

Lipid Metabolism and Lipodystrophy in HIV-1-Infected Patients: The Role Played by Nonnucleoside Reverse Transcriptase Inhibitors

Michael Sension¹ and Henri Deckx²

¹Comprehensive Care Center, Fort Lauderdale, Florida, USA; ²Janssen Infectious Diseases BVBA, Beerse, Belgium

Abstract

Dyslipidemia and lipodystrophy represent significant healthcare concerns in HIV-infected patients due to their association with diabetes mellitus and increased cardiovascular disease risk. Since the lipid effects of the nonnucleoside reverse transcriptase inhibitors are not well characterized, we systematically summarized the effects of nonnucleoside reverse transcriptase inhibitor treatment on dyslipidemia and lipodystrophy in HIV-1 infection. As with other classes of antiretroviral agents, the nonnucleoside reverse transcriptase inhibitors are associated with lipid changes, although individual agents exhibit differing effects on lipid profiles. Comparative trials have shown that the risk for hypertriglyceridemia is lower with efavirenz than with the use of ritonavir-boosted lopinavir, but there is a greater likelihood of hypercholesterolemia compared to ritonavir-boosted atazanavir. Data also suggest that efavirenz results in greater increases in plasma lipid levels than integrase inhibitors and CC-chemokine-receptor-5 antagonists. Lipid disturbances are less frequent with the newer nonnucleoside reverse transcriptase inhibitors than with efavirenz. However, in most cases, no change in the total:high-density lipoprotein-cholesterol ratio was seen between the efavirenz and comparator groups. Switching from efavirenz to etravirine or rilpivirine, or the integrase inhibitors raltegravir or elvitegravir, resulted in significant reductions in lipid levels. There appears to be minimal potential for efavirenz or rilpivirine to result in development of lipodystrophy. Overall, nonnucleoside reverse transcriptase inhibitors have a smaller impact on plasma lipids than ritonavir-boosted protease inhibitors, with the newer agents exhibiting more favorable lipid profiles than efavirenz. When considering antiretroviral regimens, awareness of the different lipid effect profiles of the third agent is important, without forgetting the critical contribution of the background antiretrovirals. (AIDS Rev. 2015;17:21-36)

Corresponding author: Michael Sension, Msension@browardhealth.org

Key words

Efavirenz. Nevirapine. Etravirine. Rilpivirine. Lipids. Cardiovascular disease.

Correspondence to:

Michael Sension
Comprehensive Care Center
1101 NW 1st St
Fort Lauderdale, FL 33311, USA
E-mail: Msension@browardhealth.org

Introduction

With the long-term success of antiretroviral therapy (ART), non-AIDS-related mortality and morbidity are increasing in importance; cardiovascular disease is now the second most common cause of death (after cancer) among HIV-infected patients¹.

Dyslipidemia represents significant healthcare concerns in HIV-infected patients due to its direct association with increased cardiovascular disease risk. Also, lipodystrophy, comprising abnormal central fat accumulation (lipohypertrophy) and localized loss of fat tissue (lipoatrophy), has been indirectly linked to cardiovascular disease through viral, host, and ART factors. For example, in the D:A:D study of over 23,000 HIV-infected patients, raised serum total cholesterol (TC), raised triglycerides, and the presence of diabetes were associated with an increased risk of myocardial infarction, whereas lipodystrophy was identified as a risk factor for new-onset diabetes^{2,3}.

Lipid metabolism and lipodystrophy

Although the etiology of dyslipidemia in HIV infection is complex and remains unclear, evidence to date suggests that dyslipidemia may result from both the HIV infection itself as well as the effects of ART. It is known that many factors may play a role in the development of dyslipidemia, including baseline demographics, HIV disease characteristics, and ART⁴. However, it should be noted that different antiretroviral regimens can differ markedly in terms of their effects on plasma lipids.

Combination ART has been shown to have opposing effects on cardiovascular disease risk. Antiretroviral agents may decrease cardiovascular disease risk by reducing immune activation and levels of inflammatory mediators through the suppression of HIV replication^{5,6}. In contrast, through their association with dyslipidemia, antiretrovirals can also have pro-atherogenic cardiovascular effects. Generally, patients treated with combination ART show an atherogenic lipid profile comprising hypertriglyceridemia, elevated low-density lipoprotein (LDL)-cholesterol and decreased high-density lipoprotein (HDL) levels (high HDL levels are associated with a decreased cardiovascular risk)^{1,7}.

Lipodystrophy is a condition characterized by either regional or generalized redistribution of fat stores, in particular, loss of peripheral fat stores (limbs, buttocks, face) and accumulation of truncal fat (intraabdominal fat disposition and dorso-cervical fat pad, commonly

called 'buffalo hump'). Although the stigmatizing effect of these changes in physical appearance can have a significant negative impact on patients' quality of life and treatment adherence, it is the association with dyslipidemia, diabetes mellitus and other metabolic complications – also referred to as "lipodystrophy syndrome" – increasing cardiovascular disease risk which are of greatest concern⁸. For example, visceral adipose tissue has been shown to be associated with cardiovascular disease in HIV-infected patients irrespective of body mass index or waist girth⁹.

The etiology of lipodystrophy is not fully understood, but is known to include metabolic alterations in addition to clinical manifestations. Several factors that affect dyslipidemia as described above may also play a role in the development of lipodystrophy. Lipodystrophy is also known to be associated with altered levels of proinflammatory cytokines, adipocyte inflammation and altered function, oxidative stress, and macrophage infiltration. In addition, mitochondrial toxicity appears to be an important factor in the development of ART-associated lipoatrophy (particularly with the nucleoside analogs)¹⁰.

This paper analyses the potential association of NNRTI-based ART on dyslipidemia and lipodystrophy in adult HIV-1-infected patients, based on a systematic PubMed search of the literature restricted to the 10 years up to/ including September 2014 (Fig. 1). We focused mainly on studies from treatment-naïve patients, as data from these studies would have fewer confounding factors.

Nonnucleoside reverse transcriptase inhibitors, dyslipidemia, and lipodystrophy

Distinct changes in lipids have been seen with different classes of antiretrovirals. For instance, lipid disturbances have been reported in patients treated with nonnucleoside reverse transcriptase inhibitors (NNRTI), although use of NNRTIs appears to be less associated with the development of dyslipidemia than use of protease inhibitors (PI).

Although initial studies indicated that lipodystrophy was associated with use of the PIs and nucleoside reverse transcriptase inhibitors (NRTI), its etiology in patients receiving ART is complex, and is modulated by lifestyle factors and HIV infection itself. While NNRTIs have been shown to have a favorable safety profile in terms of lipodystrophy complications, within the NNRTI treatment class, different effects on lipids are seen.

The lipid and lipodystrophy effects of individual NNRTIs in published clinical trials are discussed in detail below.

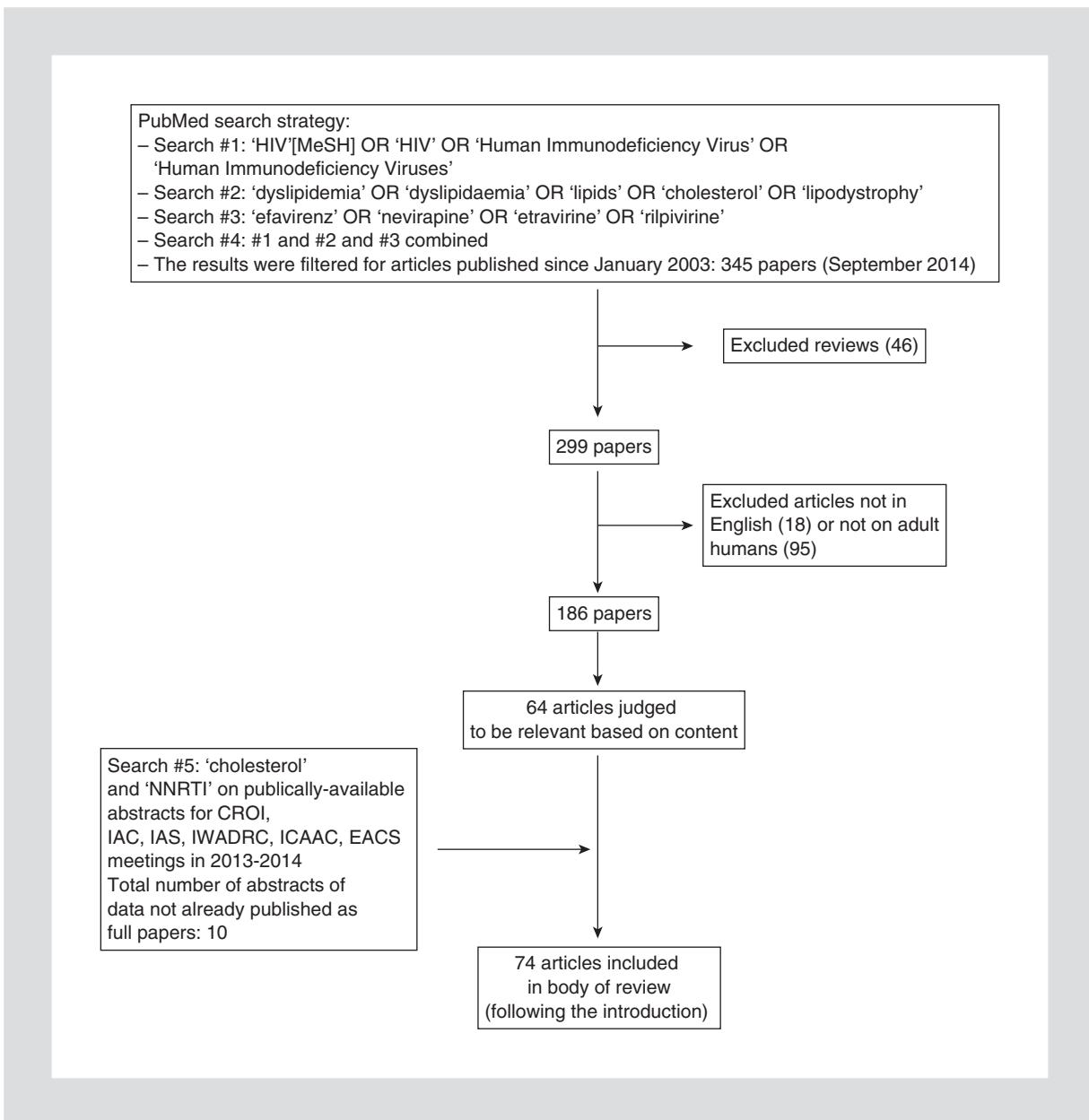
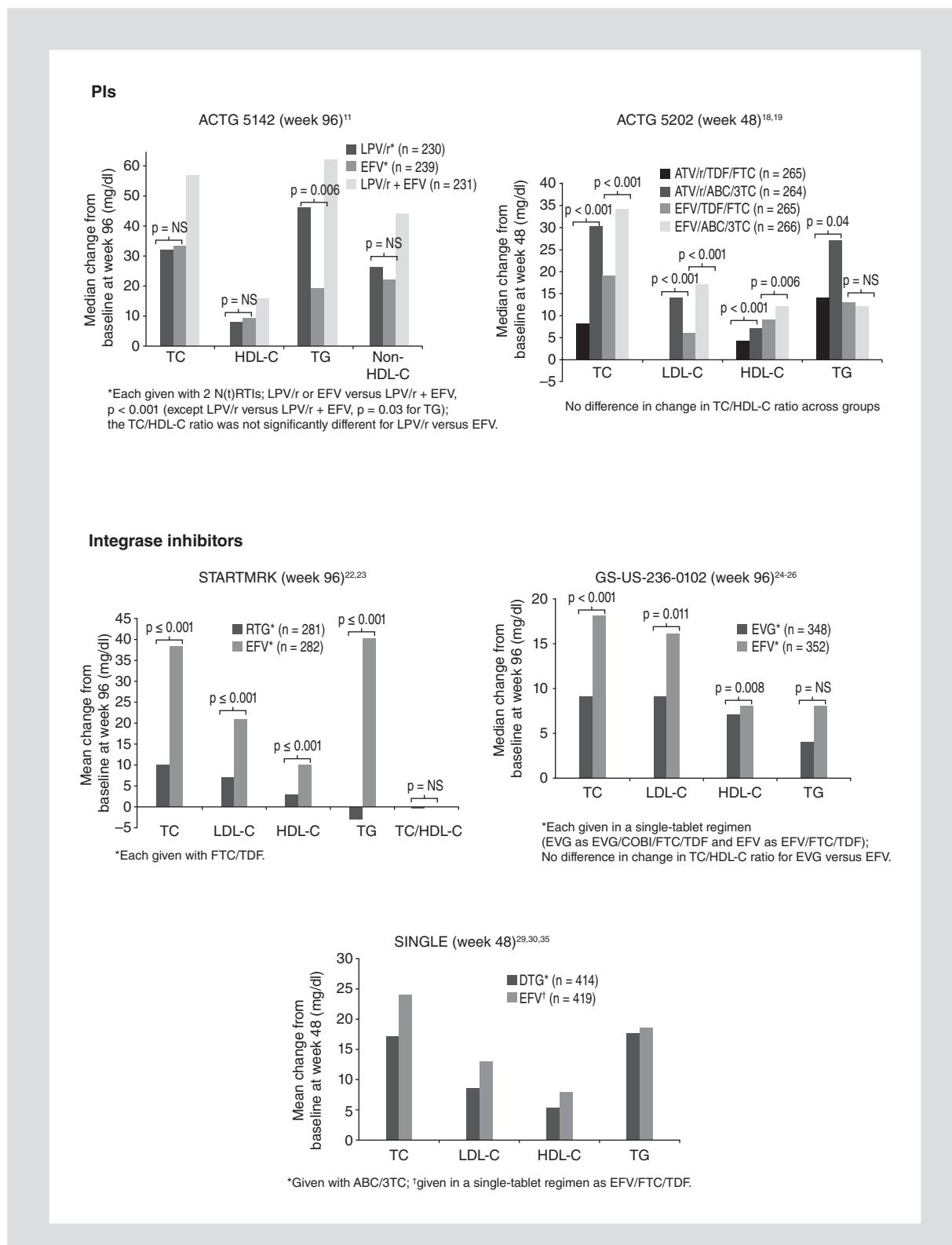


