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Abstract

Resistance to antiretroviral therapy (ART) threatens the efficacy of human immunodeficiency virus type 1
(HIV-1) treatment. We present a review of knowledge gaps in the science and technologies of acquired
HIV-1 drug resistance (HIVDR) in an effort to facilitate research, scientific exchange, and progress in
clinical management. The expert authorship of this review convened to identify data gaps that exist in
the field of HIVDR and discuss their clinical implications. A subsequent literature review of trials and
current practices was carried out to provide supporting evidence. Several gaps were identified across
HIVDR science and technology. A summary of the major gaps is presented, with an expert discussion of
their implications within the context of the wider field. Crucial to optimizing the use of ART will be
improved understanding of protease inhibitors and, in particular, integrase strand transfer inhibitors
(INSTI) in the context of HIVDR. Limited experience with INSTI represents an important knowledge gap
in HIV resistance science. Utilizing such knowledge in a clinical setting relies on accurate testing and
analysis of resistance-associated mutations. As next-generation sequencing becomes more widely avail-
able, a gap in the interpretation of data is the lack of a defined, clinically relevant threshold of minority
variants. Further research will provide evidence on where such thresholds lie and how they can be most
effectively applied. Expert discussion identified a series of gaps in our knowledge of HIVDR. Addressing

Correspondence to:
Charles A. Boucher
Department of Viroscience
Erasmus Medical Center
Erasmus University

Postbus 2040, Rotterdam, 3000/CA Received in original form: 24/01/2018
The Netherlands Accepted in final form: 19/02/2018
E-mail: c.boucher@erasmusme.nl DOI: 10.24875/AIDSRev.M18000018

26



Charles A. Boucher, et al.: HIV Drug Resistance: the Knowledge Gaps

such gaps through further research and characterization will facilitate the optimal use of ART therapies

and technologies. (AIDS Rev. 2018;20:26-41)
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The evolving landscape of human immunodeficiency
virus type 1 (HIV-1) treatment has led to continual
improvements in patient outcomes. The expanding
selection of antiretrovirals (ARVs) from six mechanistic
classes provides a powerful armamentarium to the
physician. However, the success of lifelong therapy
relies on the continued efficacy of ARV regimens,
whose barrier to genetic resistance is a crucial factor.
Identifying and understanding resistance in relation to
therapeutic options are critical to the appropriate
selection, use, and sequencing of antiretroviral therapy
(ART).

The objective of this review is to identify and discuss
the key data gaps that exist with regard to acquired
HIV-1 drug resistance (HIVDR) to focus and facilitate
research, scientific exchange, and progress in clinical
management of HIV disease. Emphasis will be placed
on the gaps in our knowledge, and focus will be on the
most commonly used treatment classes and specific
ARVs. It is not intended to provide a comprehensive
summary of resistance to each available treatment.

Resistance science

HIVDR is driven by the rapid rate and low fidelity of
viral replication (approximately one nucleotide muta-
tion per replicative cycle)'®. The high mutation rate
leads to a collection of many variants in each infected
individual, often described as “quasispecies,” and
enables HIV to adapt very quickly to selection pres-
sures, such as the presence of ART, leading to the
selection and emergence of drug-resistant variants®®.

The genetic barrier to resistance of a regimen is
broadly defined as the number of HIV mutations
required for that drug regimen to fail (Fig. 1), and a low
genetic barrier is a key factor contributing to treatment
failure. This is because such drug regimen is strongly
affected by drug exposure gaps, which are influenced

by factors governing adherence. Resistance mecha-
nisms can be complex, involving interactions between
mutations and their associated pathways, and their
impact on cross-resistance within ARV classes pres-
ents significant considerations for treatment decisions®.
However, due to the complexity of genetic variants,
their impact on therapeutic options is difficult to fully
characterize. Numerous gaps exist in our knowledge
of the mechanisms driving HIVDR (Table 1), which are
important to address to reduce the impact of resis-
tance in limiting therapeutic options.

Treatment classes

Gap 1: Full characterization of resistance mutations
as they are identified

Knowledge gaps in resistance science differ
significantly between treatment classes. The relative
wealth of experience associated with nucleoside reverse
transcriptase inhibitors (NRTIs) and non-nucleoside
reverse transcriptase inhibitors (NNRTIs) enables better-
informed therapeutic decisions for these classes com-
pared with those more recently introduced. Addressing
this balance will be reliant on fully characterizing
resistance mutations to better understand their actions
and impacts within and across classes. In turn, such
knowledge will facilitate the optimal use of all ARV class-
es in clinical settings.

