%), Central African Republic (4.7%), Nigeria (3.6%), and Ivory Coast (3.4%)³.

The HIV prevalence among the general population of Maghreb countries is very low, generally around 0.1%⁴. In 2011, an estimated 31,000 persons were living with HIV in Morocco compared to 1,700 in Tunisia and 20,000 in Algeria (Table 1). Although the overall HIV prevalence in the region is low, increasing HIV infection is seen in all North African countries, especially in younger age groups. For example in Morocco, most of notified HIV infections (63%) are in young single persons^{4,5}. This increased vulnerability of young people to HIV in North Africa is due primarily to their risk behaviors^{4,6}.

In Western and Central Europe, 900,000 people were living with HIV at the end of 2011, according to UNAIDS estimations (Table 1). The prevalence is higher in Western Europe than in Central Europe. The highest AIDS rates were reported in Portugal, followed by Switzerland, Spain, and France³. The groups who are most vulnerable to HIV infection vary between countries, areas, and communities within Western and Central Europe. Populations at higher risk include intravenous drug users and their sexual partners, homosexual men, transgender people, prisoners, sex workers, and migrants⁷. For instance, the spread of HIV in Italy is increasingly concentrated among immigrants. New HIV cases in immigrants rose from 8.8% in 1991 to 30% in 2000⁸.

HIV-1 diversity and migration flows

HIV-1 comprises four distinct lineages, termed groups M, N, O, and P, each of which resulted from an independent cross-species transmission event⁹. The HIV-1 group M has been classified into genetically distinct subtypes (A-D, F-H, J-K), sub-subtypes (A1-A3, F1-F2) and circulating recombinant forms (CRF), usually defined

by geographical location. The other lineages of HIV-1 (groups N, O, and P) are highly divergent genetically from the M group and represent a minority of HIV-1 strains that are endemic in Cameroon and neighboring countries in West Central Africa¹⁰.

Molecular epidemiological studies showed that, with the exception of sub-Saharan Africa where most subtypes, CRFs, and several unique recombinant forms (URF) have been detected, there is a specific geographical distribution of HIV-1 subtypes¹⁰. The global expansion and diversification of the HIV-1 pandemic in the period 2004 to 2007 revealed major epidemics of subtype C that accounted for nearly half (48%) of all global infections and were concentrated mainly in sub-Saharan Africa, India, and parts of Brazil. Subtype A caused 12% of infections and was predominant in Eastern Europe and Northern Asia. Subtype B, which is responsible for 11% of infections worldwide, is predominant in North and Latin America, Europe, Japan, Australia, and North Africa. The CRF02_AG caused 8% of infections and is concentrated in West Africa, with a low prevalence in North Africa. The CRF01_AE caused 5% of infections and is predominant in Southeast Asia, while the G and D subtypes are responsible for 2 and 5% of infections, respectively, and are predominant in Central Africa (Table 2).

Non-B subtype strains are thus responsible for most HIV-1 infections worldwide. More specifically in West Africa, the CRF02_AG, subtypes A and G, are widespread¹¹. Today, CRF02_AG strains dominate the epidemic in Ghana (66%), Guinea (89%), Mali (75%)¹², Niger (54.3%)¹³, and Senegal (64%)¹⁴.

In Nigeria there was a different distribution of HIV-1 strains belonging to CRF02_AG (range, 39-57%), G subtype (range, 26-58%) and A subtype (range, 49-80%). Cameroon is one country where the most HIV-1 subtypes and groups (M, O, N and P) have been identified^{15,16}. The CRF02_AG is however still predominant and ranges from 60 to 68%^{11,17}.

In Maghreb, patients are mainly infected with HIV subtype B. It is, however, noteworthy that the prevalence of non-B subtypes is increasing, probably as a result of migration, travel, and trade with regions where non-B strains and CRFs are prevalent. Thus in Algeria, different subtypes were identified among HIV-1-infected individuals from various geographic parts of the country¹⁸. Subtype B was predominant and represented 56% of infections, followed mainly by CRF02_AG and CRF06_cpx with 12.7 and 4.0% of infections, respectively. Other viral recombinants between CRF02_AG and CRF06_cpx have been frequently detected in Algeria (9.7%).

Similarly in Tunisia, the distribution of HIV-1 subtypes in the period 2009 to 2010 revealed a predominance of subtype B with 82% of infections, followed by 15% of CRF02_AG, and 1% of subtype C¹⁹.