Figure 1. Search strategy.


Efavirenz

Dyslipidemia

Comparative trials of efavirenz with PIs have shown that the risk for hypertriglyceridemia is generally lower with efavirenz than with the PIs, but there is considerable variability. In the ACTG 5142 study, after a total of 96 weeks, although non-HDL and HDL cholesterol changes were not significantly different between the efavirenz and (ritonavir boosted; /r) lopinavir plus two

NRTI treatment groups, median triglyceride increases were lower with efavirenz treatment (+19 mg/dl) than lopinavir/r (+46 mg/dl at week 96) (Fig. 2)¹¹. Indeed, several other studies have also demonstrated a smaller effect of efavirenz on triglycerides compared with lopinavir/r¹²⁻¹⁷.

Lipid effects of efavirenz have also been compared with those of atazanavir/r in ART-naive patients¹⁸⁻²⁰. In the ACTG 5202 study, there were greater increases from baseline to week 48 in TC, LDL- and HDL-cholesterol with efavirenz than with atazanavir/r for both

Figure 2. Lipid changes from baseline for antiretroviral agents versus efavirenz in randomized, phase III multicenter studies of treatment-naïve HIV-1-infected patients. Note that all changes are week 96 versus baseline except for the ACTG 5202 and SINGLE studies, for which week 48 changes are shown. 3TC: lamivudine; ABC: abacavir; ATv/r: atazanavir/lopinavir; COBI: cobicistat; DTG: dolutegravir; EFV: efavirenz; EVG: elvitegravir; FTC: emtricitabine; HDL-C: high-density lipoprotein-cholesterol; LDL-C: low-density lipoprotein-cholesterol; LPV/r: lopinavir/ritonavir; NS: non-significant; N(t)RTI: nucleoside/tide reverse transcriptase inhibitor; RTG: raltegravir; TC: total cholesterol; TDF: tenofovir disoproxil fumarate; TG: triglyceride.

tenofovir disoproxil fumarate (DF)/emtricitabine and abacavir/lamivudine background regimens (Fig. 2)^{18,19}. Similar findings were reported in smaller study of efavirenz versus atazanavir/r in combination with tenofovir DF/emtricitabine²⁰. Nevertheless, in both studies there was no significant difference between the efavirenz and atazanavir/r groups for the TC:HDL-cholesterol ratio.

Integrase inhibitors (twice-daily raltegravir and once-daily elvitegravir and dolutegravir), the CCR-chemokine-receptor-5 (CCR5) antagonist maraviroc dosed twice daily, and the once-daily dual CCR5/CCR2 antagonist cenicriviroc, are novel classes of antiretrovirals²¹. Agents in these classes have a smaller effect on lipid metabolism compared with efavirenz. Studies in which the effects of efavirenz have been compared with those of integrase inhibitors in treatment-naive patients include: (i) the phase III STARTMRK trial, comparing raltegravir and efavirenz each with emtricitabine/tenofovir DF^{22,23}; (ii) the phase III GS-US-236-0102 trial, comparing a once-daily tablet of elvitegravir coformulated with cobicistat plus emtricitabine/tenofovir DF and efavirenz/emtricitabine/tenofovir DF²⁴⁻²⁶; and (iii) the phase IIb SPRING-1 study^{27,28} and the phase III SINGLE study, comparing dolutegravir and efavirenz administered with either tenofovir DF/emtricitabine or abacavir/lamivudine^{29,30}. These dolutegravir studies and others in treatment-naive patients (SPRING-2 and FLAMINGO comparing dolutegravir to raltegravir and darunavir, respectively) all showed similar dolutegravir lipid patterns³¹.

In the phase III STARTMRK trial, although changes in plasma lipids were greater during efavirenz than during raltegravir treatment, no differences between groups were seen in the TC:HDL-cholesterol ratio (efavirenz has no adverse effect on the TC:HDL ratio since it increases HDL in proportion to its effect on TC) (Fig. 2)^{22,23}. In two randomized trials, switching from efavirenz to raltegravir, each in combination with an NRTI background regimen, significantly improved lipid levels^{32,33}. In the phase III GS-US-236-0102 study, TC and LDL-cholesterol increases at week 96 were significantly lower in patients receiving a once-daily tablet of elvitegravir coformulated with cobicistat plus emtricitabine/tenofovir DF than efavirenz/emtricitabine/tenofovir (Fig. 2)²⁴⁻²⁶. Again, no differences between groups were seen in the TC:HDL-cholesterol ratio. In the randomized, open-label, phase IIb STRATEGY-NNRTI study, virologically-suppressed HIV-1-infected patients on

an NNRTI (74% on efavirenz/emtricitabine/tenofovir DF) switching to the once-daily tablet of elvitegravir coformulated with cobicistat plus emtricitabine/tenofovir, experienced small decreases from baseline in TC, LDL- and HDL-cholesterol³⁴. In the phase IIb SPRING-1 study, the effects on lipids were smaller with dolutegravir treatment than with efavirenz, but there were no differences either from baseline or between drugs in the TC:HDL-cholesterol ratio^{27,28}. The larger phase III SINGLE study compared these two regimens^{29, 30} and again the effects on lipids appeared smaller with dolutegravir than with efavirenz (Fig. 2)³⁵. A Bayesian network meta-analysis including phase III/IV randomized controlled clinical trials (up to August 2013) of treatment-naive HIV-1-infected patients was conducted to provide estimates of relative efficacy and safety for dolutegravir versus atazanavir/ritonavir, darunavir/ritonavir, efavirenz, elvitegravir/cobicistat, lopinavir/ritonavir, raltegravir and rilpivirine. Adjusting for the effect of the NRTI backbone, dolutegravir resulted in significantly lower associated TC, HDL- and LDL-cholesterol increases than efavirenz, with no difference in triglyceride levels³¹.

The phase III MERIT trial data compared efavirenz with those of the CCR5 antagonist maraviroc, both agents administered with zidovudine/lamivudine in treatment-naive patients. Maraviroc was not associated with elevations in TC, LDL-cholesterol, or triglycerides and showed beneficial effects on these lipid parameters compared with efavirenz at week 96³⁶ (Fig. 3). In a post hoc analysis of lipid effects at baseline by the National Cholesterol Education Program (NCEP) group, among patients with TC and LDL-cholesterol levels³⁷ below NCEP treatment thresholds at baseline, a significantly greater proportion of efavirenz- versus maraviroc-treated patients exceeded those thresholds at 96 weeks (TC: 35 vs. 11%, $p < 0.0001$; LDL-cholesterol: 23 vs. 8%, $p < 0.0001$). For the TC:HDL-cholesterol ratio, median interquartile ranges were comparable between treatment groups: maraviroc, baseline: 4.1 (3.3-4.9); at week 96: 3.9 (3.1-4.8) vs. efavirenz, baseline: 4.0 (3.2-5.0); at week 96: 3.9 (2.9-4.8). In a phase IIb, double-blind, double-dummy, 48-week study comparing the once-daily dual CCR5/CCR2 antagonist cenicriviroc with efavirenz, each with emtricitabine/tenofovir DF, in treatment-naive patients, TC and LDL-cholesterol decreased significantly with cenicriviroc but increased with efavirenz ($p < 0.05$)³⁸.