Specific gaps within classes are outlined in more
detail below.

NRTIs

Most NRTIs are chain terminators, i.e., they integrate
at the terminus of a growing complementary deoxyri-
bonucleic acid strand to block its extension. The pri-
mary mechanism conferring resistance to NRTIs is
modification of the drug-binding site coded by the
reverse transcriptase (RT) gene that allows HIV to pref-
erentially bind analog deoxyribonucleotide  triphos-
phate (dNTP) over phosphorylated NRTI (e.g., M184V,
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Table 1. Knowledge gaps for the mechanisms of HIV drug resistance

Gaps: mechanisms of resistance

All classes

1. Full characterization of resistance mutations as they are identified: impact of mutations across ARV classes on treatment

choice

Ritonavir-boosted protease inhibitors (Pl/r)

2. Resistance barrier of Pl/r in monotherapy and ARV-sparing regimens, and impact on subsequent therapy

3. Relationship of low-level viremia and resistance
4. Sequencing of the whole viral genome

Integrase strand transfer inhibitors (INSTI)

5. Activity in INSTI-naive patients, including those with an impaired NRTI backbone (e.g., M184V)
6. Genetic barrier to resistance with ongoing viremia/incomplete suppression
7. Activity in non-standard combinations (e.g., with a Pl/r alone, with MVC, etc. [especially in the presence of (NNRTI)

mutations])

Combination therapies
8. Combination therapy and the consequences of resistance
9. Appropriate dosing of MVC and use in combination therapy

10. Understanding the efficacy of recycled NRTIs in combination therapy and their use in second-line therapy

ARV: antiretroviral; MVC: maraviroc; NNRTI: non-nucleoside reverse transcriptase inhibitors; NRTI: nucleoside reverse transcriptase inhibitor; HIV: human immunodeficiency virus.

K65R, and Q151M)87. NRTI resistance may be alterna-
tively driven by drug excision; so-called thymidine
analog mutations (TAMSs) facilitate the excision of non-
extending NRTI, thereby unblocking RT (e.g., T215Y)8”7.

TAMs occur only under selection pressure by
thymidine analogs, such as zidovudine (ZDV) and
stavudine, and can confer cross-resistance to impact
subsequent use of tenofovir (TFV), abacavir, and
didanosine®8. Compared with wild-type virus, NRTI-
resistant variants tend to exhibit higher fidelity in RT
replication, sustaining the inhibition of NRTI incorpo-
ration. The antiviral effects observed within an NRTI
combination may be modified by resistance muta-
tions; as resistance mechanisms differ between dif-
ferent drugs and mutations to one NRTI may posi-
tively or negatively influence resistance to another
NRTI279,

NNRTIs

NNRTIs bind to a hydrophobic pocket within the RT
that can tolerate relatively low conservation while not
disrupting enzymatic activity, unlike the conserved
active site or RT-dNTP binding site. Single mutations,
occurring around the NNRTI pocket, can decrease
binding of the drug®’. Many first-generation NNRTIs
are structurally rigid, and single mutations in the NNRTI
pocket have a high impact, e.g., reducing binding and
causing resistance. As resistance only requires a sin-

gle mutation it can develop fast in vivo, e.g., following
a single dose of nevirapine (NVP)?7. The most common
mutations observed under pressure of first-generation
NNRTIs (NVP and efavirenz) are K103N (located on the
pocket rim) and Y181C (within the pocket); these muta-
tions modify molecular interactions through alteration
of hydrophobic binding, loss of aromatic ring stacking,
and increased steric hindrance’.

Second-generation NNRTIs, rilpivirine (RPV) and
etravirine, exhibit higher genetic barriers to resistance
and retain activity against common NNRTI resistance
mutations. RPV, for example, retains activity in the
presence of K103N"1°. Combining RT-binding efficacy
with enhanced flexibility in next-generation NNRTIs has
the potential to further improve class resilience?’.