In Morocco, subtype B accounted for 74% of new infections. However, the prevalence of non-B subtypes has increased in the last years (2004 to 2010) among newly infected subjects²⁰⁻²³. The main non-B subtypes detected in drug-naive individuals were CRF02_AG, sub-subtype A1, and CRF01_AE, which represent 15.0, 6.0, and 4.8% of new infections, respectively²². A recent phylogenetic study revealed that most of CRF02_AG protease sequences isolated in Morocco fell within a single cluster, which indicates that this cluster is country-specific²¹. All conducted studies clearly indicate that migration potentially contributed to the diffusion of European subtype B as well as to the spread of sub-Saharan African non-B strains in Maghreb countries²¹⁻²⁵ and eventually in southern Europe.

The southern European HIV/AIDS epidemic is dominated by viruses assigned to subtype B (70% across the Europe)²⁶. However, the prevalence of non-B subtypes in countries with large immigrant communities, such as Spain, France, and Italy, is rapidly spreading among newly diagnosed individuals^{27,28}.

According to the European Centre for Disease Prevention and Control (ECDC)²⁹, migrants from sub-Saharan Africa account for the majority of heterosexually acquired HIV infections diagnosed in European countries in recent years.

Most of HIV infections in people from sub-Saharan Africa are likely to have occurred in the countries of origin. However, migration itself places people in situations of heightened vulnerability to HIV/AIDS³⁰. But, there is also evidence that people of sub-Saharan Africa origin are becoming infected by HIV in European countries. In fact, once in the country of destination, migrants could have insufficient access to HIV/AIDS prevention and care services due to, for instance, legal obstacles and cultural and language barriers³¹.

Migrant flows from endemic regions represent a significant factor contributing to the spread of circulating non-B subtypes. Several studies suggested that the increase of non-B subtypes in European countries is related to immigration. Infected migrants from sub-Saharan Africa and North Africa showed a higher prevalence of non-B subtypes³²⁻³⁵.

In France, non-B subtypes among treatment-naive patients with chronic HIV-1 infection increased from 10% in 1998 to 33% in 2001³⁶. In a recent study, non-B subtypes were found in all regions of France and

Table 2. Most predominant subtypes and circulating recombinant forms

Subtypes, CRF (%)	C	A	B	CRF02_AG	CRF01_AE	D	G	F	CRF06_cpx	Other groups subtypes CRF and URF
Worldwide (2004-2007) ¹⁰	48	12	11	8	5	5	2	1	8	
Italy ⁴⁷	1.3 (47/3,670)	1.4 (53/3,670)	88.6 (3,253/3,670)	3.0 (107/3,670)	0.5 (21/3,670)	—	0.6 (23/3,670)	2.7 (99/3,670)	—	1.0 (39/3,670)
Spain ⁴²	0.5 (12/2,299)	—	92 (2,110/2,299)	3.4 (79/2,299)	0.5 (112/2,299)	0.4 (9/2,299)	1.3 (31/2,299)	0.3 (8/2,299)	—	0.7 (1712/299)
France ³⁷	1.06 (12/1,128)	1.6 (18/1,128)	74.7 (843/1,128)	13.8 (156/1,128)	0.7 (8/1,128)	0.8 (9/1,128)	0.9 (11/1,128)	0.8 (10/1,128)	0.7 (8/1,128)	4.7 (53/1,128)
Morocco ²²	2.0 (2/83)	6.0 (5/83)	74.0 (62/83)	15.0 (12/83)	1.2* (2/162)	—	1.2* (2/162)	1.0 (1/83)	—	2.0 (2/83)
Algeria ¹⁸	—	—	56.0 (total of 134)	12.7 (total of 134)	—	—	—	—	4 (total of 134)	>9 (total of 134)
Tunisia ¹⁹	1 (1/78)	—	82 (64/78)	14 (11/78)	—	—	—	—	—	3 (2/78)
Nigeria ⁶⁵	—	3.6 (12/338)	—	45.0 (152/338)	—	—	37.9 (128/338)	—	4.4 (15/338)	9.2 (31/338)
Ghana ⁶⁶	0.8 (2/249)	3 (8/234)	—	63 (147/234)	—	—	—	—	—	33 [‡] (77/234)
Guinea ⁶⁷	4.9 (2/41)	4.9 (2/41)	—	53.7 (22/41)	—	—	7.3 (3/41)	2.4 (1/41)	2.4 (1/41)	24.3 (10/41)
Senegal ⁶⁸	4 (12/28)	16 (53/328)	3 (10/328)	55 (180/328)	—	4 (11/328)	6 (18/328)	—	7 (24/328)	2 (7/328)
Mal ⁶⁹	—	3 (6/198)	—	70 (139/198)	0.5 (1/198)	—	1 (2/198)	1 (2/198)	1 (22/198)	10.6 (21/198)
Burkina Faso ⁷⁰	—	3.8 (4/104)	—	37.5 (39/104)	—	—	—	—	44.2 (46/104)	14.3 (15/104)
Cameroon** ¹⁵	2 (1/59)	3 (2/59)	—	52 (31/59)	—	3 (2/59)	—	2 (1/59)	—	37 (22/59)