Table 1. Body fat distribution analyzed by dual-energy x-ray absorptiometry in treatment-naïve HIV-1-infected patients in randomized, phase III multicenter studies of antiretroviral agents versus efavirenz

Study	Treatments	DEXA assessments	Proportion of patients with lipotrophy	Change in limb fat versus baseline	Change in trunk fat versus baseline
ACTG 5005 ⁴¹	Patients (n = 157) randomized (double-blind) to: – NFV (n = 47) – EFV (n = 51) – NFV + EFV (n = 59) Administered with zidovudine/lamivudine or stavudine/didanosine	DEXA at baseline and every 16 weeks until week 144	Not reported	Median % (absolute) change at week 144 (p value vs. baseline) – NFV: -23.8% (-0.8 kg) (p = NS) – EFV: +2.4% (+2.0 kg) (p = NS) – NFV + EFV: -21.4% (-2.0 kg) (p = 0.05) – NFV/EFV + EFV: -23.8% (-1.9 kg) (p = 0.05)	Median % (absolute) change at week 144 (p value vs. baseline) – NFV: +2.7% (+0.3 kg) (p = NS) – EFV: +32% (+3.5 kg) (p = 0.01) – NFV + EFV: +6.9% (+0.6 kg) (p = NS) – NFV/EFV + EFV: +6.4% (+0.3 kg) (p = NS)
ACTG 514 ²¹	Patients (n = 693, DEXA) randomized (open-label) to: – LPV/r (n = 234) – EFV (n = 225) – LPV/r + EFV (n = 234) Administered with lamivudine and zidovudine, stavudine or tenofovir	DEXA at baseline and weeks 48 and 96	> 20% loss of limb fat – LPV/r: 17% – EFV: 32% – LPV/r + EFV: 9% (p ≤ 0.023 pair-wise comparison between treatment groups)	Median % (absolute) change at week 96 – LPV/r: +9.8% (+0.7 kg) – EFV: +1.4% (+0.05 kg) – LPV/r + EFV: +17.6% (+1.1 kg) (p ≤ 0.013 pair-wise comparison between treatment groups)	Trunk fat increased from a median of 8.2 kg (IQR: 5.0-12.2) at entry to 10.4 kg (IQR: 6.8-14.4) at week 96 (p = NS pair-wise comparison between treatment groups)
ACTG 5224s ⁴²	Patients (n = 269) randomized to blinded ABC/3TC versus TDF/FTC: – ATV/r/TDF/FTC (n = 65) – ATV/r/ABC/3TC (n = 65) – EFV/TDF/FTC (n = 69) – EFV/ABC/3TC (n = 70)	DEXA at baseline and weeks 24, 48, 96, 144 and 192	> 10% loss of limb fat (primary endpoint of substudy) – ATV/r/TDF/FTC: 15.6% – ATV/r/ABC/3TC: 16.3% – EFV/TDF/FTC: 14.3% – EFV/ABC/3TC: 18.9% (p = NS ATV/r vs. EFV)	Mean % (absolute) change at week 96 (secondary endpoint of substudy) – ATV/r: +30.4% (+1.88 kg) – EFV: +16.5% (+0.96 kg) (p ≤ 0.01 ATV/r vs. EFV)	Mean % (absolute) change at week 96 (post hoc analysis) – ATV/r/TDF/FTC: 0% – ATV/r/ABC/3TC: 6.1% – EFV/TDF/FTC: 8.9% – EFV/ABC/3TC: 3.8% (p < 0.05 ATV/r vs. EFV)
STARTMRK ²⁵	Patients (n = 111, DEXA substudy) randomized (double blind) to: – RTG (n = 55) – EFV (n = 56) Administered with TDF/FTC	DEXA at baseline and weeks 48 and 96	> 20% loss of appendicular fat – RTG: 8% (3/37) – EFV: 5% (2/38)	Mean % change in appendicular fat at week 96 – RTG: +18.2% – EFV: +17%	Mean % change at week 96 – RTG: +21.6% – EFV: +25.5%

(Continued)

Table 1. Body fat distribution analyzed by dual-energy x-ray absorptiometry in treatment-naïve HIV-1-infected patients in randomized, phase III multicenter studies of antiretroviral agents versus efavirenz (Continued)

Study	Treatments	DEXA assessments	Proportion of patients with lipoatrophy	Change in limb fat versus baseline	Change in trunk fat versus baseline
ECHO/THRIVE DEXA substudy ⁷⁴	Patients (n = 413, DEXA substudy) randomized (double blind) to: - RPV (n = 209) - EFV (n = 204) Administered with FTC/TDF (60%), ZDV/3TC (30%) or ABC/3TC (10%)	DEXA at baseline and weeks 48 and 96 (primary endpoint of substudy) - RPV: 15.6% - EFV: 17.2% (p = NS RPV vs. EFV) > 20% loss of limb fat (secondary endpoint of substudy) - RPV: 6.9% - EFV: 10% (p = NS RPV vs. EFV)	> 10% loss of limb fat (primary endpoint of substudy) - RPV: +12% (+0.73 kg) - EFV: +11% (+0.70 kg) (Within groups changes at week 96, p < 0.001 Wilcoxon signed-rank test; p = NS for RPV vs. EFV)	Median change at week 96 (secondary endpoint of substudy) - RPV: +16% (+1.29 kg) - EFV: +14% (+1.01 kg) (Within groups changes at week 96, p < 0.001 Wilcoxon signed-rank test; p = NS for RPV vs. EFV)	Median change at week 96 (secondary endpoint of substudy) - RPV: +16% (+1.29 kg) - EFV: +14% (+1.01 kg) (Within groups changes at week 96, p < 0.001 Wilcoxon signed-rank test; p = NS for RPV vs. EFV)

3TC: lamivudine; ABC: abacavir; ATV/r: atazanavir/ritonavir; DEXA: dual-energy x-ray absorptiometry; EFV: efavirenz; FTC: emtricitabine; IQR: interquartile range; LPV/r: lopinavir/ritonavir; NFV: nefinavir; NS: not significant; RPV: rilpivirine; RTG: raltegravir; TDF: tenofovir disoproxil fumarate; ZDV: zidovudine.

Lipodystrophy

In vitro studies suggested that efavirenz may have some lipodystrophy effects, relating to an effect on adipocytes. Efavirenz has been shown to impair adipocyte differentiation and to produce an anti-adipogenic and proinflammatory response pattern *in vitro*³⁹. These *in vitro* changes may suggest a role in lipodystrophy since high levels of proinflammatory cytokines are known to promote dyslipidemia and lipodystrophy⁴⁰. However, in general, the trial data examining the relationship between efavirenz and lipodystrophy are variable, although the overall findings suggest that efavirenz has a minimal-to-neutral effect in terms of lipodystrophy. Results of different trials seem to be contradictory to some extent, which may be the result of differential effects of the background regimens within antiretroviral combinations.

Several clinical trials have reported the effects on body fat composition of efavirenz versus PIs, using objective measures of fat distribution such as dual-energy x-ray absorptiometry (DEXA)^{11,25,41-43}. In the ACTG 5005 study, patients in the efavirenz group showed less lipoatrophy than those receiving a PI regimen (Table 1); there was an additional decrease in limb fat of 8.7% per year for the combined nefinavir and nefinavir plus efavirenz group compared with the efavirenz group (p = 0.03; adjusted for nucleoside backbone)⁴¹. Among the subgroup of patients receiving zidovudine/lamivudine, after week 32 there was a 2.7% increase in limb fat per year with efavirenz versus a 7.9% decrease per year for the combined nefinavir and nefinavir plus efavirenz group (p = 0.03).

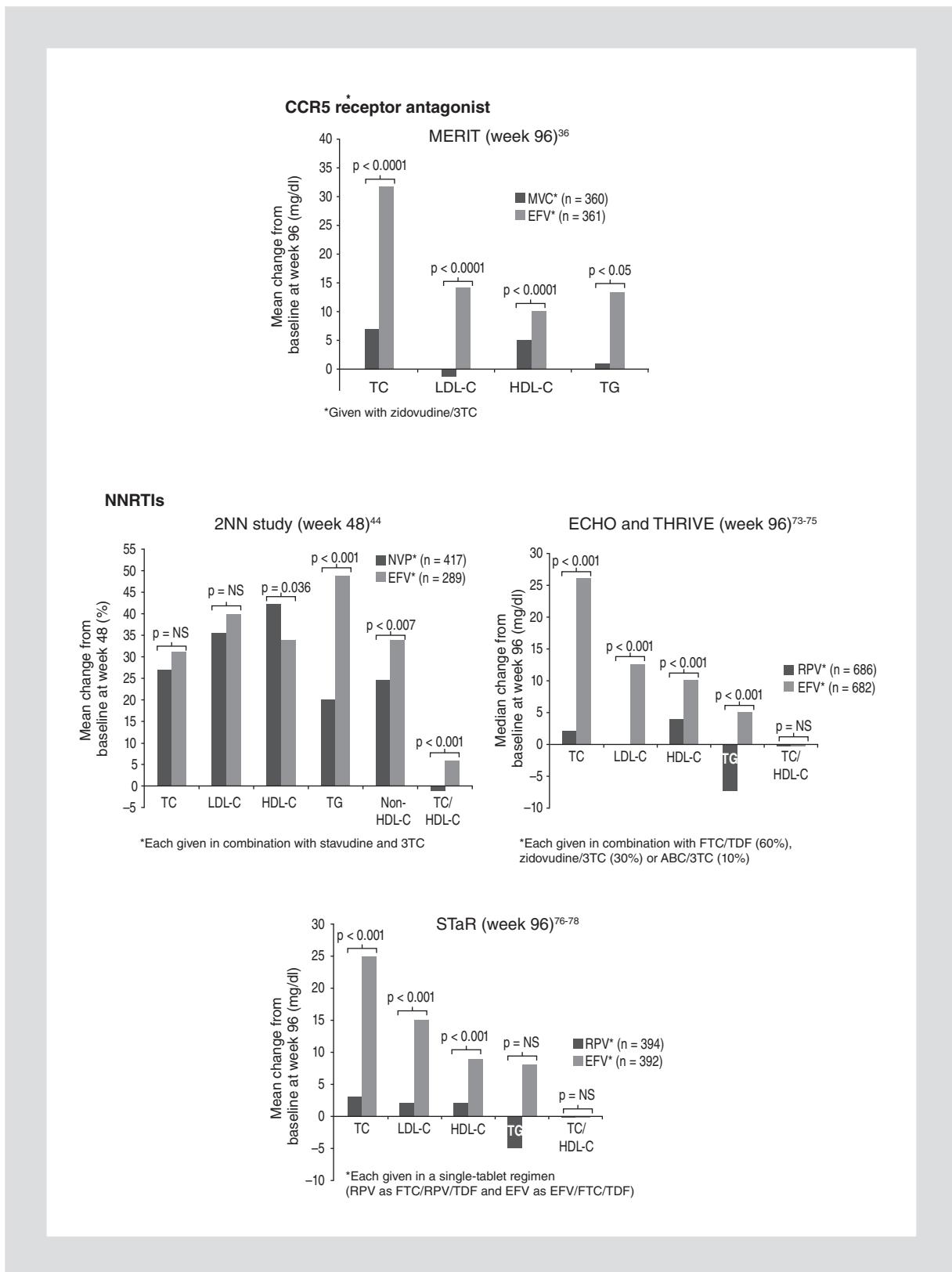
In contrast, in the ACTG 5142 study, lipoatrophy was more frequent with efavirenz than with lopinavir/r when combined with stavudine or zidovudine and less frequent when either agent was combined with tenofovir DF compared with stavudine or zidovudine; it was least frequent with the nucleoside/tide reverse transcriptase inhibitor (N[t]RTI)-sparing efavirenz plus lopinavir/r regimen¹¹, consistent with previous data⁴ suggesting that NRTIs play a principal role in lipodystrophy. In ACTG 5142, the median increases in limb fat from baseline to week 96 (1.4 vs. 9.8 vs. 17.6%, for efavirenz plus two N(t)RTIs vs. lopinavir/r plus two N(t)RTIs vs. efavirenz plus lopinavir/r, respectively) and incidences of lipoatrophy (> 20% loss in limb fat; 32 vs. 17 vs. 9%) were significantly different among treatment groups (Table 1).

