

Mechanisms of Accelerated Liver Fibrosis in HIV-HCV Coinfection

Theofilos Chrysanthidis, Georgia Loli, Simeon Metallidis, Georgios Germanidis

First Department of Internal Medicine, AHEPA Hospital, Aristotle University of Thessaloniki, School of Medicine, Thessaloniki, Greece

Abstract

Although there is evidence that hepatitis C virus (HCV) progresses rapidly in HIV/HCV-coinfected patients in comparison with HCV monoinfected, the HIV-, HCV-, and host-/genetic-related factors, as well as the exact mechanisms implicated in this process, are not fully elucidated. Furthermore, cure of HCV in those coinfected seems possible with the new antiviral drugs, but high cost as well as insufficient identification, linkage with care, and treatment hamper the achievement of this goal. Research on the individual could reveal an important prognostic marker for the effectiveness of persuasion of patients with HIV/HCV coinfection with a predicted accelerated fibrosis course, to facilitate and prioritize, not only in terms of guidelines but also in the real-life situation, their treatment with a medically just framework. (AIDS Rev. 2017;19:148-155)

Corresponding author: Georgios Germanidis, georgiosgermanidis@gmail.com, Simeon Metallidis, metallidissimeon@yahoo.gr

Key words

HIV. Hepatitis C virus. Coinfection. Liver fibrosis.

Introduction

It is known that after the introduction of combination antiretroviral therapy (cART) the overall morbidity and mortality of HIV-infected patients reduced dramatically. As HIV individuals live longer, other comorbidities are

affecting their clinical course. Liver-related complications are increasingly prevalent in patients living with HIV/AIDS accounting for 9% of deaths in unselected HIV-positive patients. Causes of liver disease include viral hepatitis, non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis, drug-associated toxicities, and metabolic/genetic disorders¹.

Correspondence to:

Georgios Germanidis
First Department of Internal Medicine,
Gastroenterology and Hepatology Section
AHEPA Hospital of the Aristotle University Medical School
1, St. Kyriakidi Street, 546 36 Thessaloniki, Greece
Tel.: +30 2313303156, Fax: +30 2310994638
E-mail: georgiosgermanidis@gmail.com
Simeon Metallidis
First Department of Internal Medicine,
Infectious Diseases Section
AHEPA Hospital of the Aristotle University Medical School
1, St. Kyriakidi Street, 546 36 Thessaloniki, Greece
Tel.: +30 2313303202, Fax: +30 2310994638
E-mail: metallidissimeon@yahoo.gr

Received in original form: 26/06/2017
Accepted in final form: 24/09/2017
DOI: 10.24875/AIDSRev.M17000004

HIV and hepatitis C virus (HCV) coinfection are quite common due to the fact that they are transmitted through the same route (parenteral, sexual, and vertical). In a recent meta-analysis, Plat et al. estimated that worldwide there are approximately 2,278,400 HIV-HCV-coinfected individuals, equaling an overall coinfection prevalence of 6.2%². HCV prevalence was consistently higher in HIV-positive compared with HIV-negative in all risk groups that were studied, but especially in people who inject drugs (82.4%).

The exact impact and immunologic effect of HIV in HCV infection are not completely understood³. Many studies, but not all of them, concluded that coinfected individuals experience an accelerated liver fibrosis process. The consequent rise in the incidence of liver complications outlined the need for better understanding of the involved mechanisms.

Furthermore, the response to classical HCV therapy was poorer in coinfecting patients. The development of the new direct-acting antivirals (DAAs) against HCV seemed very promising for the eradication of HCV in both HIV and non-HIV patients with further benefits of the reduction of the complications and transmission rates. Despite the high rates of efficacy proved equal for both HCV and HCV/HIV⁴⁻⁶, only a small number of the HCV/HIV patients are actually treated with these new therapies because of their cost. Although the AASLD⁷ and EASL⁸ now recommend that individuals coinfecting with HIV are prioritized for treatment regardless of their fibrosis stage, there is heated debate as to how best prioritize patients for treatment because reimbursement of HCV therapy is often restricted in many countries to individuals with advanced liver fibrosis. Even cost-effective treatments will need to be rationed to manage the health budget⁹.

Beyond the cost, another factor complicating the treatment of coinfecting individuals is that the cascade of care is far from perfect even in developed countries. The Centers for Disease Control estimates according to the Annual National HIV/AIDS progress report that while 87% of people living with HIV know their serological status, only 72.6% are linked to care within 1 month of diagnosis, 56.5% are retained in HIV medical care, and from those on cART, only 54.7% of them have efficient suppression of the virus¹⁰. The implications of this observation with regard to HCV coinfection are evident since specific groups of HIV-infected like those who inject intravenous drugs and patients with severe psychiatric disorders are less likely to access care for HIV and less likely to be treated for HCV.

The aim of this review is to describe the mechanisms implicated in liver fibrosis in HIV-/HCV-coinfected individuals that might form the basis for a better approach to identify and treat these patients.