*Detected in another study¹⁸; **Treatment-naïve Cameroonian subjects with advanced disease; [‡]Recombinant CRF02_AG or unclassified subtypes. CRF: circulating recombinant form.

accounted for 25% of primary HIV-1 infections in the period 1996 to 2010³⁷. Several studies indicate that approximately 50% of these HIV-1 non-B infections in France were due to CRF02_AG variants³⁸, which is the predominant genetic form found in West Africa. In fact, a study carried out among newly diagnosed HIV individuals in France from 2003 to 2005 revealed that individuals from sub-Saharan countries accounted for one-third of all HIV-infected cases (33%). The most frequent origins of these infected cases were Cameroon and Ivory Coast (46%)³⁹. However, according to the National Institute of Statistics and Economic Studies (INSEE), the overall migration flows from African countries (other than Maghreb) to France represented only 12.8% of all immigrants in 2009⁴⁰. It still remains far below the flows coming from Maghreb (29.9%) and other European countries (37.7%) where non-B subtypes are also widespread⁴¹.

In Spain, subtype B is predominant, but the prevalence of non-B subtypes increased from 4.4% between 2000 and 2003 to 18.14% in 2010^{42,43}. The most prevalent non-B variants in Spain were CRF02_AG (17.48%), subtype A (4.91%), subtype G (4.78%), CRF12_BF (3.14%), and subtype C (3%)⁴⁴. The frequencies of non-B subtypes and CRFs in Spain were supposed to be related to migratory flows^{44,45}. De Felipe, et al. showed in their study that 11.1% of newly diagnosed HIV-1-infected patients from southern Spain in 2000-2010 were immigrants. Of these patients, 29% were infected with non-B subtypes and 51.7% with CRF02_AG strains. Most of them were from sub-Saharan Africa⁴⁶. Another study revealed that non-B subtypes were isolated in 15.2% of treatment-naive patients. Only 11% (53/479) of HIV-1-infected Spaniards carried non-B strains, compared to 88.2% (15/17) of sub-Saharan Africans, 58.3% (7/12) of East Europeans, and 50% (8/16) of North Africans³².

In Italy, the overall proportion of non-B strains increased from 18% in 2000 to 24% in 2010⁴⁶. The most prevalent non-B strains were subtype F1 (23.7% of the total non-B subtypes), followed by subtype A (12.7%), subtype C (11.3%), and subtype G (5.5%). The distribution of these non-B strains varied between patients of European and African origins. Indeed, F1 subtype was present only in one African individual and was the most frequent strain in Europeans with non-B variants (44.3%)⁴⁷. However, the CRF02_AG strain was found in 52.1% of West African subjects living in Italy⁴⁷.

The immigration from sub-Saharan Africa to southern Europe increased in the last two decades. Since the Maghreb lies between southern Europe and West

Africa, it has been transformed into an area of emigration and also an area of transit migration. For geographic reasons, Spain and Italy are the most common destinies of transit immigrants.

According to different estimates, between 65,000 and 120,000 sub-Saharan Africans enter the Maghreb (Mauritania, Morocco, Tunisia, Algeria, and Libya) every year. About 20-30% was believed to migrate to Europe through Algeria and Morocco. At least 100,000 sub-Saharan migrants now live in Mauritania and Algeria. Tunisia and Morocco host smaller but growing sub-Saharan immigrant communities of several tens of thousands⁴⁸. According to the Association of Friends and Families of the Victims of Clandestine Immigration (AFVIC), Morocco registered 10,000-15,000 irregular migrants from sub-Saharan Africa (40 African states) in 2007. The Moroccan Association for Research & Study on Migration (AMERM) reported that the sub-Saharan migrants transiting from Morocco were from Nigeria (15.7%), Mali (13.1%), Senegal (12.8%), Congo (10.4%), Ivory Coast (9.2%), Guinea (7.3%), and Cameroon (7%)⁴⁹. While most of the migrants consider Morocco as a country of transit, a growing number of them fail to cross to Europe. They were also faced with the restrictive measures of the European policies and were forced to stay in Morocco for a relatively long period rather than returning to their countries of origin, which are more unstable and significantly poorer⁴⁹.