Protease inhibitors (PIs)

Pl antiviral potency is primarily attributed to the
inhibition of HIV aspartyl protease, but this leads
to inhibition of multiple steps in the virus life cycle!13,
Inhibition of HIV protease blocks viral maturation re-
sulting in the release of immature virions. These target
new host cells, but fail to replicate because different
parts of the replication cycle are severely disturbed
(virus entry, RT, or post-RT). The greatest inhibitory
potential of all Pls is seen at the entry step, with inhibi-
tion at subsequent steps varying moderately within the
class™.
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Genetic barrier to resistance (approximate number of mutations needed to fail)

Figure 1. Schematic of genetic barrier and potency of selected antiretrovirals. The genetic barrier and potency of an antiretroviral determine,
in part, susceptibility to development of human immunodeficiency virus type 1 (HIV-1) resistance. This figure illustrates relative genetic
barriers and potencies of commonly used antiretrovirals. Nucleoside reverse transcriptase inhibitors are depicted in black, non-nucleoside
reverse transcriptase inhibitors in green, protease inhibitors in red, integrase inhibitors in blue, maraviroc in purple and enfuvirtide in orange.
The appropriate position of dolutegravir represents a gap in our knowledge of this resistance profile (adapted from Tang MW, Shafer RW?).
3TC: lamivudine; ABC: abacavir; ATVIr: atazanavirlritonavir; ZDV: zidovudine; d4T: stavudine; DDI: didanosine; DRV/r: darunavirlritonavir;
DTG: dolutegravir; EFV: efavirenz; ENF: enfuvirtide; ETV: etravirine; FTC: emtricitabine; LPV/r: lopinavir/ritonavir;, MVC: maraviroc; NVP: ne-

virapine; RAL: raltegravir; TDF: tenofovir disoproxil fumarate.

These actions may explain one mechanism by which
Pl-based treatment failure sometimes occurs without
protease mutations. Pl resistance is a multi-step pro-
cess in which initial mutations around the active drug
binding site modify the overall protease structure and
prevent Pl binding. Structural modification can adversely
influence the binding of HIV-Gag, thereby reducing viral
fitness through lower viral replication. Mutations within
the protease itself and Gag may further enhance resis-
tance, and compensatory mutations may occur that
overcome the loss of replicative ability'>'4. In addition,
mutations in the cytoplasmic tail of the envelope protein
that is involved with viral entry (and that likely interacts
with uncleaved Gag) have demonstrated Pl resistance
in the presence of wild-type Gag and Pol genes and
may provide a further mechanism for Pl failure in the
absence of protease mutations'" 1,

High-level resistance to ritonavir-boosted Pls (Pl/r) gen-
erally requires more than one resistance mutation in com-
bination with at least one compensatory mutation in the
protease and a Gag cleavage site mutation, which forms
the basis of the high genetic barrier of PI/i516. Of the
frequently used Pls, ritonavir-boosted lopinavir (LPV/r)
and ritonavir-boosted darunavir (DRV/r) exhibit the high-
est genetic barriers within the class, requiring at least
three to four mutations for treatment failure®'6. Most major
Pl resistance mutations confer broad class resistance
(D3ON and 150L confer high resistance to a single PI),
but also reduce viral replication>'6.7. Although resistance
to tipranavir/r (TPV/r) is not well understood, this Pl retains
activity against many LPV- and DRV-resistant viruses,
awarding it a role in salvage therapy®1®.

Despite the length of experience with Pls, their mul-
timodal mechanisms of action are only recently being
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uncovered. Combining this with their apparent versatil-
ity means that gaps in our knowledge of Pl resistance
remain. Until these are addressed, the optimal use of
Pls, particularly with respect to apparent failure of
other ARVs, remains to be defined.

Gap 2: Resistance barrier of Pl/r in monotherapy
and ARV-sparing regimens, and impact on subse-
quent therapy

The high genetic barrier of Pl/r means that PI resis-
tance is rare in patients experiencing the first-line fail-
ure with Pl/r combination therapy'®?', and PI/r mono-
therapy has shown efficacy at suppressing HIV
replication as a maintenance/simplification strategy in
ART-naive patients®>?8. Although not recommended in
guidelines, simplification with a Pl/r monotherapy may
present a feasible option for patients without a history
of PI failure for whom NRTIs are no longer an option
and for patients who wish to minimize their exposure
to multiple classes of ARVs?2232529 Recently, the large
PIVOT trial demonstrated non-inferiority of long-term Pl
monotherapy compared with triple therapy following
initial viral load (VL) suppression. This study met its
primary objective of preserving future options; how-
ever, monotherapy was associated with significantly
higher virologic failure®.