Liver Fibrosis in HIV-HCV Coinfection

Reports have demonstrated a more accelerated liver fibrosis progression in the setting of HIV-HCV coinfection and liver disease as a major cause of morbidity and mortality in the coinfecting population. The widespread introduction of modern, effective, and less toxic cART regimens altered some of the observations. Two types of HIV-/HCV-coinfected patients have been reported, those infected for many years and treated with older antiretrovirals in the past and those recently infected who are treated with the newer ART.

Several studies report higher progression rates in coinfecting compared to monoinfecting patients while others have shown similar rates. Higher prevalence of advanced fibrosis in the coinfecting as compared with HCV-monoinfecting population was the result reported by Avihingsanon et al.,¹¹ Brescini et al.,¹² Li Vecchi et al.,¹³ Sagnelli et al.,¹⁴ Ragni et al.,¹⁵ Martin-Carboneiro et al.,¹⁶ Castera et al.,¹⁷ Gaslightwala and Bini,¹⁸ and Gonzalez et al.¹⁹ On the contrary, Mazzocato et al.,²⁰ Tovo et al.,²¹ Suárez-Zarracina et al.,²² Sterling et al.,²³ Grunhage et al.,²⁴ and Souza et al.²⁵ report similar progression rates. There are methodological issues with most of these studies. Some of them were longitudinal, others were cross-sectional, the fibrosis assessment method was not the same, and finally, other important factors such as alcohol use, smoking, gender, and duration of HIV infection were unequally distributed between HIV/HCV and HCV cohorts²⁶. These aspects may in part explain the conflicting reports regarding the fibrosis process in the liver of coinfecting patients.

Several factors might influence liver fibrosis progression rate and can be related with HIV, HCV, and the host. In coinfecting individuals, worth considering parameters are as follows: (1) HIV viremia; (2) changes in the degree of immune suppression (i.e., CD4 cell count); (3) the duration and extent of significant HIV-induced immune activation in part maintained by microbial translocation from the gut; and (4) the hepatotoxic potential of antiretrovirals. Of course, this is irrespective of the roles of steatosis, alcohol, insulin resistance (IR), and hepatitis B virus (HBV) coinfection in fibrosis progression, which is important in both HIV-/HCV-coinfecting and HCV-monoinfecting patients.

However, it must be noted that these factors are more common among people living with HIV comparing with HIV-negative people.

HIV viremia

HIV viremia seems to be of great importance in the liver fibrosis process. In a substudy of the INSIGHT Strategic Timing of Antiretroviral Treatment trial HIV, RNA levels were associated with higher fibrosis score at baseline (before the initiation of cART) among the 230 participants who were enrolled in this substudy²⁷.

The introduction of the new cART has led to the better control of HIV viremia. However, there is evidence of residual viral replication, especially in specific sanctuary third space body compartments. This phenomenon is present even in cases of an effective therapeutic outcome. The subsequent result is the chronic non-specific activation of the immune system. This phenomenon of systemic inflammation has also been associated with a more rapid fibrosis progression.

HIV can cause the activation of the chemokine (C-C motif) receptor 5 (CCR5) and cysteine-X-cysteine receptor 4 (CXCR4) coreceptors of the hepatocytes²⁸⁻³¹, the hepatic stellate cells (HSCs)³², Kupffer cells, HIV-specific T-cells, and interleukin-17 (IL-17) producing T-cells, thus resulting in a chronic non-specific activation of the immune system³³. This particular systemic inflammation process has also been associated with a more rapid liver fibrosis progression.

Bacterial translocation

Bacterial translocation has an important impact on liver fibrosis in HIV-/HCV-coinfected patients³⁴. The loss of integrity of gut mucosa is the result of the HIV viral action on the intestinal wall, especially on the CD4 T-lymphocytes and macrophages. The subsequent increased microbial translocation results in activation of the Kupffer cells and HSCs through various mediators, consequently promoting liver fibrosis^{35,36}.

Immune suppression

Immune suppression is more profound in HIV infection and is mainly expressed with the reduction of the CD4 cells. Data from the previous studies correlated the low CD4 counts with the progression of fibrosis³⁷. The most recent guidelines of the EACS, DHHS, and WHO recommend the initiation of highly active antiret-

roviral therapy early and irrespective of the CD4 count. However, an important percentage of people living with HIV/AIDS is not still on cART, and many of those on therapy cannot restore the CD4 count in levels similar to non-HIV individuals³⁸.

Antiretrovirals

The crucial factor that differentiates HIV/HCV from HCV-monoinfected patients is the antiretroviral drugs. cART has changed not only the natural history of HIV infection improving dramatically life expectancy but also the quality of life. Nevertheless, side effects derived from the use of these agents were recognized. It is well-known that some of the antiretrovirals affect the liver. The older nucleoside reverse-transcriptase inhibitors (NRTIs), didanosine, and stavudine (d4T) have been associated with the development of liver fibrosis and portal hypertension^{22,39}. NRTI also can cause mitochondrial toxicity which predisposes to liver injury and subsequent fibrosis. Protease inhibitors, another large category of antiretrovirals, can also worsen the deposition of fat in the liver and consequently liver fibrosis. First, they can decrease peripheral lipolysis through inhibition of glucose transporter Type-4 activity. The adipocytes in the peripheral tissue and abdomen become hypertrophic, lose part of their activity, and consequently become resistant to insulin. These adipocytes secrete less adiponectin, resulting in an increase of body fat and worsening the deposition of fat in the liver and tissue fibrosis⁴⁰.