Trends of transmitted drug resistance mutations

As the HIV-1 genotypes diverge between West Africa, Maghreb, and southern Europe, it is important to provide an overview of the resistance profiles in these regions (Table 3). Transmitted drug resistance is defined as resistance to one or more antiretroviral drugs found in individuals with no previous drug exposure and is attributed to the direct transmission of resistant strains from treated individuals.

In Africa in general, the prevalence of TDR is different, but remains lower than 5%⁵⁰. In West African countries, TDR prevalence is higher for reverse transcriptase inhibitors and reaches 9%, especially in Cameroon and Mali⁵¹.

In Maghreb, two studies conducted in Morocco identified around 5% of TDR mutations for protease and reverse transcriptase inhibitors^{22,23}. One possible explanation for this low prevalence was that the time of infection diagnosis is usually much later than the date of the primary infection. In fact, most individuals who are newly diagnosed with HIV infection in Morocco do

Table 3. The prevalence of transmitted drug resistance mutations

Countries	Spain	Italy	France	Morocco	Mali	Niger	Burkina Faso
Study period	1996-2010	2000-2010	1996-2006	2005-2009	2005-2006	2009	2004-2006
Number of drug-naïve patients	732	3,163	415	98	198	96	104
TDR (%)	9.7	14.0	10.9	5.0	11.5	8.3	12.5
TDR in NNRTI (%)	5.0	7.0	4.6	0	9.0	5.2	6.1
TDR in NRTI (%)	6.1	7.0	6.7	1.4	1.5	4.2	10.6
TDR in PI (%)	2.9	3.0	2.9	1.0	1.0	1.0	0
Non-B subtype prevalence (%)	47.7	18.0	25.5	26.0	94.0	100.0	> 87.0
Most predominant non-B subtype	CRF02_AG	F1	CRF02_AG	CRF02_AG	CRF02_AG	CRF02_AG	CRF06_cpx
Studies	Yebra, et al. 2011 ⁴⁴	Colafigli, et al. 2012 ⁴⁶	Chaix, et al. 2009 ⁷¹	El Annaz, et al. 2011 ²²	Derache et al. 2008 ⁶⁹	Mamadou, et al. 2011 ⁷²	Tebit, et al. 2011 ⁷⁰

TDR: transmitted drug resistance mutations; PI: protease inhibitors; NRTI: nucleoside reverse transcriptase inhibitors; NNRTI: nonnucleoside reverse transcriptase inhibitors.

not know how long they have been infected and were commonly diagnosed at an advanced stage of infection^{21,23}. The delay in diagnosis could theoretically decrease detection of TDR due to reversion of the virus to a susceptible genotype⁵². Even so, minor resistance mutations were frequently observed in the protease genes of treatment-naïve Moroccan individuals infected with HIV-1 non-B subtypes^{21,23}.

In southern Europe, where subtype B predominates, TDR rates vary from 9 to 14%^{28,54,55}. This high level is likely due to an early and gradual introduction of antiretroviral therapy in these populations. Although baseline resistance increased over time in newly diagnosed cases of non-B infection in Europe, non-B viruses still less frequently carried resistance mutations than did subtype B viruses (4.8 vs. 12.9%)²⁸.

In France, the proportion of transmitted viruses resistant to at least one antiretroviral drug was estimated at 10.9% in 1996 to 2006⁵⁴. In Spain, a prevalence of 9.7% of TDR was observed in the period 1996 to 2010. Transmitted resistance to reverse transcriptase inhibitors was found to be two or threefold higher than that for protease inhibitors in 2007 to 2010. The TDR was also higher in non-B as compared to the B subtype during this period⁴⁴. In Italy, the prevalence of TDR was 12% (13.2% in subtype B and 9% in non-B subtypes)³⁸, with a high prevalence of TDR among patients carrying F1 subtype (15.4%)⁵⁵.

Since some biological properties differ between the subtypes, the spread of HIV-1 variants should be taken into consideration in the clinical settings. The HIV-1 subtypes have different rates of evolution and their sequence variation may affect antiviral drug resistance development⁵⁶⁻⁵⁸. Although it seems that combination antiretroviral regimens are effective against all HIV-1 subtypes, there is emerging evidence that genetic differences between subtypes might impact on drug resistance pathways and the kinetics of drug resistance development. Such diversity may also influence the types of resistance mutations that could eventually emerge upon drug exposure⁵⁸. Specific non-B subtypes showed distinct resistance mutations and subtype-specific polymorphisms that act as minor mutations in subtype B in both protease and reverse transcriptase genes and can affect HIV-1 susceptibility to antiretroviral drugs⁶⁰⁻⁶². Natural polymorphisms among non-B subtypes have been reported at protease and reverse transcriptase drug resistance positions, and most of them act as accessory drug resistance mutations in subtype B viruses⁶².