When combined with appropriate VL monitoring,
such an approach may preserve future treatment
options and presents an attractive cost-saving option.
Until further evidence addresses concerns regarding
durable efficacy, low-level viremia (LLV) and propen-
sity to resistance, understanding the apparent lack of
resistance in the protease and the potential for Pl/r
monotherapy will remain a gap in our knowledge and
therapeutic armoury.

Promising results have been obtained in dual-therapy
trials, and these are discussed in more detail below
(Section 1.2.2 ARV-sparing regimens).

Gap 3: Relationship of LLV and resistance

LLV, defined as persistent plasma HIV RNA levels
in the range of 50-1000 copies/mL, is a common
feature of Pl/r therapy, and more frequent in PI/r
monotherapy; but remarkably little resistance has
been observed as associated with this scenario in
the clinical trial setting®33'32 and there is limited
guidance on the management of LLV3. LLV is as-
sociated with increased overall immune activation,
risk of ART-failure and development of resistance3234,
Intensification strategies may be beneficial, but trials
will be required to inform guidelines, and also to

determine optimal timing and frequency of resistance
testing in this setting. It was recently demonstrated
that non-optimal drug levels and reduced susceptibil-
ity at LLV are independent predictors of virologic
failure®®, and coupled with the choice of ART, points
to the need for further investigation to understand
potential implications for the management of LLV.
Dual-sparing regimens may lend themselves to ap-
propriate intensification strategies that have potential
use in the instance of sustained LLV3®. These are
discussed in more detail below (Section 1.2.2 ARV-
sparing regimens).

Gap 4: Sequencing of the whole viral genome

Recent studies provide increasing support for
whole-genome sequencing, for which Pl resistance is
a prime candidate. The regions routinely sequenced
when screening for Pl resistance are the protease-RT
and integrase (ART-experienced). Such practice does
not explain PI failure in patients who do not have mu-
tations in the protease. Although adherence may ac-
count for a portion of these patients, the accumulation
of mutations beyond the major protease positions,
which are ignored in current tests, may confer low
phenotypic resistance and support the inclusion of
novel areas in resistance analyses'"'2. Thus, to find
novel mutations ignored in current practices, it will be
important to consider sequencing non-traditional ar-
eas, such as Gag (which may prove especially pru-
dent in patients with LLV), and determine their clinical
relevance.

Integrase strand transfer inhibitors (INSTIs)

The introduction of INSTIs provided additional treat-
ment options for patients with drug-resistant virus®’;
however, they are gradually replacing Pls and NNRTIs
withinfirst-line regimens. Resistance to the first-generation
INSTIs develops along distinct initial pathways, with the
majority of mutations occurring in the active site of inte-
grase, where they inhibit INSTI binding. Resistance pre-
dominantly involves independent changes at three posi-
tions: Q148, N155, and Y143. During prolonged failure,
combinations of these three and additional mutations
are observed®49, These mutations impact viral fitness
and are frequently observed with secondary mutations
that enhance resistance or compensate for the negative
effect on integrase activity*!4,

Ofthethree currently approved INSTIs, first-generation
compounds, raltegravir (RAL), and elvitegravir (EVG),
exhibit a low genetic barrier to resistance and muta-
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tions tend to confer cross-resistance, precluding the
possibility of switching between RAL and EVG once
resistance has developed®43-45, Risk factors for resis-
tance development include a high VL and low activity
of the background regimen®. Dolutegravir (DTG), a
second-generation INSTI, exhibits different resistance
patterns and a higher genetic barrier, with resistance
being identified only in a limited number of path-
ways*%46. Any relationship between the levels of INSTI,
overall risk of resistance and pathways of resistance
remains to be established. The superiority of DTG over
other INSTIs may result from higher potency, prolonged
binding time to integrase and reduced replicative
capacity for virions with DTG resistance mutations*6:47,
INSTIs represent an important knowledge gap in HIV
drug resistance; and clinical trials investigating INSTIs
have used varied definitions of virologic failure and
different types of resistance testing and analyses, lim-
iting inter-trial comparisons*®. Consensus on these
terms and the publication of associated data will
facilitate more valuable analysis in future research.