Non-NRTIs are known for their potential to cause elevated liver enzymes but have so far not been linked to fibrosis progression and are the drugs most commonly utilized. However, prospective data are needed to be able firmly to conclude about their hepatic safety.

HIV-/HCV-coinfected patients diagnosed in more recent years who started therapy earlier with the newer more effective and safer antiretroviral drugs are distinctly different from those who have been exposed to longer duration of un suppressed HIV and hepatotoxic drugs. Current evidence suggests that the first group may exhibit a much more similar liver fibrosis progression rate as HCV-monoinfected patients²⁶.

Genetics of Liver Fibrosis in HIV-/HCV-coinfected Patients

A number of candidate genes have been used to identify variants influencing the development of liver disease in patients with HCV infection, but the vast

majority of them produced results that were not consistently replicated. Genome-wide association studies (GWAS) provide a broader, unbiased approach for the discovery of genetic factors involved in disease susceptibility. In HIV-related phenotypes, such studies have mostly identified HLA loci associated with the control of viral load and with nonprogression to AIDS. Several GWASs of HCV infection-related phenotypes have identified polymorphisms of the IL28B (also denoted as IFNL3/4) gene associated with the spontaneous clearance of HCV and a favorable response to interferon-ribavirin-based treatment, both in patients infected with HCV only and in patients with HIV/HCV coinfection. By a candidate gene approach, polymorphisms of IL28B gene have also been associated with liver inflammation and hepatic fibrosis in HCV monoinfection. Only two GWASs have focused on the HCV-related liver fibrosis outcome in patients with monoinfections^{48,49}.

The identification of genetic variants associated with a risk of developing liver fibrosis in this specific population of coinfecting patients is therefore of major interest.

A recent GWAS⁵⁰ detected, for the first time, two significant signals associated with severe liver fibrosis in patients with HIV/HCV coinfection. One of these signals was weaker if patients with sustained viral response (SVR) were removed from the analysis and was not replicated in two cohorts of patients with HCV monoinfection. By contrast, the signal on chromosome 3p25 clearly remained significant in the sample of coinfecting patients without SVR and was replicated in two independent cohorts of patients with HCV monoinfection, through the highly correlated SNPs rs61183828 and rs73132859. The biologic role of two genes, *CAV3* and *RAD18*, appear interesting as their products are involved in mechanisms likely to affect both cell signaling and the maintenance of cell structure for *CAV3* or implicated in the post-replication DNA repair process occurring during HIV-1 infection and maximize HCV replication for *RAD18*.

In this GWAS, a significant replicated genetic association on chromosome 3p25 with the SNP rs61183828 was identified, which exhibits a substantial impact on liver stiffness in coinfecting patients. These results suggest new relevant hypotheses for the pathogenesis of liver fibrosis in coinfecting patients, pointing out novel molecular mechanisms potentially accounting for this genetic effect.

Other factors

In addition to these HIV-related factors, the role of steatosis, IR, and alcohol consumption are all impor-

tant in both HIV-HCV-coinfected and HCV-monoinfected patients. However, the incidence and importance of some of these factors are higher among people living with HIV/HCV.

The incidence of NAFLD in HIV-positive population is about 30–40%, higher than the estimated incidence in HIV-negative persons. Furthermore, there are data supporting that fatty infiltration of the liver occurs in patients with lower body mass index values as compared to HIV-negative people, suggesting a possible lower threshold for this complication. Similarly, steatohepatitis is more common in HIV-infected patients^{41–43}.

IR is a known factor that promotes liver fibrosis⁴⁴. The incidence of IR, in many studies that tried to calculate it, is higher among HIV-positive patients⁴⁵.

Finally, alcohol and cannabis consumption is higher among some groups of people living with HIV/AIDS, facilitating as cofactors the fibrotic process^{46,47}. This is another cofactor of liver disease in HIV-HCV-coinfected patients that can contribute to a worst fibrosis progression compared to the HCV-monoinfected persons.

Pathogenesis/Immunobiology of Liver Fibrosis in HIV-HCV-coinfected Patients

At the liver molecular level, HIV infects or signals multiple types of intrahepatic cells, documented both *in vitro* (cell lines and primary cells, hepatocytes, Kupffer, stellate, and endothelial cells) and *in vivo* (hepatocytes and Kupffer cells).

HIV entry to hepatocytes is through the cell-surface coreceptors CCR5 and CXCR4. Their activation increases the expression of procollagen alpha-1, a component of Type 1 collagen. The latter can be detected in the extracellular matrix (ECM) that is characteristic of advanced fibrosis^{28,29}. Furthermore, HIV can directly induce death of the hepatocytes, mostly by increasing cell susceptibility to the TNF-related apoptosis-inducing ligand receptor (TRAIL)^{30,31}. HCV hepatocyte apoptotic bodies, engulfed by stellate cells, lead to their activation with subsequent increase fibrosis⁵¹.