Conclusion

There is global concern about the relation between international migration and the course of the AIDS epidemic. A hallmark of the HIV-1 epidemic in Maghreb

and southern Europe is the increase in non-B strain penetration and circulation in the last 10 to 15 years. These changes have taken place as a result of the migration flows from sub-Saharan Africa to Maghreb and Europe, and from Southeast Asia and Central and South America to Western Europe. In addition to migration, trade and tourism in areas with high prevalence of HIV-1 infection is thought to be responsible for the entry of various group M subtypes into previously subtype B-restricted countries.

The studies conducted in several countries of West Africa, Maghreb, and southern Europe revealed different features of HIV-1 molecular epidemiology, especially for the distribution of viral subtypes and for TDR profiles. Nevertheless, further studies concerning TDR in Maghreb are strongly needed among treatment-naïve subjects to provide a more accurate picture on drug resistance mutations in the region.

Finally, continuous surveillance programs need to be performed for early detection of new variants spreading in the population before they become more prevalent. Surveillance and prevention measures should not only be directed towards national populations, but also towards migrants, travelers, and tourists who are the major sources and targets of HIV-1 spread.

Author disclosure statement

No competing financial interests exist.

Acknowledgments

This study was supported by EU FP7/2007-2013 grant 260715.

References

- WHO and UNAIDS. Core Epidemiology Slides (2012). 2012. Available from: http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/201211_epi_core_en.pdf. [Accessed 10 Nov, 2012].
- De Haas H. Morocco: From Emigration Country to Africa's Migration Passage to Europe. Migration Information Source 2005. Available from: <http://www.migrationinformation.org/feature/display.cfm?ID=339>. [Accessed 11 Mar, 2013].
- UNAIDS. 2012 UNAIDS World AIDS Day Report - Results. 2012. Available from: http://www.unaids.org/en/media/unaids/contentassets/documents/epidemiology/2012/gr2012/JC2434_WorldAIDSday_results_en.pdf. [Accessed 29 Mar, 2013].
- Kouyoumjian S, Mumtaz G, Hilmi N, et al. The epidemiology of HIV infection in Morocco: systematic review and data synthesis. *Int J STD AIDS*. 2013;24:507-16.
- Jenkins C, Robalino D. HIV in the Middle East and North Africa: The Cost of Inaction. Orientations in Development Series, World Bank 2003.
- UNAIDS. Middle East and North Africa - Regional Report on AIDS. 2011. Available from: http://www.unaids.org/en/media/unaids/contentassets/documents/unaidspublication/2011/JC2257_UNAIDS-MENA-report-2011_en.pdf. [Accessed 29 Mar, 2013].
- WHO. European Action Plan for HIV/AIDS 2012–2015. 2011. Available from: <http://www.euro.who.int/en/what-we-publish/abstracts/european-action-plan-for-hiv-aids-20122015>. [Accessed 3 Apr, 2013].
- Manfrin V, Franzetti M. HIV/AIDS in an established market economy: The case of Italy. *Health Policy and Development Journal*. 2005;3:41-5.
- Sharp P, Hahn B. Origins of HIV and the AIDS Pandemic. *Cold Spring Harb Perspect Med*. 2011;1:1.
- Hemelaar J, Gouws E, Ghys PD, et al. Global trends in molecular epidemiology of HIV-1 during 2000–2007. *AIDS*. 2011;25:679-89.
- Lihana R, Ssemwanga D, Abimiku A, et al. Update on HIV-1 diversity in Africa: a decade in review. *AIDS Rev*. 2012;14:83-100.
- Imamichi H, Koita O, Dabitao D, et al. Identification and characterization of CRF02_AG, CRF06_cpx, and CRF09_cpx recombinant subtypes in Mali, West Africa. *AIDS Res Hum Retroviruses*. 2009;25:45-55.
- Mamadou S, Montavon C, Ben A, et al. Predominance of CRF02-AG and CRF06-cpx in Niger, West Africa. *AIDS Res Hum Retroviruses*. 2002;18:723-6.
- Diop-Ndiaye H, Toure-Kane C, Leye N, et al. Antiretroviral drug resistance mutations in antiretroviral-naïve patients from Senegal. *AIDS Res Hum Retroviruses*. 2010;26:1133-8.
- Soares E, Makamche M, Siqueira J, et al. Molecular diversity and polymerase gene genotypes of HIV-1 among treatment-naïve Cameroonian subjects with advanced disease. *J Clin Virol*. 2010;48:173-9.