Other studies have shown no difference between efavirenz and PI-containing regimens. In the ACTG 5224 study (substudy of 5202: abacavir/lamivudine vs. emtricitabine/tenofovir DF in combination with efavirenz or atazanavir/r) at week 96, although the estimated mean increase from baseline in visceral adipose tissue as assessed by CT scan was lower with efavirenz versus atazanavir/r (12.4 vs. 26.6%; $p = 0.09$), the percentage change in visceral:total adipose tissue was similar in the two groups⁴². Further, the abacavir/lamivudine and tenofovir DF/emtricitabine-based regimens all increased limb and visceral fat, with a similar prevalence of lipoatrophy (Table 1). The reported increases in trunk fat on efavirenz treatment in the above studies were not significantly different to those seen on PI therapy. A more recent study comparing efavirenz with lopinavir/r when combined with tenofovir DF and emtricitabine showed both regimens were associated with an increased expression of proinflammatory cytokine genes and with an increase in subcutaneous fat⁴³.

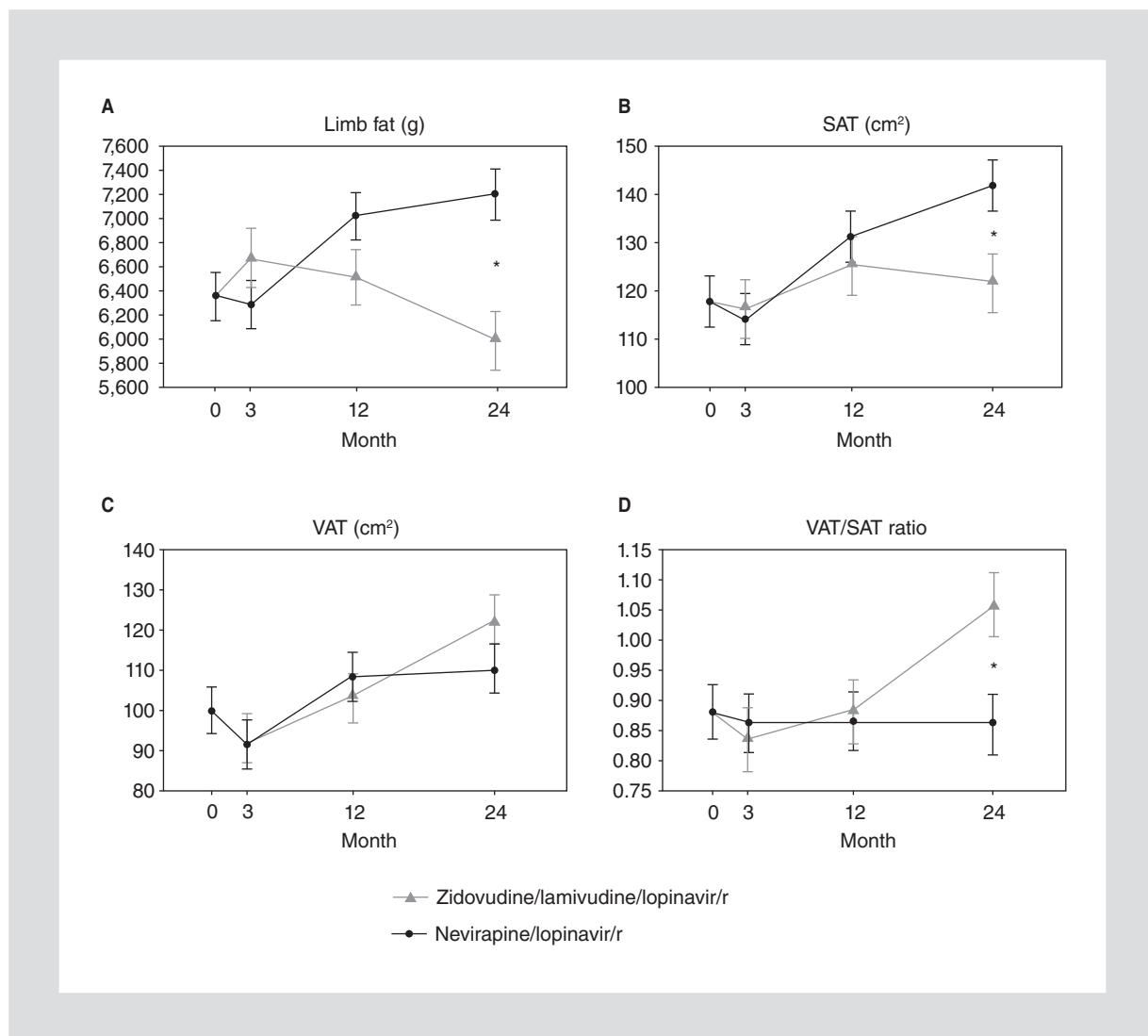
The effects of efavirenz on lipodystrophy have also been compared with those of the integrase inhibitor raltegravir (each administered with tenofovir DF/emtricitabine) in the STARTMRK study²⁵. Most patients experienced modest gains in body fat at week 96, which were similar in the two treatment groups (Table 1).

Nevirapine

Dyslipidemia


Use of nevirapine appears to be associated with fewer lipid disturbances than efavirenz⁴⁴⁻⁴⁶. The 2NN study compared the lipid effects of nevirapine and efavirenz, both administered in combination with stavudine and lamivudine, over 48 weeks of treatment⁴⁴. The observed increase in non-HDL-cholesterol was smaller for patients receiving nevirapine than among those receiving efavirenz, as were increases in triglycerides and in LDL-cholesterol (Fig. 3). The observed increase in the HDL-cholesterol level was significantly greater for patients receiving nevirapine ($n = 417$, 42.5%) than for patients receiving efavirenz ($n = 289$, 33.7%; $p = 0.036$). The increase in TC was lower with nevirapine than efavirenz (26.9 vs. 31.1%; $p = 0.073$), resulting in a 4.1% decrease in the TC:HDL-cholesterol ratio for patients receiving nevirapine, whereas patients receiving

efavirenz experienced a 5.9% increase in the TC:HDL-cholesterol ratio ($p < 0.001$).

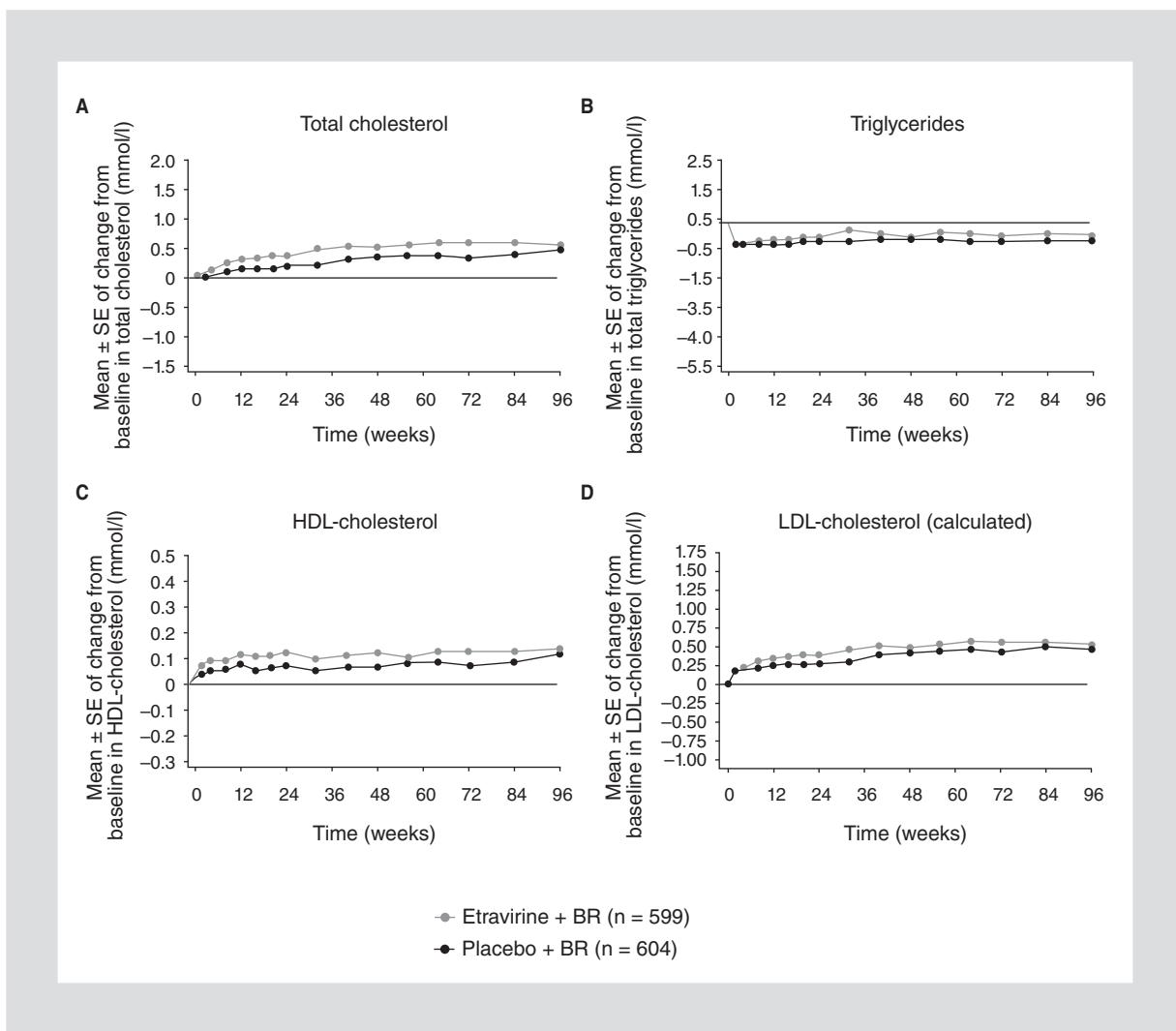

These differences remained, or even increased, after adjusting for changes in HIV-1 RNA and CD4⁺ cell levels, indicating an effect of the drugs on lipids over and above that which might be explained by suppression of HIV-1 infection. The higher HDL-cholesterol combined with a lower TC:HDL-cholesterol ratio, as has been observed in patients receiving nevirapine but not efavirenz^{44,45}, in the general population would be associated with a decrease in cardiovascular disease risk.