Gap 5: Activity in INSTI-naive patients, including
those with an impaired NRTI backbone

DTG is unigue in the fact that, to date, de novo
mutations conferring resistance to DTG, or NRTIs used
in DTG regimens have not been identified in ART-naive
patients*®. However, data are limited, with very few
failures, analysis of only the first samples at failure and
only known INSTI resistance mutations are being
reported. These reports and should, therefore, be
interpreted with caution. INSTI-containing regimen ac-
tivity in INSTI-naive patients with an impaired NRTI
backbone has yet to be characterized. Addressing this
gap will facilitate our understanding of appropriate
treatment options for such patients.

Gap 6: Genetic barrier to resistance with ongoing
viremia/incomplete suppression

Despite the low genetic barrier of RAL, resistance
mutations have been identified in relatively few patients
experiencing virologic failure on RAL, although this
number varies according to the definition of virologic
failure and remains to be fully explained*. Patients
with RAL-resistant virus require careful management
to avoid the evolution to DTG resistance with the
appearance of double mutants carrying Q148. The
limitations of available DTG studies leave a gap for
analyses that use consistent criteria applicable to real-
life data.

Gap 7: Activity in non-standard combinations

There are currently no data to indicate any benefit of
DTG in specific instances that currently prompt the
continued use of Pl/r such as LLV, a scenario com-
monly associated with new mutations®4. In addition, the
benefit of Pl/r versus DTG in scenarios such as iso-
lated NNRTI resistance remains to be determined.
Pooled data may provide evidence to shape such
guidance, but these analyses have yet to be conducted
and remain a gap in current knowledge.

There is an additional lack of data surrounding the
recent shift from Pl to RAL in post-exposure prophy-
laxis. Although data support the shift, the limited avail-
ability of high-quality evidence to fully characterize how
this regimen may impact resistance has the potential
to emerge as a future gap®.

Chemokine (C-C Motif) Receptor 5 (CCRS5)
(entry) inhibitors

Failure on maraviroc (MVC), currently the only approved
Chemokine (C-C Motif) Receptor 5 (CCR5) inhibitor
(used when CCR5-tropic virus is confirmed), tends to
occur in the presence of previously undetected chemo-
kine receptor type 4-tropic (or dual-tropic) viruses as
minority species that pre-existed the use of MVC5152,
However, resistance mutations that also enable HIV to
enter a cell through CCR5 in the presence of inhibitor do
occur, either through adaptation to reduced levels of
CCR5 or through inhibitor-bound CCR5%3-%6,

Tropism can be identified genotypically (relatively
easy and logistically more manageable) or phenotypi-
cally and validated testing is recommended before
initiation of MVC557. Both assays profile tropism through
the env genes, with suitability of MVC selection, deter-
mined accordingly. Validation of a tropism assay is
critical, and concordance between laboratories has
been successfully demonstrated by the European
Coreceptor Proficiency Panel Test58-60,

Gaps in our knowledge of MVC resistance occur in
its use within combination therapies. These are dis-
cussed in more detail below (Section 1.2.2 ARV-sparing
regimens).

Influence of combination therapy profiles
on resistance

Triple therapy

ART regimens typically combine two or more active
drugs®. NRTIs are currently regarded as the best
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backbone in first-line therapy, but different criteria
among studies prevent reliable comparisons, and the
paucity of data means that investigators have yet to
determine on which characteristic this efficacy is based
and if this will remain true with newer regimens.

Dual NRTIs are selected based on their in vivo activ-
ity and genetic barrier to resistance: mutations that
impact viral fitness by significantly decreasing RT
activity or enhancing susceptibility to another NRTI.
Combining NRTIs with an NNRTI have demonstrated
high efficacy, and the synergistic effects of such com-
binations may act to reduce resistance, for example,
EFV inhibits the excision of TDF88!, In the reverse sce-
nario, E138K confers low-level resistance to RVP, but
this is enhanced by the presence of a M184V/| back-
ground, an example of mutation synergy across NNRTI
and NRTI classes®. As such, the efficacy of these duall
combinations may be influenced even by minority vari-
ants that diminish NNRTI susceptibility, and which may
also impact future use of NNRTI-based regimens®364,

Gap 8: Combination therapy and the consequences
of resistance

As new ART regimens are trialed, gaps remain in our
knowledge of the consequences of resistance in com-
bination therapies. Resistance to NNRTIs accounts for
25-50% of first-line failure. The first-line failure due to
Pl resistance is rare, and failure due to INSTI resis-
tance varies among the class. Understanding the
mechanisms of action that can increase the barrier to
resistance with combination therapy, and the conse-
quences of failure in this setting, will better inform phy-
sicians and ultimately enhance treatment options.