- Brennan C, Bodelle P, Coffey R, et al. The prevalence of diverse HIV-1 strains was stable in Cameroonian blood donors from 1996 to 2004. *J Acquir Immune Defic Syndr*. 2008;49:432-9.
- Carr J, Wolfe N, Torimiro J, et al. HIV-1 recombinants with multiple parental strains in low-prevalence, remote regions of Cameroon: evolutionary relicts? *Retrovirology*. 2010;7:39.
- Bouzeghoub S, Jauvin V, Pinson P, et al. High Diversity of HIV Type 1 in Algeria. *AIDS Res Hum Retroviruses*. 2006;22:367-372.
- Jlizi A, Elmi A, Nasr M, Ben Hadj Kacem M, Abid S, Slim A. Phylogenetic diversity and drug resistance of human immunodeficiency virus type 1 (VIH-1) strains in Tunisian patients. 6th IAS Conference on HIV Pathogenesis. Treatment and prevention. Rome, Italy. 2011. [Abstract CDA015]. Available from: <http://www.iasociety.org/Abstracts/A200743130.aspx>. [Accessed 29 Mar, 2013].
- Akrim M, Lemrabet S, Elharti E, et al. HIV-1 Subtype distribution in Morocco based on national sentinel surveillance data 2004-2005. *AIDS Res Ther*. 2012;9:5.
- Miri L, Ouladlahsen A, Kettani A, et al. Characterization of protease resistance-associated mutations in HIV type 1 drug-naïve patients following the increasing prevalence of the CRF02_AG strain in Morocco. *AIDS Res Hum Retroviruses*. 2012;28:571-7.
- El Annaz H, Recordon-Pinson P, Baba N, et al. Presence of drug resistance mutations among drug-naïve patients in Morocco. *AIDS Res Hum Retroviruses*. 2011;27:917-20.
- Bakhouch K, Oulad-Lahcen A, Bensghir R, et al. The prevalence of resistance associated mutations to protease and reverse transcriptase inhibitors in treatment-naïve (HIV1)-infected individuals in Casablanca, Morocco. *J Infect Dev Ctries*. 2009;3:380.
- Elharti E, Alami M, Khattabi H, et al. Some characteristics of the HIV epidemic in Morocco. *East Mediterr Health J*. 2002;8:819-25.
- El Aouad R, Diez M, Cherkaoui I. Impact of immigration on HIV and tuberculosis epidemiology in the Euro-Mediterranean area. *Euro Surveill*. 2009;14.
- Abecasis A, Wensing A, Paraskevis D, et al. HIV-1 subtype distribution and its demographic determinants in newly diagnosed patients in Europe suggest highly compartmentalized epidemics. *Retrovirology*. 2013;10:7.
- Masquelier B, Haskaran K, Pillay D, et al. Prevalence of transmitted HIV-1 drug resistance and the role of resistance algorithms: data from seroconverters in the CASCADE collaboration from 1987 to 2003. *J Acquir Immune Defic Syndr*. 2005;40:505-11.
- Wensing A, van de Vijver D, Angarano G, et al. Prevalence of drug-resistant HIV-1 variants in untreated individuals in Europe: implications for clinical management. *J Infect Dis*. 2005;192:958-66.
- ECDC. Migrant health: Epidemiology of HIV and AIDS in migrant communities and ethnic minorities in EU/EEA countries. 2009. Available from: http://www.ecdc.europa.eu/en/publications/publications/0907_ter_migrant_health_hiv_epidemiology_review.pdf. [Accessed 15 Mar, 2014].
- Del Amo J, Likatavicius G, Cachafeiro S, et al. The epidemiology of HIV and AIDS reports in migrants in the 27 European Union countries, Norway and Iceland: 1999-2006. *Eur J Public Health*. 2011;21:620-6.
- ECDC. Migrant health: Access to HIV prevention, treatment and care for migrant populations in EU/EEA countries. 2009. Available from: http://ecdc.europa.eu/en/publications/publications/0907_ter_migrant_health_hiv_access_to_treatment.pdf. [Accessed 15 Mar, 2014].
- Garcia F, Pérez-Cachafeiro S, Guillot V, et al. Transmission of HIV drug resistance and non-B subtype distribution in the Spanish cohort of antiretroviral treatment naïve HIV infected individuals (CoRIS). *Antiviral Res*. 2011;91:150-3.
- Yerly S, von Wyl V, Ledergerber B, et al. Swiss HIV Cohort Study. Transmission of HIV-1 drug resistance in Switzerland: a 10-year molecular epidemiology survey. *AIDS*. 2007;21:2223-9.
- Paraskevis D, Pybus O, Magiorkinis G, et al. Tracing the HIV-1 subtype B mobility in Europe: a phylogeographic approach. *Retrovirology*. 2009;6:49.
- Von Wyl V, Kouyoumjian R, Yerly S, et al. The Role of migration and domestic transmission in the spread of HIV-1 non-B subtypes in Switzerland. *J Infect Dis*. 2011;204:1095-103.