HIV isolates can infect primary human HSCs, and HIV causes a productive noncytopathic infection of Kupffer cells (lipopolysaccharide hyperresponse). Furthermore, HIV increases stellate cell activation, either as a result of direct HSC activation by damage-associated molecular patterns (DAMPs) or indirect DAMP-induced Kupffer cell activation with subsequent IL-1 β - and IL-18-mediated HSC activation.

The result of direct effect is the subsequent expression of monocyte chemoattractant protein-1 (MCP-1) and activation of tissue inhibitor metalloproteinase (TIMP). Both proteins act as chemoattractants of leukocytes, thus promoting liver inflammation and fibrosis³². Furthermore, CCR5, CXCR4, and glycoprotein 120 mediate stellate cell activation³³. CCR5 and CCL5 mediate HSC migration and proliferation, as well as “cross-talk” between HSCs and leukocytes during fibrogenesis.

Disruption of CCR2 and CCR5 signaling pathways is expected to provide anti-inflammatory and antifibrotic benefits. Cenicriviroc (CVC), an antagonist of the CCR2 and CCR5 receptors and their respective ligands, C-C chemokine ligand Type 2 (CCL2/MCP-1) and 5 (CCL5/RANTES), is expected to have the aforementioned activities⁵².

The mechanisms by which CVC may prevent inflammation and fibrosis in HIV-/HCV-coinfection are decreased recruitment, migration, and infiltration of pro-inflammatory monocytes to the site of liver injury induced by activated Kupffer cells, mainly through CCR2 antagonism. This consequently reduces the number of pro-inflammatory macrophages in the liver, thereby decreasing chronic liver inflammation and downregulating the production of profibrotic cytokines, such as transforming growth factor beta-1 (TGF- β 1) that promotes the transdifferentiation of HSCs to collagen synthesizing myofibroblasts.

Chronic liver injury induces fibrosis that is characterized by the accumulation of ECM proteins and is modulated by cytokines regulating the inflammatory response^{47,53-55}. Among many cytokines and growth factors, TGF- β /activin superfamily along with the major downstream mediator of its signaling, namely, connective tissue growth factor play a pivotal role in hepatic fibrogenesis and development of cirrhosis. TGF- β 1 promotes the transdifferentiation of HSCs to collagen synthesizing myofibroblasts and the production of tissue inhibitors of metalloproteinases, which inhibit the metalloproteinase-mediated degradation of ECM components.

Blockade of TGF- β signaling in animal models inhibits the fibrotic response in the liver, whereas transcriptional activation of TGF- β induces plasminogen activator inhibitor-1 and ECM proteins production^{56,57}.

TGF- β s and activins transduce their signals by binding to specific transmembrane receptors and activating their intracellular mediators, namely, the receptor-regulated SMAD (mothers against decapentaplegic drosophila homolog) proteins (R-SMADs), especially SMAD2 and/or SMAD3. After their activation, R-SMADs

associate with the common-mediator SMAD (co-SMAD), namely, SMAD4 resulting in the translocation of the SMAD complex into the nucleus to regulate the expression of target genes. Hepatitis viruses can also affect the TGF- β signaling through interaction with both receptors and SMADs. The dominant intracellular antagonist (and regulator) of TGF- β /activin signaling is SMAD family member 7 that acts to attenuate the TGF- β -mediated fibrosis in multiple organs, including the liver⁵⁸.

In an *in vitro* model of coculture of hepatocyte and HSC lines Huh7.5.1 and LX2, both HCV and HIV independently activated TGF- β 1 signaling through reactive oxygen species (ROS) (antioxidant response elements), nuclear factor kappa-light-chain-enhancer of activated B-cells (NF κ B), and SMAD3 in both cell lines in coculture. Activation of these profibrotic pathways was additive following HIV/HCV coexposure. This was confirmed when examining collagen

Type 1 alpha-1 and TIMP1, where messenger RNA and protein levels were significantly higher in LX2 cells in coculture following HIV/HCV coexposure, compared with either virus alone. In addition, expression of these profibrotic genes was significantly higher in the coculture model compared to either cell type in monoculture, suggesting an interaction and feedback mechanism between Huh7.5.1 and LX2 cells. HIV in these experiments seems to accentuate an HCV-driven profibrogenic program in hepatocyte and HSC lines through ROS, NF κ B, and TGF- β 1 upregulation⁵⁹.

An important pathway of inflammation associated with viral infection is activation of inflammasomes⁶⁰. Inflammasomes are molecular platforms activated on cellular infection or stress that triggers the maturation of pro-inflammatory cytokines such as IL-1 β to engage innate immune defenses. The NLRP3 (NACHT, LRR, and PYD domains-containing protein 3/cryopyrin), inflammasome is a cytosolic protein complex required for the development of sterile inflammation that can further increase organ damage. Many liver diseases such as alcoholic steatohepatitis, nonalcoholic steatohepatitis (NASH), and drug-induced liver injury have sterile inflammation as a major component.