Two studies have also demonstrated improvements in patients' lipid profiles following a switch from efavirenz to nevirapine in their ART regimens. In a randomized, controlled study the switch from efavirenz to nevirapine was associated with a significant decrease in the patients' LDL-cholesterol level at one year compared with continuation of efavirenz therapy ($p < 0.04$)⁴⁷. In the second study, a retrospective analysis of data from patients treated at an HIV-specialty private practice in the USA, patients who were switched from efavirenz to nevirapine because of neuropsychiatric side effects or elevated plasma lipids showed significant improvements in their lipid levels (all changes $p < 0.05$)⁴⁸.

With some exceptions⁴⁹, nevirapine has also been shown to have a more favorable lipid profile versus PIs in clinical trials^{47,48,50-55}. For example, in a study in which patients switched PI therapy for nevirapine without changing nucleoside analogs, patients who had serum triglyceride levels > 400 mg/dl showed a 75% decrease at 12 months versus level at switch ($p < 0.02$) and this change from baseline remained statistically significant over three years ($p < 0.04$)⁵¹. Serum cholesterol levels also showed a marked initial reduction (-25% ; $p < 0.02$) and remained lower at the end of the follow-up period ($p < 0.015$). However, at the three-year evaluation, complete normalization of mean serum cholesterol and triglyceride levels had not been achieved. In another study which evaluated the metabolic effects at 24 months following a switch from the PI to nevirapine (or efavirenz or abacavir) in the ART regimen, the patients' HDL-cholesterol level increased by 21% ($p < 0.001$) and the TC:HDL-cholesterol ratio decreased by 19% ($p < 0.01$)⁵³. Although there was a significant decrease in triglyceride levels during the first year, by 24 months most of this initial loss had been regained. A further switch study in which patients either continued with their PI regimen ($n = 79$) or

Figure 3. Lipid changes from baseline for antiretroviral agents versus efavirenz in randomized, phase III multicenter studies of treatment-naive HIV-1-infected patients. Note that all changes are week 96 versus baseline except for the 2NN study, for which week 48 changes are shown. All changes from baseline are in mg/dl except for the 2NN study, for which the changes are in percentage. 3TC: lamivudine; ABC: abacavir; EFV: efavirenz; FTC: emtricitabine; HDL-C: high-density lipoprotein-cholesterol; LDL-C: low-density lipoprotein-cholesterol; MVC: maraviroc; NS: non-significant; NVP: nevirapine; RPV: rilpivirine; TC: total cholesterol; TDF: tenofovir disoproxil fumarate; TG: triglyceride.

Figure 4. Changes in body fat composition in patients receiving zidovudine/lamivudine plus lopinavir/r or nucleoside/tide reverse transcriptase inhibitor-sparing antiretroviral therapy with nevirapine plus lopinavir/r⁶⁰. SAT: subcutaneous adipose tissue; VAT: visceral adipose tissue.


replaced the PI with nevirapine (n = 81) showed that while, after 48 weeks, the number of patients with severe hypertriglyceridemia (triglycerides > 400 mg/dl) had increased from four to 11 in the PI group, in the nevirapine group it decreased from 11 to six patients⁵².

Lipid effects of nevirapine have also been compared with those of atazanavir/r, each combined with emtricitabine/tenofovir DF, in antiretroviral-naïve patients. In ARTEN, a randomized, open-label, noninferiority trial^{56,57}, increases from baseline in HDL-cholesterol (9.7 vs. 3.9 mg/dl; p < 0.0001) and apolipoprotein A1 (0.18 vs. 0.08 g/l; p < 0.0001) were significantly greater with nevirapine than with atazanavir/r, while triglycerides increased less with

nevirapine than with atazanavir/r (0.02 vs. 27.80 mg/dl; p = 0.0001). Mean changes from baseline in the TC:HDL-cholesterol ratio were -0.24 for nevirapine versus 0.13 for atazanavir/r (p = 0.0001). NEWART, a randomized phase IV trial⁵⁸, also demonstrated a greater increase in HDL-cholesterol at week 48 on nevirapine versus on atazanavir/r treatment (9.6 vs. 3.5 mg/dl; p = 0.016). The changes in TC:HDL-cholesterol ratio at week 48 were -0.38 for nevirapine and -0.02 for atazanavir/r (p = 0.038).

Lipodystrophy

As with efavirenz, available clinical trial data regarding the impact on lipodystrophy of switching

Figure 5. Mean changes in fasted lipids over 96 weeks with etravirine vs. placebo treatment in the DUET trials⁶³. HDL: high-density lipoprotein; LDL: low-density lipoprotein; SE: standard error; BR: background regimen (reproduced with permission from Pierre-Marie Girard).

from a PI- to a nevirapine-based regimen are conflicting, and may be a consequence of the contribution of the background N(t)RTI agents in the regimens and study durations. Further, some of the studies are in a small number of patients and should therefore be interpreted with caution.

Data have shown that such a switch can lessen lipodystrophy body-shape changes⁵². In this study, while lipodystrophy changes increased by 15% in patients who continued on PI treatment (n = 79), they decreased by 4% among patients who switched to nevirapine (n = 81)⁵². However, other studies have shown no beneficial impact on lipodystrophy of such a switch^{53,59}.

Data from clinical trials of N(t)RTI-sparing regimens using nevirapine showed improvements in

lipodystrophy⁶⁰⁻⁶². In a study in which treatment-naïve patients were randomized to treatment with zidovudine/lamivudine plus lopinavir/r or nevirapine plus lopinavir/r, the N(t)RTI regimen (but not the N[t] RTI-sparing regimen) was associated with lipoatrophy and greater relative intraabdominal lipohypertrophy⁶⁰. In the small zidovudine/lamivudine plus lopinavir/r subset (n = 22), limb fat decreased progressively by a mean of 684 g (p = 0.02) up to 24 months while abdominal fat increased, but exclusively in the visceral compartment (+21.9 cm²; p = 0.008). In contrast, in the nevirapine plus lopinavir/r group (n = 26), a generalized increase in fat mass was observed (Fig. 4). After two years, limb fat in patients in the nevirapine plus lopinavir/r group was 1,223 g higher than in patients in the zidovudine/lamivudine

plus lopinavir/r group ($p = 0.0002$). Another study in which patients switched to nevirapine plus lopinavir/r treatment demonstrated an improvement in mitochondrial parameters, although there were no significant improvements in DEXA scan results versus lopinavir/r plus two NRTIs at 48 weeks⁶¹. In a study in which patients with lipoatrophy switched from a thymidine analog-containing regimen to nevirapine plus lopinavir/r, there were significant ($p < 0.01$) increases at 48 weeks following switching in subcutaneous thigh fat (+17%) and subcutaneous abdominal tissue (+33%) and an 11% decrease in the visceral:total adipose tissue ratio⁶².

Etravirine

Dyslipidemia

The randomized DUET studies showed that the etravirine and placebo groups had generally similar changes from baseline in lipid levels at week 96⁶³. Patients stable on virologically failing treatment with documented NNRTI resistance and ≥ 3 PI resistance mutations were randomized to receive twice-daily etravirine or placebo (each with darunavir/r, optimized NRTIs, and optional enfuvirtide). Figure 5 shows the mean changes in fasted TC, HDL-, LDL-cholesterol, and triglyceride levels over 96 weeks from the pooled DUET-1 and -2 study data. Lipid changes on etravirine treatment were comparable with those in patients who received placebo. The incidence of lipid abnormalities over 96 weeks was low and generally similar in the etravirine and placebo groups, although there was a trend towards an increased frequency of grade 3 TC elevations (9% of etravirine patients vs. 6% with placebo) and grade 3 or 4 triglyceride elevations (11% etravirine vs. 7% with placebo) with etravirine. The TC:HDL-cholesterol ratio was also generally similar over time in the etravirine and placebo groups. A phase IIb, single-arm, open-label, multicenter, 48-week US trial investigated the N(t)RTI-sparing regimen of etravirine 400 mg once daily and darunavir/r 800/100 mg once daily in HIV-1-infected, treatment-experienced patients or treatment-naïve patients with transmitted resistance to ART (INROADS)⁶⁴. While there were increases in LDL-, HDL-cholesterol, TC, and triglycerides from baseline to week 48, the TC:HDL-cholesterol ratio remained relatively unchanged.

In the UK Switch study, switching from efavirenz plus two N(t)RTIs to etravirine plus two N(t)RTIs

resulted in significant reductions in TC and LDL-cholesterol⁶⁵. Also, in the Switch EE study, there was a significant decline in TC, LDL-cholesterol, and triglyceride levels after replacing efavirenz with etravirine⁶⁶. In the Spanish Etrasplice study, patients who switched to etravirine showed statistically significant reductions in TC, HDL-cholesterol, and triglycerides versus no significant changes in patients who continued on PIs⁶⁷. Similarly, in two prospective cohort studies, one of switching from PI or NRTI regimens to etravirine plus raltegravir⁶⁸ and the other switching from efavirenz or ritonavir-boosted PIs to an etravirine-containing regimen⁶⁹, and a retrospective case review of switching from other efavirenz-containing regimens (predominantly Atripla®, efavirenz/emtricitabine/tenofovir DF) or PI-based regimens to etravirine plus two N(t)RTIs⁷⁰, switching to an etravirine-based regimen resulted in an improvement in lipid profiles.

While etravirine treatment is not indicated in treatment-naïve patients, data from the SENSE study, in which such patients received either once-daily etravirine 400 mg ($n = 79$) or efavirenz 600 mg ($n = 78$) plus two nucleoside analogs (abacavir/lamivudine or zidovudine/lamivudine), showed that lipid elevations at 48 weeks were smaller on etravirine versus efavirenz treatment⁷¹. There were significantly larger increases in TC (+0.61 mmol/l; $p < 0.0001$), HDL-cholesterol (+0.15 mmol/l, $p = 0.004$), LDL-cholesterol (+0.35 mmol/l; $p = 0.005$) and triglycerides (+0.33 mmol/l; $p = 0.03$) at week 48 in the efavirenz group versus etravirine. There were also fewer grade 3/4 elevations in TC, LDL-cholesterol and triglycerides in the etravirine group (2, 1, and 0 patients, respectively) versus efavirenz (8, 6, and 2 patients, respectively).

Lipodystrophy

To date there has been no evidence of a link between the use of etravirine and lipodystrophy syndrome, and no full articles have been published on etravirine and lipodystrophy. In the single-arm, open-label, phase IIb INROADS study of etravirine 400 mg once daily and darunavir/r 800/100 mg once daily, median changes from baseline to week 48 in limb fat (+7.9 to +9.0 kg) and abdominal fat (+12.0 to +12.3 kg) were not considered clinically relevant. From baseline to week 48, 10 patients (29%) experienced > 20% loss of limb fat and 10 patients (29%) experienced > 20% gain in trunk fat⁷².