36. Descamps D, Chaix M-L, André P, et al. French national sentinel survey of antiretroviral drug resistance in patients with HIV-1 primary infection and in antiretroviral-naïve chronically infected patients in 2001-2002. *J Acquir Immune Defic Syndr.* 2005;38:545-52.
37. Chaix M-L, Seng R, Frange P, et al. Increasing HIV-1 non-B subtype primary infections in patients in France and effect of HIV subtypes on virological and immunological responses to combined antiretroviral therapy. *Clin Infect Dis.* 2013;56:880-7.
38. Descamps D, Chaix M-L, Montes B, et al. Increasing prevalence of transmitted drug resistance mutations and non-B subtype circulation in antiretroviral-naïve chronically HIV-infected patients from 2001 to 2006/2007 in France. *J Antimicrob Chemother.* 2010;65:2620-7.
39. Semaille C, Barin F, Cazein F, et al. Monitoring the dynamics of the HIV epidemic using assays for recent infection and serotyping among new HIV Diagnoses: Experience after 2 years in France. *J Infect Dis.* 2007;196:377-83.
40. Lessault D, Beauchemin C. Les migrations d'Afrique subsaharienne en Europe: un essor encore limité. *Population et Sociétés* 2009. Available from: <http://halshs.archives-ouvertes.fr/halshs-00740710>. [Accessed 5 Apr, 2013].
41. INSEE. Tableaux de l'économie française. Étrangers - Immigrés. 2013. Available from: http://www.insee.fr/fr/mobile/etudes/document.asp?reg_id=0&id=3807. [Accessed 14 March, 2014].
42. De Mendoza C, Garrido C, Poveda E, et al. Changes in drug resistance patterns following the introduction of HIV type 1 non-B subtypes in Spain. *AIDS Res Hum Retroviruses.* 2009;25:967-72.
43. Monge S, Guillot V, Alvarez M, et al. Analysis of transmitted drug resistance in Spain in the years 2007-2010 documents a decline in mutations to the non-nucleoside drug class. *Clin Microbiol Infect.* 2012;18:E485-90.
44. Yebra G, De Mulder M, Pérez-Elías M, et al. Increase of transmitted drug resistance among HIV-infected Sub-Saharan Africans residing in Spain in contrast to the native population. *PLoS ONE.* 2011;6:e26757.
45. De Felipe B, Pérez-Romero P, Abad-Fernandez M, et al. Prevalence and resistance mutations of non-B HIV-1 subtypes among immigrants in Southern Spain along the decade 2000-2010. *Virol J.* 2011;8:416.
46. Colafogli M, Torti C, Trecarichi E, et al. Evolution of transmitted HIV-1 drug resistance in HIV-1-infected patients in Italy from 2000 to 2010. *Clin Microbiol Infect.* 2012;18:E299-304.
47. Lai A, Riva C, Marconi A, et al. Changing patterns in HIV-1 non-B clade prevalence and diversity in Italy over three decades. *HIV Med.* 2010;11:593-602.
48. De Haas H. Migration Information Source - Trans-Saharan Migration to North Africa and the EU: Historical Roots and Current Trends. 2006. Available from: <http://www.migrationinformation.org/feature/display.cfm?id=484>. [Accessed 11 Mar, 2013].
49. Mgħari M. La migration irrégulière au Maroc. Available from: <http://iussp2009.princeton.edu/papers/92040>. [Accessed 11 Mar, 2013].
50. Frenz D, Boucher C, Van de Vijver D. Temporal changes in the epidemiology of transmission of drug-resistant HIV-1 across the world. *AIDS Rev.* 2012;14:17-27.
51. Chan P, Kantor R. Transmitted drug resistance in nonsubtype B HIV-1 infection. *HIV Ther.* 2009;3:447-65.
52. Little S, Holte S, Routy J-P, et al. Antiretroviral-drug resistance among patients recently infected with HIV. *N Engl J Med.* 2002;347:385-94.
53. Oette M, Kaiser R, Däumer M, et al. Primary HIV drug resistance and efficacy of first-line antiretroviral therapy guided by resistance testing. *J Acquir Immune Defic Syndr.* 2006;41:573-81.
54. Chaix M-L, Descamps D, Harzic M, et al. Stable prevalence of genotypic drug resistance mutations but increase in non-B virus among patients with primary HIV-1 infection in France. *AIDS.* 2003;17:2635-43.