In viral infections, pathogen sensing promotes the assembly of these molecular platforms. The result is the secretion of the pro-inflammatory cytokines IL-1 β and IL-18 known to mediate inflammation⁶⁰. Studies have shown that viremic HIV-infected individuals have higher plasma levels of IL-18 compared to uninfected and ART-treated individuals^{61,62}. In a recent study, Veenhuis et al.⁶³ showed that IL-18 is higher in coin-

fected than in monoinfected or uninfected individuals. Interestingly, comparing HIV- or HCV-monoinfected patients, IL-18 levels were significantly higher in those with HIV infection suggesting a more potent induction of the inflammasome activation by HIV. There is also, however, a marked person-to-person variation in the inflammasome response to HCV and HIV. 11 highly correlated single-nucleotide polymorphisms ($r^2=0.98-1$) in the IL-18-BCO2 region were found significantly associated with IL-18 levels in serum. Thus, genetic variation in IL-18 is associated with IL-18 production in response to HIV and HCV infection and may explain variability in the inflammatory outcomes of chronic viral infections⁶⁴.

Given the association between IL-18 and the inflammatory complications, increased inflammasome activation and consequent IL-18 secretion may explain enhanced liver disease progression observed in coinfecting individuals.

Among the most powerful mechanisms for achieving a balanced immune response are the expression of programmed death 1 (PD1) molecule by T-cells and the inhibition of effector T-cells (Teffs) by CD4+T regulatory cells (Tregs)⁶⁵⁻⁶⁸. Models of viral infection have indicated that the interaction between the inhibitory receptor PD1, expressed in high levels on lymphocytes, and its ligands program cell death 1 ligand (PDL1) and PDL2, plays a critical role in T-cell exhaustion by inducing T-cell inactivation^{65,69}. The previous studies have indicated that patients with chronic viral hepatitis display increased numbers of Tregs (both natural and inducible) in peripheral blood or liver, which, in turn, exert a suppressive function against specific HCV-Teffs *in vitro*⁷⁰.

Recently, Speletas et al. demonstrated that the *FOXP3* expression in liver is positively correlated with the intensity of liver inflammation along with a specific pattern of mRNA expression of the apoptosis mediators *FAS*, *FASL*, and *TRAIL*, irrespective of the cause of tissue damage (viral, toxic, and autoimmunity) suggesting that might represent a bystander effect and not a causative event of chronic inflammation⁷¹.

NAFLD is clearly, in this era of safer and more effective hepatitis C therapy, common in patients with HIV and might be more likely to progress to NASH- and NAFLD-related fibrosis or cirrhosis in these patients than in individuals without HIV. Very little is known about the pathogenesis of NAFLD in patients with HIV and the extent to which HIV, ART, and metabolic syndrome account for its increased prevalence. As in patients without HIV, the accumulation of excess fatty

acids in the liver and the progression to hepatocyte injury, inflammation, and fibrosis in patients with HIV are a part of a complex process that has no single pathophysiological mechanism. We need to emphasize that many of the above-analyzed concepts on accelerated fibrosis progression in the liver of people living with HIV may be important to understand and manage NAFLD/NASH in HIV⁷².

Conclusions

The reduction of HIV-related morbidity and mortality after the introduction of cART revealed the increasing incidence of the liver-related complications among people living with HIV. This fact led the medical community of HIV medicine to focus on the pathogenesis and treatment of the liver disease in these patients. HIV/HCV coinfection is an important etiological factor of liver complications.

Previously conducted studies tried to determine whether liver fibrosis progress is more rapid in HIV/HCV coinfecting as compared to HCV-infected individuals with conflicting results.

However, several factors possibly affect this process. Factors associated with HIV infection such as HIV viremia, reduction of CD4 lymphocytes, bacterial translocation, and toxicity of some of the antiretrovirals seem to be implicated. They may act in synergy with traditional factors such as alcohol and drug abuse, NAFLD, and IR which are more frequently present among HIV-/HCV-coinfecting than in HCV-monoinfected patients. All these factors influence the fibrosis progression, promoting the development of liver complications.

The arrival of the new DAAs offers the possibility of eradication of hepatitis C in HCV/HIV coinfection. HCV cure rates in coinfecting patients treated with DAAs are equivalent to those seen in the HCV-monoinfected patients because the new DAAs act on virus replication without the mediation and need of specific immune responses. A major barrier to this target is the cost of the DAAs. Further study and understanding of the pathogenesis of liver disease in HIV-/HCV-coinfecting patients will help in prioritizing the HCV therapy. New research findings on the mechanisms of accelerated liver fibrosis in HIV-HCV coinfection will probably support current recommendations to start HCV treatment irrespective of fibrosis stage in those with risk factors for accelerated fibrosis progression and persons at elevated risk of HCV transmission.

These results will possibly suggest new relevant hypotheses for the pathogenesis of liver fibrosis in

coinfected patients, pointing to novel molecular mechanisms potentially accounting for this effect. These findings may help to define new targets for the development of drugs or prognostic tools in the treatment of HCV-infected patients.