Rilpivirine

Dyslipidemia

Two phase III clinical trials, ECHO and THRIVE, demonstrated a superior lipid profile with rilpivirine versus efavirenz treatment⁷³⁻⁷⁵. In these studies, treatment-naïve, HIV-1-infected adults received once-daily rilpivirine 25 mg (n = 686) or efavirenz 600 mg (n = 682), with background tenofovir DF/emtricitabine (ECHO), or tenofovir DF/emtricitabine, zidovudine/lamivudine or abacavir/lamivudine (THRIVE). While levels of TC, LDL-, HDL-cholesterol and triglycerides remained close to baseline throughout the 96-week treatment period in the rilpivirine group, in the efavirenz group there were significantly greater increases in all four of these lipid measures at week 96 (Fig. 3). This was reflected in the incidences of grade 3/4 treatment-emergent lipid abnormalities (TC: 0.1% of rilpivirine-treated patients vs. 3% for efavirenz, p < 0.0001; LDL-cholesterol: 1% rilpivirine vs. 6% efavirenz, p < 0.0001; triglycerides: 0.6% rilpivirine vs. 3% efavirenz, p = 0.0002). In addition, proportions of patients with at least one fasted lipid value classified as abnormal using NCEP cutoff values were lower in the rilpivirine group than the efavirenz group (TC above normal: rilpivirine 22%, efavirenz 52%, p < 0.0001; LDL-cholesterol above normal: rilpivirine 21%, efavirenz 44%, p < 0.0001; HDL-cholesterol below normal: rilpivirine 58%, efavirenz 47%, p = 0.0186; triglycerides above normal: rilpivirine 40%, efavirenz 55%, p < 0.0001). However, there was no difference in the TC:HDL-cholesterol ratio between groups (p = 0.17). The benefits were consistent by N(t)RTI background regimen, although the differences between treatment groups were more pronounced in patients receiving tenofovir DF/emtricitabine (n = 1096) compared with zidovudine/lamivudine (n = 204) or abacavir/lamivudine (n = 68). The 96-week data from the STaR study comparing rilpivirine versus efavirenz (both as single-tablet regimens including emtricitabine/tenofovir DF) showed that rilpivirine was associated with lesser changes from baseline in TC (+3 vs. +25 mg/dl), LDL-cholesterol (+2 vs. 15 mg/dl), and triglycerides (-5 vs. +8 mg/dl) than efavirenz (Fig. 3). However, again the change from baseline in TC:HDL-cholesterol at week 96 was similar (-0.2 mg/dl) in both groups⁷⁶⁻⁷⁸.

Rilpivirine/tenofovir DF/emtricitabine single-tablet regimen studies have also demonstrated favorable effects on lipids with rilpivirine when switching from

efavirenz or a boosted PI. In study GS111, switching from efavirenz/emtricitabine/tenofovir DF to rilpivirine/emtricitabine/tenofovir DF in virologically suppressed patients resulted in an improvement in 48-week fasting lipid profiles, including TC, LDL-cholesterol, triglycerides, and the TC: HDL-cholesterol ratio⁷⁹. Fasting TC fell by 0.62 mmol/l from baseline and LDL-cholesterol by 0.41 mmol/l (both p < 0.001). The TC:HDL-cholesterol ratio decreased by 0.35. In an multicenter, open-label study of suppressed individuals on efavirenz/emtricitabine/tenofovir DF with CNS toxicity switching to rilpivirine/emtricitabine/tenofovir DF, significant improvements were seen at week 24 for TC (-0.9 mmol/l; p < 0.001), LDL cholesterol (-0.57 mmol/l; p < 0.001), and triglycerides (-0.35 mmol/l; p < 0.001)⁸⁰. In the GS106 (SPIRIT) study, switching from a PI/r plus two N(t)RTIs to rilpivirine/emtricitabine/tenofovir DF similarly resulted in an improvement in 24-week fasting lipid profiles (e.g. triglycerides showed a 54 mg/dl decrease with rilpivirine/emtricitabine/tenofovir DF versus 3 mg/dl increase in the PI-based group; p < 0.001)⁸¹. The TC:HDL-cholesterol ratio was lower for emtricitabine/rilpivirine/tenofovir DF versus the PI/r (-0.27 vs. +0.08; p < 0.001), and the NCEP classification and 10-year Framingham risk score showed significantly greater improvement in the emtricitabine/rilpivirine/tenofovir DF group versus the PI/r plus two N(t)RTIs (p ≤ 0.001)⁸¹.

In the aforementioned Bayesian network meta-analysis of phase III/IV randomized controlled clinical trials in treatment-naïve HIV-1-infected patients³⁵, and adjusting for NRTI backbone, dolutegravir was not significantly different from rilpivirine for changes in cholesterol or triglyceride levels.

Lipodystrophy

Although rilpivirine has been shown *in vitro* to produce an anti-adipogenic and proinflammatory response pattern in adipocytes, unlike efavirenz, the concentrations of rilpivirine required to induce such responses are not seen *in vivo*³⁹. A DEXA substudy analysis of body fat changes on rilpivirine versus on efavirenz treatment in the ECHO and THRIVE studies⁷⁴ showed that patients receiving rilpivirine had slightly more limb fat gain than those receiving efavirenz (median changes from baseline: 0.73 vs. 0.7 kg at week 96; both p < 0.0001) (Table 1). Comparable median limb fat increases were recorded at week 96 in the subgroup of patients who received background emtricitabine/tenofovir DF treatment, but there were limb

fat decreases in those who received zidovudine/lamivudine (rilpivirine –0.41 kg, efavirenz –0.81 kg). The efavirenz data reported in this substudy are consistent with ACTG 5142 (Table 1). Comparable proportions of patients in the rilpivirine and efavirenz groups had a ≥ 10% (15.6 vs. 17.2%, respectively) or ≥ 20% (6.9 vs. 10.0%) decrease from baseline in limb fat.

Clinical perspective

As with other classes of antiretroviral agents, NNRTIs are associated with lipid changes, though individual agents exhibit different effects. Trial data show that the selection of background N(t)RTIs has a significant impact on the degree of dyslipidemia and lipodystrophy that may be expected with a given NNRTI-based regimen.

Dyslipidemia

Comparative trials of efavirenz with PIs have shown that the risk for hypertriglyceridemia is lower with this NNRTI than with the use of lopinavir/r in the phase III ACTG 5142 study¹¹. However, there is a greater likelihood of hypercholesterolemia with efavirenz versus atazanavir/r¹⁸⁻²⁰, findings that could also be influenced by the lopinavir/r regimen requiring twice the ritonavir dose than the atazanavir/r regimen. Use of efavirenz was also associated with significantly greater increases in plasma TC, LDL-cholesterol, and triglyceride levels compared with the newer NNRTI rilpivirine in the phase III clinical trials, ECHO, THRIVE, and STaR⁷³⁻⁷⁸. Data also indicate that efavirenz has a greater effect on plasma lipid levels than the integrase inhibitors: (i) raltegravir in the phase III STARTMRK trial^{22,23}; (ii) elvitegravir in the phase III GS-US-236-0102 trial²⁴⁻²⁶; and (iii) dolutegravir in the phase IIb SPRING-1 study^{27,28}, the phase III SINGLE study^{29,30,35} and in a meta-analysis³¹. Efavirenz also has a greater effect on plasma lipid levels than the CCR5 antagonist maraviroc in the phase III MERIT trial³⁶. However, in most cases there was no difference in the change of the TC:HDL-cholesterol ratio between the efavirenz group and the comparator group^{11,18-20,22-28,36-37,73-78}. Switching from efavirenz to the NNRTIs etravirine⁶⁵⁻⁷⁰ or rilpivirine⁷⁹⁻⁸¹, or the integrase inhibitors raltegravir^{32,33} or elvitegravir³⁴ has been shown to result in significant reductions in lipid levels. Furthermore, it should be noted that the background antiretroviral agents in the treatment regimens also play a considerable role in the development of dyslipidemia.

Lipodystrophy

Efavirenz has been shown to be associated with a similar gain in limb fat as PIs in the majority of head-to-head trials, except for study ACTG 5142 in which the increase in limb fat was lower than that observed with lopinavir¹¹. Treatment with efavirenz or rilpivirine resulted in similar increases in limb fat in the ECHO and THRIVE DEXA substudy⁷⁴. Also, increases in appendicular fat were similar in the efavirenz and raltegravir treatment groups in the STARTMRK study²⁵. The effects of the background N(t)RTI regimen in the ECHO and THRIVE DEXA substudy (more limb fat loss with zidovudine/lamivudine than with emtricitabine/tenofovir DF) were consistent with those of previous trials. As such, there appears to be minimal potential for efavirenz or rilpivirine to result in the development of lipodystrophy, the choice of background N(t)RTIs being more important in this regard. Indeed, the influence of background N(t)RTIs is a confounding factor in lipodystrophy studies. For example, background regimens that include the thymidine analogs stavudine or zidovudine (stavudine > zidovudine) tend to be associated with a greater loss of limb fat than regimens including tenofovir DF or abacavir^{41,57,82-84}. Also, use of thymidine analog-sparing regimens or a switch from a thymidine analog to tenofovir DF or abacavir have been shown to result in an increase in limb fat¹¹. Another confounding factor in assessing the relative contributions of individual antiretrovirals is differences in the methodology (some studies used DEXA versus CT scan to measure fat distribution) and differing endpoints used in clinical trials (e.g. changes in limb fat of > 10, > 20 or > 30%).

Conclusions

The association between dyslipidemia and NNRTIs seems weaker than with ritonavir-boosted PIs. Within the NNRTI class, the newer agents have a more favorable effect on some lipid parameters than efavirenz. Increases in plasma lipid levels are also greater for efavirenz than the newer classes of antiretrovirals, the integrase inhibitors and CCR5 antagonists. However, the contribution of the background components of the antiretroviral regimen is clearly significant, so it is important to be aware of the different lipid effect profiles of all individual agents as well as the third agent. The choice of background N(t)RTI rather than the third agent appears to be the more important factor for the development of lipodystrophy.

Acknowledgments

The authors are grateful to members of the Janssen rilpivirine team, in particular Peter Williams and Eric Wong, for their input. The authors thank Ian Woolveridge and Patrick Hoggard at Gardiner-Caldwell Communications, Macclesfield, UK, who performed the search, prepared the first draft, and incorporated author comments.

Disclaimer

Michael Sension has served on speaker bureaus for Gilead Sciences, Janssen, and Bristol-Myers Squibb and acted as a consultant for Janssen. He has received research support and speaker honoraria from Janssen and Gilead Sciences, speaker honoraria from Bristol-Myers Squibb, and consulting fees from Janssen. Henri Deckx is a full-time employee of Janssen. Medical writing support provided by Ian Woolveridge and Patrick Hoggard was funded by Janssen.