ARV-sparing regimens

Triple combination therapy is the current standard of
care, but suboptimal virologic suppression has the
potential to lead to multiple class resistance, which can
significantly impact future regimens®. In an effort to
enhance tolerability, preserve future options and reduce
costs, simplified approaches are under investigation.
This review discusses studies in the context of current
knowledge gaps, for a comprehensive overview of ARV-
sparing studies, see the recent review by Baril et al.%®,

Recent ARV-sparing trials have combined 1NRTI +
PI/ré768  Initial studies suggest good efficacy and safety
of these dual regimens, coupled with low rates of resis-
tance. In the GARDEL trial, LPV/r + lamivudine (3TC)
demonstrated non-inferiority to triple therapy at 48 weeks
with no primary Pl mutations in either arm (it is notable

that most patients in the triple therapy arm received
ZDV/3TC, which may not be an ideal comparator).
Although the low emergence of M184V in the dual ther-
apy arm raised queries over suitability as first-line ther-
apy®, studies for this regimen as simplification from
triple therapy have been very encouraging. The open-
label extension study has extended findings from
GARDEL and supports the non-inferiority of dual LPV/r
+ 3TC to triple therapy at 48 weeks. A single emergence
of M184V RT resistance mutation in a patient receiving
dual therapy was found to be present after cessation of
earlier treatment with TFV + 3TC + EFV®. These data
are further supported by similar findings in the SALT and
ATLAS studies that examined switching to atazanavir
(ATV)/r + 3TC in virologically suppressed patients’®"!,

NRTI-sparing regimens combining Pl/r + INSTI have
demonstrated comparable efficacy to 2NRTIs +
PI/r?27274 In the PROGRESS study, 8 patients receiv-
ing LPV/r + RAL versus 5 patients receiving TEV/FTC
+ LPV/r were tested for resistance, and 3 in the LPV/r
+ RAL group were found to have INSTI resistance-
associated mutations (RAM), with the earliest detection
at week 16. One patient also had LPV/r RAMs at week
7274 Comparable virologic suppression was: found
between ATV + RAL and triple therapy in the SPARTAN
trial. No Pl resistance developed, although INSTI resis-
tance was detected in 4 patients’. Similar efficacy was
noted for DRV/r + RAL versus triple therapy in NEAT001.
However, of patients qualifying for resistance analysis
who received DRV/r + RAL, 29.5% had INSTI (15/55)
or PI (1/57) RAMs versus none in patients who received
triple therapy; and the frequency of INSTI mutations at
virologic failure was associated with baseline VL
(p = 0.007)7>76,

In terms of Pl-sparing regimens, 48 weeks results
from PADDLE, a pilot study combining DTG + 3TC in
ART-naive patients, demonstrated rapid virologic
suppression, followed by maintained suppression and
tolerability. No mutations were identified in the only
patient who experienced virologic failure (integrase
and protease regions did not amplify) who later resup-
pressed without changes in regimen’”. These promis-
ing results will be developed in further ftrials
(NCT02491242, NCT02582684, NCT02527096, and
NCT02263326).

In the second-line setting, both the SECOND LINE
study and EARNEST study demonstrated the
non-inferiority of LPV/r + NRTIs to LPV/r + RAL with no
or few emergent Pl-associated mutations in either
study, respectively®®72.  Approximately 3-14% of
patients who received LPV/r + RAL developed resis-
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tance mutations to RAL in both trials®®"2. The low inci-
dence of resistance with this regimen is further evi-
denced by the SELECT trial, which demonstrated
non-inferiority of LPV/r + RAL to LPV/r + NRTIs and
supports the alternative option of second-line dual
therapy in resource-limited settings’®.