References

1. Sherman KE, Rockstroh J, Thomas D. Human immunodeficiency virus and liver disease: An update. *Hepatology*. 2015;62:1871-82.
2. Platt L, Easterbrook P, Gower E, et al. Prevalence and burden of HCV co-infection in people living with HIV: A global systematic review and meta-analysis. *Lancet Infect Dis*. 2016;16:797-808.
3. Chew KW, Bhattacharya D. Virologic and immunologic aspects of HIV-hepatitis C virus coinfection. *AIDS*. 2016;30:2395-404.
4. Montes ML, Oliveira A, Ahumada A, et al. Similar effectiveness of direct-acting antiviral against hepatitis C virus in patients with and without HIV infection. *AIDS*. 2017;31:1253-60.
5. Grint D, Peters L, Rockstroh JK, et al. Liver-related death among HIV/hepatitis C virus-co-infected individuals: Implications for the era of directly acting antivirals. *AIDS*. 2015;29:1205-15.
6. Childs K, Taylor C, Dieterich D, Agarwal K. Directly acting antivirals for hepatitis C virus arrive in HIV/hepatitis C virus co-infected patients: From mind the gap to where's the gap? *AIDS*. 2016;30:975-89.
7. Chung RT. AASLD/IDSA HCV guidance panel, hepatitis C guidance: AASLD-IDSA recommendations for testing, managing, and treating adults infected with hepatitis C virus. *Hepatology*. 2015;62:932-54.
8. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu. EASL Recommendations on Treatment of Hepatitis C 2016. *J Hepatol*. 2017;66:153-94.
9. Mehta SH, Thomas DL. Doing the math on hepatitis C virus treatment. *J Hepatol*. 2016;65:5-6.
10. National HIV/AIDS Strategy for the United States: Progress Report; 2016.
11. Avihingsanon A, Jitmitraparp S, Tangkijvanich P, et al. Advanced liver fibrosis by transient elastography, fibrosis 4, and alanine aminotransferase/platelet ratio index among Asian hepatitis C with and without human immunodeficiency virus infection: Role of Vitamin D levels. *J Gastroenterol Hepatol*. 2014;29:1706-14.
12. Brescini L, Orsetti E, Gesuita R, et al. Evaluating liver fibrosis by transient elastometry in patients with HIV-HCV coinfection and monoinfection. *Hepat Mon*. 2014;14:e15426.
13. Li Vecchi V, Giannitrapani L, Di Carlo P, et al. Non-invasive assessment of liver steatosis and fibrosis in HIV/HCV- and HCV- infected patients. *Ann Hepatol*. 2013;12:740-8.
14. Sagnelli C, Uberti-Foppa C, Pasquale G, et al. Factors influencing liver fibrosis and necroinflammation in HIV/HCV coinfection and HCV monoinfection. *Infection*. 2013;41:959-67.
15. Ragni MV, Moore CG, Soadwa K, et al. Impact of HIV on liver fibrosis in men with hepatitis C infection and haemophilia. *Haemophilia*. 2011;17:103-11.
16. Martin-Carbonero L, de Ledinghen V, Moreno A, et al. Liver fibrosis in patients with chronic hepatitis C and persistently normal liver enzymes: Influence of HIV infection. *J Viral Hepat*. 2009;16:790-5.
17. Castéra L, Loko MA, Le Bail B, et al. Hepatic steatosis in HIV-HCV coinfected patients in France: Comparison with HCV monoinfected patients matched for body mass index and HCV genotype. *Aliment Pharmacol Ther*. 2007;26:1489-98.
18. Gaslightwala I, Bini EJ. Impact of human immunodeficiency virus infection on the prevalence and severity of steatosis in patients with chronic hepatitis C virus infection. *J Hepatol*. 2006;44:1026-32.
19. Gonzalez SA, Liu RC, Edlin BR, Jacobson IM, Talal AH. HIV/hepatitis C virus-coinfected patients with normal alanine aminotransferase levels. *J Acquir Immune Defic Syndr*. 2006;41:582-9.
20. Mazzocato S, Orsetti E, Gesuita R, Piraccini F, Drenaggi D, Barchiesi F. Comparison of liver fibrosis progression in HIV/HCV co-infected and HCV mono-infected patients by transient elastometry. *Scand J Infect Dis*. 2014;46:797-802.
21. Tovo CV, Becker SC, Almeida PR, Galperin B, Chaves S. Progression of liver fibrosis in monoinfected patients by hepatitis C virus and coinfected by HCV and human immunodeficiency virus. *Arq Gastroenterol*. 2013;50:19-22.
22. Suárez-Zarracina T, Valle-Garay E, Collazos J, et al. Didanosine (ddI) associates with increased liver fibrosis in adult HIV-HCV coinfected patients. *J Viral Hepat*. 2012;19:685-93.
23. Sterling RK, Wegelin JA, Smith PG, et al. Similar progression of fibrosis between HIV/HCV-infected and HCV-infected patients: Analysis of paired liver biopsy samples. *Clin Gastroenterol Hepatol*. 2010;8:1070-6.
24. Grunhage F, Wasmuth JC, Herkenrath S, et al. Transient elastography discloses identical distribution of liver fibrosis in chronic hepatitis C between HIV-negative and HIV-positive patients on HAART. *Eur J Med Res*. 2010;15:139-44.
25. Souza AR, Tovo CV, Mattos AA, Chaves S. There is no difference in hepatic fibrosis rates of patients infected with hepatitis C virus and those coinfected with HIV. *Braz J Med Biol Res*. 2008;41:223-8.