References

- Giannarelli C, Klein R, Badimon J. Cardiovascular implications of HIV-induced dyslipidemia. *Atherosclerosis*. 2011;219:384-9.
- Fris-Møller N, Sabin C, Weber R, et al. for the D:A:D Study Group. Combination antiretroviral therapy and the risk of myocardial infarction. *N Engl J Med*. 2003;349:1993-2003.
- Petoumenos K, Worm S, Fontas E, et al. for the D:A:D Study Group. Predicting the short-term risk of diabetes in HIV-positive patients: the Data Collection on Adverse Events of Anti-HIV Drugs (D:A:D) study. *J Int AIDS Soc*. 2012;15:17426.
- Riddler S, Smit E, Cole S, et al. Impact of HIV infection and HAART on serum lipids in men. *JAMA*. 2003;289:2978-82.
- McComsey G, Kitch D, Daar E, et al. Inflammation markers after randomization to abacavir/lamivudine or tenofovir/emtricitabine with efavirenz or atazanavir/ritonavir. *AIDS*. 2012;26:1371-85.
- Kuller L, Tracy R, Belloso W, et al. for the INSIGHT SMART Study Group. Inflammatory and coagulation biomarkers and mortality in patients with HIV infection. *PLoS Med*. 2008;5:e203.
- Grunfeld C. Dyslipidemia and its treatment in HIV infection. *Top HIV Med*. 2010;18:112-8.
- Barbaro G. Metabolic and cardiovascular complications of highly active antiretroviral therapy for HIV infection. *Curr HIV Res*. 2006;4:79-85.
- Orlando G, Guaraldi G, Zona S, et al. Ectopic fat is linked to prior cardiovascular events in men with HIV. *J Acquir Immune Defic Syndr*. 2012;59:494-7.
- Loonam C, Mullen A. Nutrition and the HIV-associated lipodystrophy syndrome. *Nutr Res Rev*. 2012;25:267-87.
- Haubrich R, Riddler S, DiRenzo A, et al. for the AIDS Clinical Trials Group (ACTG) A5142 Study Team. Metabolic outcomes in a randomized trial of nucleoside, nonnucleoside and protease inhibitor-sparing regimens for initial HIV treatment. *AIDS*. 2009;23:1109-18.
- Panagopoulos P, Tsiodras S, Antoniadou A, et al. Efficacy and safety of an anti-retroviral combination regimen including either efavirenz or lopinavir-ritonavir with a backbone of two nucleoside reverse transcriptase inhibitors. *Clin Microbiol Infect*. 2006;12:486-9.
- De Luca A, Cozzi-Lepri A, Antinori A, et al. Lopinavir/ritonavir or efavirenz plus two nucleoside analogues as first-line antiretroviral therapy: a non-randomized comparison. *Antivir Ther*. 2006;11:609-18.
- Domingo P, Suárez-Lozano I, Torres F, et al. First-line antiretroviral therapy with efavirenz or lopinavir/ritonavir plus two nucleoside analogues: the SUSKA study, a non-randomized comparison from the VACH cohort. *J Antimicrob Chemother*. 2008;6:1348-58.
- Echeverría P, Negredo E, Carosi G, et al. Similar antiviral efficacy and tolerability between efavirenz and lopinavir/ritonavir, administered with abacavir/lamivudine (Kivexa), in antiretroviral-naïve patients: a 48-week, multicentre, randomized study (Lake Study). *Antivir Res*. 2010;85:403-8.
- Sierra-Madero J, Villasis-Keever A, Méndez P, et al. Prospective, randomized, open label trial of efavirenz vs lopinavir/ritonavir in HIV+ treatment-naïve subjects with CD4+<200 cell/mm³ in Mexico. *J Acquir Immune Defic Syndr*. 2010;53:582-8.
- Pérez-Elías M, Moreno A, Casado J, et al. Observational study to evaluate clinical outcomes after first-line efavirenz- or lopinavir/ritonavir-based HAART in treatment-naïve patients. *J Int Assoc Physicians AIDS Care (Chic)*. 2009;8:308-13.
- Sax P, Tierney C, Collier A, et al. for the AIDS Clinical Trials Group Study A5202 Team. Abacavir-lamivudine versus tenofovir-emtricitabine for initial HIV-1 therapy. *N Engl J Med*. 2009;361:2230-40.
- Sax P, Tierney C, Collier A, et al. for the AIDS Clinical Trials Group Study A5202 Team. Abacavir/lamivudine versus tenofovir DF/emtricitabine as part of combination regimens for initial treatment of HIV: final results. *J Infect Dis*. 2011;204:1191-201.
- Gotti D, Cesana B, Albini L, et al. Increase in standard cholesterol and large HDL particle subclasses in antiretroviral-naïve patients prescribed efavirenz compared to atazanavir/ritonavir. *HIV Clin Trials*. 2012;13:245-55.
- Fernández-Montero J, Vispo E, Soriano V. Emerging antiretroviral drugs. *Expert Opin Pharmacother*. 2014;15:211-9.
- Lennox J, DeJesus E, Lazzarin A, et al. for the STARTMRK investigators. Safety and efficacy of raltegravir-based versus efavirenz-based combination therapy in treatment-naïve patients with HIV-1 infection: a multicentre, double-blind randomised controlled trial. *Lancet*. 2009;374:796-806.
- Lennox J, DeJesus E, Berger DS, et al. for the STARTMRK investigators. Raltegravir versus efavirenz regimens in treatment-naïve HIV-1-infected patients: 96-week efficacy, durability, subgroup, safety, and metabolic analyses. *J Acquir Immune Defic Syndr*. 2010;55:39-48.
- Sax P, DeJesus E, Mills A, et al. Co-formulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus co-formulated efavirenz, emtricitabine, and tenofovir for initial treatment of HIV-1 infection: a randomised, double-blind, phase 3 trial, analysis of results after 48 weeks. *Lancet*. 2012;379:2439-48.
- Zolopa A, Gallant J, Cohen, C, et al. Elvitegravir/cobicistat/emtricitabine/tenofovir DF (Quad) has durable efficacy and differentiated safety compared to efavirenz/emtricitabine/tenofovir DF at week 96 in treatment-naïve HIV-1-infected patients. *J Int AIDS Soc*. 2012;15(Suppl 4):18219. [Oral Abstract O424a].
- Wohl D, Cohen C, Gallant J, et al. A randomized, double-blind comparison of single-tablet regimen elvitegravir/cobicistat/emtricitabine/tenofovir DF versus single-tablet regimen efavirenz/emtricitabine/tenofovir DF for initial treatment of HIV-1 infection: analysis of week 144 results. *J Acquir Immune Defic Syndr*. 2014;65:e118-120.
- van Lunzen J, Maggioli F, Arribas J, et al. Once daily dolutegravir (S/GSK1349572) in combination therapy in antiretroviral-naïve adults with HIV: planned interim 48 week results from SPRING-1, a dose-ranging, randomised, phase 2b trial. *Lancet Infect Dis*. 2012;12:111-8.
- Stellbrink H, Reynes J, Lazzarin A, et al. Dolutegravir in antiretroviral-naïve adults with HIV-1: 96-week results from a randomized dose-ranging study. *AIDS*. 2013;27:1771-8.
- Walmsley S, Antela A, Clumeck N, et al for the SINGLE Investigators. Dolutegravir plus abacavir-lamivudine for the treatment of HIV-1 infection. *N Engl J Med*. 2013;369:1807-18.
- Pappa K, Baumgarten A, Felizarta F, et al. Dolutegravir + abacavir/lamivudine once daily superior to tenofovir/emtricitabine/efavirenz in treatment naïve HIV subjects: 144-week results from SINGLE (ING114467). *ICAAC* 2014. Washington, DC. [Abstract H-647a].
- Patel D, Snedecor S, Tang W, et al. 48-week efficacy and safety of dolutegravir relative to commonly used third agents in treatment-naïve HIV-1-infected patients: A systematic review and network meta-analysis. *PLoS One*. 2014;9:e105653.
- Nguyen A, Calmy A, Delhumeau C, et al. A randomized cross-over study to compare raltegravir and efavirenz (SWITCH-ER study). *AIDS*. 2011;25:1481-7.
- Gupta S, Mi D, Moe S, Dubé M, Liu Z. Effects of switching from efavirenz to raltegravir on endothelial function, bone mineral metabolism, inflammation, and renal function: a randomized, controlled trial. *J Acquir Immune Defic Syndr*. 2013;64:279-83.
- Pozniak A, Markowitz M, Mills A, et al. Switching to coformulated elvitegravir, cobicistat, emtricitabine, and tenofovir versus continuation of non-nucleoside reverse transcriptase inhibitor with emtricitabine and tenofovir in virologically suppressed adults with HIV (STRATEGY-NNRTI): 48 week results of a randomised, open-label, phase 3b non-inferiority trial. *Lancet Infect Dis*. 2014;14:590-9.
- TIVICAY® (dolutegravir) tablets prescribing information. GlaxoSmithKline, May 2014 (Accessed 19 September 2014.) Available from https://www.viivhealthcare.com/media/58599/us_tivicay.pdf
- Lazzarin A, Di Perri J, Sierra-Madero G, et al. Fasted lipid changes after administration of maraviroc (MVC) or efavirenz (EFV), both with zidovudine and lamivudine (ZDV/3TC) to treatment-naïve (TN) HIV-infected patients: 96-week results from MERIT. 49th ICAAC 2009. San Francisco, CA. [Abstract H-1574].
- MacInnes A, Lazzarin A, Di Perri G, et al. Maraviroc can improve lipid profiles in dyslipidemic patients with HIV: results from the MERIT trial. *HIV Clin Trials*. 2011;12:24-36.
- Feinberg J, Thompson M, Cade J, et al. Final week 48 analysis of cobicistavir (CVC) compared to efavirenz (EFV), in combination with emtricitabine/tenofovir (FTC/TDF), in treatment-naïve HIV-1-infected adults with CCR5-tropic virus. 14th European AIDS Conference, Brussels, Belgium, October 2013. [Abstract PS4/1].
- Díaz-Delfín J, Domingo P, Mateo M, et al. Effects of rilpivirine on human adipocyte differentiation, gene expression, and release of adipokines and cytokines. *Antimicrob Agents Chemother*. 2012;56:3369-75.
- Stankov M, Behrens G. Contribution of inflammation to fat redistribution and metabolic disturbances in HIV-1 infected patients. *Curr Pharm Des*. 2010;16:3361-71.
- Dubé M, Komarow L, Mulligan K, et al. for the Adult Clinical Trials Group 384. Long-term body fat outcomes in antiretroviral-naïve participants

randomized to nelfinavir or efavirenz or both plus dual nucleosides. Dual X-ray absorptiometry results from A5005s, a substudy of Adult Clinical Trials Group 384. *J Acquir Immune Defic Syndr.* 2007;45:508-14.