55. Franzetti M, Lai A, Simonetti FR, et al. High burden of transmitted HIV-1 drug resistance in Italian patients carrying F1 subtype. *J Antimicrob Chemother.* 2012;67:1250-3.
56. Abecasis AB, Deforche K, Bacheler L, et al. Investigation of baseline susceptibility to protease inhibitors in HIV-1 subtypes C, F, G and CRF02_AG. *Antivir Ther.* 2006;11:581-9.
57. Camacho R, Vandamme A-M. Antiretroviral resistance in different HIV-1 subtypes: impact on therapy outcomes and resistance testing interpretation. *Curr Opin HIV AIDS.* 2007;2:123-9.
58. Brenner B, Turner D, Oliveira M, et al. A V106M mutation in HIV-1 clade C viruses exposed to efavirenz confers cross-resistance to non-nucleoside reverse transcriptase inhibitors. *AIDS.* 2003;17:F1-5.
59. Holguin A, Paxinos E, Hertogs K, Womac C, Soriano V. Impact of frequent natural polymorphisms at the protease gene on the in vitro susceptibility to protease inhibitors in HIV-1 non-B subtypes. *J Clin Virol.* 2004;31: 215-20.
60. Orrell C, Walensky R, Losina E, Pitt J, Freedberg K, Wood R. HIV type-1 clade C resistance genotypes in treatment-naïve patients and after first virological failure in a large community antiretroviral therapy programme. *Antivir Ther.* 2009;14:523-31.
61. Hsu L-YM, Subramaniam S, Bacheler L, Paton N. Characterization of mutations in CRF01_AE virus isolates from antiretroviral treatment-naïve and -experienced patients in Singapore. *J Acquir Immune Defic Syndr.* 2005;38:5-13.
62. Kantor R. Impact of HIV-1 pol diversity on drug resistance and its clinical implications. *Curr Opin Infect Dis.* 2006;19:594-606.
63. Ministère de la Santé publique and ONUSIDA. Plan stratégique national de la riposte au VIH/sida et aux IST (2012-2016) en Tunisie. 2011. Available from: <http://www.ccmtnisie.rns.tn/oportunite/contrat/document4.pdf>. [Accessed 5 Apr, 2013].
64. Ministère de la Santé, de la Population et de la Réforme Hospitalière and ONUSIDA. Rapport UNGASS Algérie 2010. Période considérée: 2008-2009. 2010. Available from: http://www.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2010countries/algieria_2010_country_progress_report_fr.pdf. [Accessed 5 Apr, 2013].
65. Chaplin B, Eisen G, Idoko J, et al. Impact of HIV type 1 subtype on drug resistance mutations in Nigerian patients failing first-line therapy. *AIDS Res Hum Retroviruses.* 2011;27:71-80.
66. Fischetti L, Opare-Sem O, Candotti D, et al. Molecular epidemiology of HIV in Ghana: dominance of CRF02_AG. *J Med Virol.* 2004;73:158-66.
67. Djoko C, Wolfe N, Vidal N, et al. HIV type 1 pol gene diversity and genotypic antiretroviral drug resistance mutations in Malabo, Equatorial Guinea. *AIDS Res Hum Retroviruses.* 2010;26:1027-31.
68. Hamel D, Sankalé J-L, Eisen G, et al. Twenty years of prospective molecular epidemiology in Senegal: Changes in HIV diversity. *AIDS Res Hum Retroviruses.* 2007;23:1189-96.
69. Derache A, Maiga A-I, Traore O, et al. Evolution of genetic diversity and drug resistance mutations in HIV-1 among untreated patients from Mali between 2005 and 2006. *J Antimicrob Chemother.* 2008;62:456-63.
70. Tebit D, Sangaré L, Tiba F, et al. Analysis of the diversity of the HIV-1 pol gene and drug resistance associated changes among drug-naïve patients in Burkina Faso. *J Med Virol.* 2009;81:1691-701.
71. Chaix M-L, Descamps D, Wirden M, et al. Stable frequency of HIV-1 transmitted drug resistance in patients at the time of primary infection over 1996-2006 in France. *AIDS.* 2009;23:717-24.
72. Mamadou S, Hanki Y, Ali Maazou AR, et al. Genetic diversity and drug resistance mutations in HIV-1 from untreated patients in Niamey, Niger. *ISRN Microbiol.* 2011;2011:1-4.