26. Arends JE, Lieveld FI, Boeijen LL, et al. Natural history and treatment of HCV/HIV coinfection: Is it time to change paradigms? *J Hepatol*. 2015;63:1254-62.
27. Matthews GV, Neuhaus J, Bhagani S, et al. Baseline prevalence and predictors of liver fibrosis among HIV-positive individuals: A substudy of the INSIGHT strategic timing of antiretroviral treatment (START) trial. *HIV Med*. 2015;16 Suppl 1:129-36.
28. Vlahakis SR, Villasis-Keever A, Gomez TS, Bren GD, Paya CV. Human immunodeficiency virus-induced apoptosis of human hepatocytes via CXCR4. *J Infect Dis*. 2003;188:1455-60.
29. Nomiyama H, Hieshima K, Nakayama T, et al. Human CC chemokine liver-expressed chemokine/CCL16 is a functional ligand for CCR1, CCR2 and CCR5, and constitutively expressed by hepatocytes. *Int Immunol*. 2001;13:1021-9.
30. Rizza SA, Challagundla KB, Natesampillai S, et al. TRAIL dependent fratricidal killing of gp120 primed hepatocytes by HCV core expressing hepatocytes. *PLoS One*. 2011;6:e27171.
31. Brost S, Zimmermann A, Koschny R, et al. Hepatocyte expression of TRAIL pathway regulators correlates with histopathological and clinical parameters in chronic HCV infection. *Pathol Res Pract*. 2014;210:83-91.
32. Tuyama AC, Hong F, Saiman Y, et al. Human immunodeficiency virus (HIV)-1 infects human hepatic stellate cells and promotes collagen I and monocyte chemoattractant protein-1 expression: Implications for the pathogenesis of HIV/hepatitis C virus-induced liver fibrosis. *Hepatology*. 2010;52:612-22.
33. Bruno R, Galastri S, Sacchi P, et al. gp120 modulates the biology of human hepatic stellate cells: A link between HIV infection and liver fibrogenesis. *Gut*. 2010;59:513-20.
34. Balagopal A, Philip FH, Astemborski J, et al. Human immunodeficiency virus-related microbial translocation and progression of hepatitis C. *Gastroenterology*. 2008;135:226-33.
35. Sandler NG, Douek DC. Microbial translocation in HIV infection: Causes, consequences and treatment opportunities. *Nat Rev Microbiol*. 2012;10:655-66.
36. Klatt NR, Funderburg NT, Brenchley JM. Microbial translocation, immune activation, and HIV disease. *Trends Microbiol*. 2013;21:6-13.
37. Puoti M, Bonacini M, Spinetti A, et al. Liver fibrosis progression is related to CD4 cell depletion in patients coinfected with hepatitis C virus and human immunodeficiency virus. *J Infect Dis* 2001;183:134-7.
38. Auti F, Mezzaroma I. Failure to reconstitute CD4 T-cells despite suppression of HIV replication under HAART. *AIDS Rev*. 2006;8:88-97.
39. Maida I, Núñez M, Ríos MJ, et al. Severe liver disease associated with prolonged exposure to antiretroviral drugs. *J Acquir Immune Defic Syndr*. 2006;42:177-82.
40. Maximos M, Bril F, Portillo Sanchez P, et al. The role of liver fat and insulin resistance as determinants of plasma aminotransferase elevation in nonalcoholic fatty liver disease. *Hepatology*. 2015;61:153-60.
41. Lemoine M, Serfaty L, Capeau J. From nonalcoholic fatty liver to nonalcoholic steatohepatitis and cirrhosis in HIV-infected patients: Diagnosis and management. *Curr Opin Infect Dis*. 2012;25:10-6.
42. Joshi D, O'Grady J, Dieterich D, Gazzard B, Agarwal K. Increasing burden of liver disease in patients with HIV infection. *Lancet*. 2011;377:1198-209.
43. Mohammed SS, Aghdassi E, Salit IE, et al. HIV-positive patients with nonalcoholic fatty liver disease have a lower body mass index and are more physically active than HIV-negative patients. *J Acquir Immune Defic Syndr*. 2007;45:432-8.
44. Paradis V, Perlmenter G, Bouvoust F, et al. High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: A potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. *Hepatology*. 2001;34:738-44.
45. Aboud M, Elgalib A, Kulasegaram R, Peters B. Insulin resistance and HIV infection: A review. *Int J Clin Pract*. 2007;61:463-72.
46. Justice AC, Lasky E, McGinnis KA, et al. Medical disease and alcohol use among veterans with human immunodeficiency infection: A comparison of disease measurement strategies. *Med Care*. 2006;44 8 Suppl 2:S52-60.
47. Mallat A, Teixeira-Clerc F, Lotersztajn S. Cannabinoid signaling and liver therapeutics. *J Hepatol*. 2013;59:891-6.
48. Patin E, Kutalik Z, Guergnon J, et al. Genome-wide association study identifies variants associated with progression of liver fibrosis from HCV infection. *Gastroenterology*. 2012;143:1244-52.e1-12.
49. Urabe Y, Ochi H, Kato N, et al. A genome-wide association study of HCV-induced liver cirrhosis in the Japanese population identifies novel susceptibility loci at the MHC region. *J Hepatol*. 2013;58:875-82.