42. McComsey G, Kitch D, Sax P, et al. Peripheral and central fat changes in subjects randomized to abacavir-lamivudine or tenofovir-emtricitabine with atazanavir-ritonavir or efavirenz: ACTG Study A5224s. *Clin Infect Dis.* 2011;53:185-96.
43. Domingo P, Gutierrez Mdel M, Gallego-Escuredo J, et al. A 48-week study of fat molecular alterations in HIV naïve patients starting tenofovir/emtricitabine with lopinavir/ritonavir or efavirenz. *J Acquir Immune Defic Syndr.* 2014;66:457-65.
44. van Leth F, Phanuphak P, Stroes E, et al. Nevirapine and efavirenz elicit different changes in lipid profiles in antiretroviral-therapy-naïve patients infected with HIV-1. *PLoS Med.* 2004;1:e19.
45. Liu E, Armstrong C, Spiegelman D, et al. First-line antiretroviral therapy and changes in lipid levels over 3 years among HIV-infected adults in Tanzania. *Clin Infect Dis.* 2013;56:1820-8.
46. Maggi P, Bellacosa C, Carito V, et al. Cardiovascular risk factors in patients on long-term treatment with nevirapine- or efavirenz-based regimens. *J Antimicrob Chemother.* 2011;66:896-900.
47. Parietti J, Massari V, Rey D, et al. for the SIROCCO study team. Efavirenz to nevirapine switch in HIV-1-infected patients with dyslipidemia: a randomized, controlled study. *Clin Infect Dis.* 2007;45:263-6.
48. Ward D, Curtin J. Switch from efavirenz to nevirapine associated with resolution of efavirenz-related neuropsychiatric adverse events and improvement in lipid profiles. *AIDS Patient Care STDs.* 2006;20:542-8.
49. Clumeck N, Mwamba C, Kabeya K, et al. First-line therapy with LPV/r vs NVP and 2 NRTIs in a developing country: W144 of a randomized trial. *BMC Infect Dis.* 2014;14(Suppl 2):O2.
50. Fisac C, Virgili N, Ferrer E, et al. A comparison of the effects of nevirapine and nelfinavir on metabolism and body habitus in antiretroviral-naïve human immunodeficiency virus-infected patients: a randomized controlled study. *J Clin Endocrinol Metab.* 2003;88:5186-92.
51. Gil P, de Górgolas M, Estrada V, et al. Long-term efficacy and safety of protease inhibitor switching to nevirapine in HIV-infected patients with undetectable virus load. *Clin Infect Dis.* 2004;39:1024-9.
52. Arranz Caso J, López J, Santos I, et al. A randomized controlled trial investigating the efficacy and safety of switching from a protease inhibitor to nevirapine in patients with undetectable viral load. *HIV Med.* 2005;6:353-9.
53. Fisac C, Fumero E, Crespo M, et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. *AIDS.* 2005;19:917-25.
54. Reliquet V, Chirouze C, Allavena C, et al. Nevirapine-raltegravir combination, a NRTI and PI/r sparing regimen, as maintenance antiretroviral therapy in virologically suppressed HIV-1-infected patients. *Antivir Ther.* 2014;19:117-23.
55. Shaffer D, Hughes M, Sawe F, et al. Cardiovascular disease risk factors in HIV-infected women after initiation of lopinavir/ritonavir- and nevirapine-based antiretroviral therapy in Sub-Saharan Africa: A5208 (OC-TANE). *J Acquir Immune Defic Syndr.* 2014;66:155-63.
56. Soriano V, Arastéh K, Migrone H, et al. for the ARTEN investigators. Nevirapine versus atazanavir/ritonavir, each combined with tenofovir disoproxil fumarate/emtricitabine, in antiretroviral-naïve HIV-1 patients: the ARTEN Trial. *Antivir Ther.* 2011;16:339-48.
57. Podzamczer D, Andrade-Villanueva J, Clotet B, et al. Lipid profiles for nevirapine vs. atazanavir/ritonavir, both combined with tenofovir disoproxil fumarate and emtricitabine over 48 weeks, in treatment-naïve HIV-1-infected patients (the ARTEN study). *HIV Med.* 2011;12:374-82.
58. DeJesus E, Mills A, Bhatti L, Conner C, Storfer S. A randomised comparison of safety and efficacy of nevirapine vs. atazanavir/ritonavir combined with tenofovir/emtricitabine in treatment-naïve patients. *Int J Clin Pract.* 2011;65:1240-9.
59. Martínez E, Arnaiz J, Podzamczer D, et al. for the nevirapine, efavirenz, and abacavir (NEFA) Study Team. Substitution of nevirapine, efavirenz, or abacavir for protease inhibitors in patients with human immunodeficiency virus infection. *N Engl J Med.* 2003;349:1036-46.
60. van Vonderen M, van Agtmael M, Hassink E, et al. for the MEDICLAS study group. Zidovudine/lamivudine for HIV-1 infection contributes to limb fat loss. *PLoS One.* 2009;4:e5647.
61. Negredo E, Miró O, Rodríguez-Santiago B, et al. for the MULTINEKA Study Group. Improvement of mitochondrial toxicity in patients receiving a nucleoside reverse-transcriptase inhibitor-sparing strategy: results from the Multicenter Study with Nevirapine and Kaletra (MULTINEKA). *Clin Infect Dis.* 2009;49:892-900.
62. Tebas P, Zhang J, Hafner R, et al. Peripheral and visceral fat changes following a treatment switch to a non-thymidine analogue or a nucleoside-sparing regimen in HIV-infected subjects with peripheral lipodystrophy: results of ACTG A5110. *J Antimicrob Chemother.* 2009;63:998-1005.
63. Girard P-M, Campbell T, Grinsztejn B, et al. Pooled week 96 results of the phase III DUET-1 and DUET-2 trials of etravirine: further analysis of adverse events and laboratory abnormalities of special interest. *HIV Med.* 2012;13:427-35.
64. Ruane P, Brinson C, Kumar P, et al. Intelence and prezista once a day study (INROADS): a multicenter, single-arm, open-label study of once daily combination of etravirine (ETR) and darunavir/ritonavir (DRV/r) as dual therapy in early treatment-experienced subjects. 7th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Malaysia, 2013. [Abstract WEPE15].
65. Waters L, Fisher M, Winston A, et al. A phase IV, double-blind, multicentre, randomized, placebo-controlled, pilot study to assess the feasibility of switching individuals receiving efavirenz with continuing central nervous system adverse events to etravirine. *AIDS.* 2011; 25:65-71.
66. Nguyen A, Calmy A, Delhumeau C, et al. for the Swiss HIV Cohort Study. A randomized crossover study to compare efavirenz and etravirine treatment. *AIDS.* 2011;25:57-63.
67. Echeverría P, Bonjoch A, Puig J, et al. Randomised study to assess the efficacy and safety of once-daily etravirine-based regimen as a switching strategy in HIV-infected patients receiving a protease inhibitor-containing regimen. Etraswitch study. *PLoS One.* 2014;9:e84676.
68. Monteiro P, Perez I, Laguno M, et al. Dual therapy with etravirine plus raltegravir for virologically suppressed HIV-infected patients: a pilot study. *J Antimicrob Chemother.* 2014;69:742-8.
69. Casado J, de Los Santos I, Del Palacio M, et al. Lipid-lowering effect and efficacy after switching to etravirine in HIV-infected patients with intolerance to suppressive HAART. *HIV Clin Trials.* 2013;14:1-9.
70. Bull L, Bower M, Nelson M. Long term therapeutic success of etravirine in switch and naïve patients. 7th IAS Conference on HIV Pathogenesis, Treatment and Prevention, Malaysia, 2013. [Abstract WEAB0105].
71. Fätkenheuer G, Duvinier C, Rieger A, et al. for the SENSE Study Team. Lipid profiles for etravirine versus efavirenz in treatment-naïve patients in the randomized, double-blind SENSE trial. *J Antimicrob Chemother.* 2012;67:685-90.
72. Overton E, Greenberg K, Benson P, Ryan R, Cho M, Anderson D. Immune activation analysis over 48 weeks in INROADS, a study of the nucleoside/tide-sparing regimen of once-daily etravirine and darunavir/ritonavir. 15th International Workshop on Co-morbidities and Adverse Drug Reactions in HIV, 2013, Belgium. [Abstract PO3].
73. Cohen C, Molina J, Cahn P, et al. for the ECHO and THRIVE Study groups. Efficacy and safety of rilpivirine (TMC278) versus efavirenz at 48 weeks in treatment-naïve HIV-1-infected patients: pooled results from the phase 3 double-blind randomized ECHO and THRIVE Trials. *J Acquir Immune Defic Syndr.* 2012;60:33-42.
74. Tebas P, Sension M, Arribas J, et al. Lipid levels and changes in body fat distribution in treatment-naïve, HIV-1-infected adults treated with rilpivirine or efavirenz for 96 weeks in the ECHO and THRIVE trials. *Clin Infect Dis.* 2014;59:425-34.
75. Cohen C, Molina J, Casseti I, et al. for the ECHO and THRIVE Study groups. Week 96 efficacy and safety of rilpivirine in treatment-naïve, HIV-1 patients in two Phase III randomized trials. *AIDS.* 2013;27:939-50.
76. Cohen C, Wohl D, Arribas J, et al. STAR Study: single tablet regimen emtricitabine/rilpivirine/tenofovir DF is non-inferior to efavirenz/emtricitabine/tenofovir DF in ART-naïve adults. *J Int AIDS Soc.* 2012;15:18221.
77. Cohen C, Wohl D, Arribas J, et al. STA-R Study: single-tablet regimen rilpivirine/emtricitabine/tenofovir DF maintains non-inferiority to efavirenz/emtricitabine/tenofovir DF in ART-naïve adults week 96 results. 14th European AIDS Conference, Belgium, 2013. [Abstract PE7/17].
78. Cohen C, Wohl D, Arribas J, et al. STA-R Study: single-tablet regimen rilpivirine/emtricitabine/tenofovir DF maintains non-inferiority to efavirenz/emtricitabine/tenofovir DF and has minimal impact on fasting lipids in ART-naïve adults week 96 results. 15th International Workshop on Co-morbidities and Adverse Drug Reactions in HIV, 2013, Belgium. [Abstract 006].
79. Mills A, Cohen C, DeJesus E, et al. Efficacy and safety 48 weeks after switching from efavirenz to rilpivirine using emtricitabine/tenofovir disoproxil fumarate-based single-tablet regimens. *HIV Clin Trials.* 2013;14:216-23.
80. Rowlands J, Higgs C, De Esteban N, et al. Multicenter open-label study of switching from Atripla to Eviplera for CNS toxicity. 53rd ICAAC 2013, Denver CO. [Abstract H-1005].
81. Palella F, Fisher M, Tebas P, et al. Simplification to rilpivirine/emtricitabine/tenofovir disoproxil fumarate from ritonavir-boosted protease inhibitor antiretroviral therapy in a randomized trial of HIV-1 RNA-suppressed participants. *AIDS.* 2014;28:335-44.
82. Tebas P, Zhang J, Yarasheski K, et al. for the AIDS Clinical Trials Group (ACTG). Switching to a protease inhibitor-containing, nucleoside-sparing regimen (lopinavir/ritonavir plus efavirenz) increases limb fat but raises serum lipid levels: results of a prospective randomized trial (AIDS clinical trial group 5125s). *J Acquir Immune Defic Syndr.* 2007;45:193-200.
83. Pozniak A, Gallant J, DeJesus E, et al. Tenofovir disoproxil fumarate, emtricitabine, and efavirenz versus fixed-dose zidovudine/lamivudine and efavirenz in antiretroviral-naïve patients: virologic, immunologic, and morphologic changes—a 96-week analysis. *J Acquir Immune Defic Syndr.* 2006;43:535-40.
84. Gallant J, Staszewski S, Pozniak AL, et al. for the 903 Study Group. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naïve patients: a 3-year randomized trial. *JAMA.* 2004;292:191-201.