50. Ulveling D, Le Clerc S, Cobat A, et al. A new 3p25 locus is associated with liver fibrosis progression in human immunodeficiency virus/hepatitis C virus-coinfected patients. *Hepatology*. 2016;64:1462-72.

51. Gieseier RK, Marquitan G, Schlatjan M, et al. Hepatocyte apoptotic bodies encasing nonstructural HCV proteins amplify hepatic stellate cell activation: Implications for chronic hepatitis C. *J Viral Hepat*. 2011;18:760-7.

52. Friedman S, Sanyal A, Goodman Z, et al. Efficacy and safety study of cenicriviroc for the treatment of non-alcoholic steatohepatitis in adult subjects with liver fibrosis: CENTAUR Phase 2b study design. *Contemp Clin Trials*. 2016;47:356-65.

53. Diehl AM, Chute J. Underlying potential: Cellular and molecular determinants of adult liver repair. *J Clin Invest*. 2013;123:1858-60.

54. Trautwein C, Friedman SL, Schuppan D, Pinzani M. Hepatic fibrosis: Concept to treatment. *J Hepatol*. 2015;62 1 Suppl: S15-24.

55. Lee YA, Wallace MC, Friedman SL. Pathobiology of liver fibrosis: A translational success story. *Gut*. 2015;64:830-41.

56. Shek FW, Benyon RC. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? *Eur J Gastroenterol Hepatol*. 2004;16:123-6.

57. Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. *Nature*. 1997;390:465-71.

58. Argentou N, Germanidis G, Hytioglou P, et al. TGF- β signaling is activated in patients with chronic HBV infection and repressed by SMAD7 overexpression after successful antiviral treatment. *Inflamm Res*. 2016;65:355-65.

59. Salloum S, Holmes JA, Jindal R, et al. Exposure to human immunodeficiency virus/hepatitis C virus in hepatic and stellate cell lines reveals cooperative profibrotic transcriptional activation between viruses and cell types. *Hepatology*. 2016;64:1951-68.

60. Schroder K, Tschopp J. The inflammasomes. *Cell*. 2010;140:821-32.

61. Iannello A, Samarani S, Debeche O, et al. Potential role of IL-18 in the immunopathogenesis of AIDS, HIV-associated lipodystrophy and related clinical conditions. *Curr HIV Res*. 2010;8:147-64.

62. Watanabe D, Uehira T, Yonemoto H, et al. Sustained high levels of serum interferon- γ during HIV-1 infection: A specific trend different from other cytokines. *Viral Immunol*. 2010;23:619-25.

63. Veenhuis RT, Astemborski J, Chattergoon MA, et al. Systemic elevation of proinflammatory interleukin 18 in HIV/HCV coinfection versus HIV or HCV mono-infection. *Clin Infect Dis*. 2016;64:589-96.

64. Vergara C, Thio C, Latanich R, et al. Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections. *Genes Immun*. 2017;18:82-7.

65. Watanabe T, Bertolletti A, Tanoto TA. PD-1/PD-L1 pathway and T-cell exhaustion in chronic hepatitis virus infection. *J Viral Hepat*. 2010;17:453-8.

66. Alatrakchi N, Koziel M. Regulatory T cells and viral liver disease. *J Viral Hepat*. 2009;16:223-9.

67. Germanidis G, Argentou N, Hytioglou P, et al. Liver FOXP3 and PD1/PDL1 expression is down-regulated in chronic HBV hepatitis on maintained remission related to the degree of inflammation. *Front Immunol*. 2013;4:207.

68. Simonetta F, Bourgeois C. CD4+FOXP3+ regulatory T-cell subsets in human immunodeficiency virus infection. *Front Immunol*. 2013;4:215.

69. Fisicaro P, Valdatta C, Massari M, et al. Antiviral intrahepatic T-cell responses can be restored by blocking programmed death-1 pathway in chronic hepatitis B. *Gastroenterology*. 2010;138:682-93, 693.e1-4.

70. Manigold T, Racanelli V. T-cell regulation by CD4 regulatory T cells during hepatitis B and C virus infections: Facts and controversies. *Lancet Infect Dis*. 2007;7:804-13.

71. Speletras M, Argentou N, Germanidis G, et al. Foxp3 expression in liver correlates with the degree but not the cause of inflammation. *Mediat Inflamm*. 2011;2011:827565.

72. Verna EC. Non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in patients with HIV. *Lancet Gastroenterol Hepatol*. 2017;2:211-23.