Management following failure on Pl/r + RAL regimens
has yet to be defined but must be carefully managed
to fully preserve future options within the classes. Fail-
ure on therapy with a high genetic barrier may result
from non-adherence or minority drug-resistant variants,
additional considerations for clinical decisions that may
be further confounded by availability of ARVs and
incomplete virologic suppression3379,

The apparent protection to resistance offered by the
combination of Pls with NRTIS remains to be eluci-
dated. Understanding whether Pls protect NRTIs or
vice versa, or if the long half-life of TFV/FTC protects
itself and, in combination with Pls, leads to a low rate
of resistance, will enhance our knowledge of mecha-
nisms of actions and class synergy. Developing this
knowledge may expand the rationale for recycling
NRTIs and provide confidence for the use of such
regimens?®,

Gap 9: Appropriate dosing of MVC and use in com-
bination therapy

MVC is rarely used as the third agent of triple therapy
and has been investigated in NRTI-sparing studies with
PI/r8. The recent, large MODERN study designed to
assess MVC + DRV/r versus TFV/FTC + DRV/r was
terminated following inferior efficacy of DRV/r + MVC
(NCT01345630), which was similar in overall outcome
to dual treatment studies with ATV-RTV8'. It should be
noted that MVC was used at 150 mg once daily and
more encouraging results were seen with LPV/r + MVC
150 mg once-daily, possibly due to increased MVC
exposure® 8, In contrast, the MITOX study showed a
decreased drug level in patients with DRV/r + MCV83,
Until the relationship between MVC exposure and
resistance is understood, the appropriate dosing of
MVC and its optimal place in combination therapy
remain to be determined; and this relatively well-toler-
ated ARV with potential anti-inflammatory activity re-
mains to be fully utilized.

Gap 10: Understanding the efficacy of recycled
NRTIs in combination therapy and their use in sec-
ond-line therapy

A surprising outcome from the EARNEST study was
the efficacy demonstrated by LPV/r + recycled NRTIs.

This outcome may be explained, at least in part, by the
multi-step activity of Pls and their possible synergy with
NRTIs'"2°, Furthermore, in the SELECT trial, the pres-
ence of three or more NRTI mutations at entry was
associated with reduced virologic failure in the
dual- and triple-therapy arms’®. These confounding
results present another gap in our knowledge of the
mechanisms of resistance in combination therapies
and how these can be overcome. Recycling previ-
ously failed NRTIs with another active drug may pro-
vide previously unexplored therapeutic pathways for
patients with limited treatment options and warrants
further investigation.

Resistance technology

Drug resistance can be investigated using geno-
typic and/or phenotypic assays. Genotyping identifies
specific resistance mutations, and phenotyping deter-
mines drug susceptibility. European guidelines recom-
mend monitoring by genotyping, which is generally
more widely used due to its relative cost, availability,
high level of standardization, ease of use, and short
time scale compared with phenotypic testing338486,
Despite the advantages of phenotyping, these chal-
lenges make it an impractical option and, as such, this
review will focus on gaps associated with genotyping.
Although genotyping is recommended in most clinical
situations, phenotypic assays can prove valuable in
heavily pre-treated patients with complex resis-
tance®87. Moreover, the results from phenotypic tests
still provide highly valuable data for the improvement
of genotypic interpretation systems.

As technology develops, its appropriate use often
remains to be defined. Closing such technological
gaps in our knowledge will enhance the identification
of resistance variants and promote consistency in anal-
ysis (Table 2).

Sequencing

Gap 1: Optimization of source material for resis-
tance testing

The short half-life of HIV in plasma means plasma-
isolated virus represents the most recently selected
variant®, The lag time between the detection of resis-
tance mutations in the plasma and in peripheral blood
mononuclear cells (PBMCs)? has led to plasma as the
standard source for resistance analysis to investigate
recent therapy failures. However, inter-compartment
heterogeneity has been reported between resistance
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Table 2. Knowledge gaps in the technology of HIV drug resistance

Gaps: technology

Current technologies
1. Optimization of source material for resistance testing

2. Recommendations to provide consistency and standardization of definitions and practice for genotyping resistance

mutations
3. Consistent bioinformatics and data analyses

Next-generation sequencing

4. Establishing a clinically relevant interpretation threshold for sequencing analysis
5. Simple, affordable assays with consistent bioinformatics for global use

Genotyping recommendations and practices

6. Evidence to establish consistent recommendations for genotyping: update to the relevance and rationale for recommending

genotyping before commencement of ART

7. Use of whole-genome next-generation sequencing in clinical practice

8. Value of sequencing novel regions

9. Necessity for genotyping ahead of initiating an INSTI or entry inhibitor

HIV: human immunodeficiency virus; INSTI: integrase strand transfer inhibitor; ART: antiretroviral therapy.

mutations harbored in the PBMC reservoir and in the
plasma®®®!. The utility of proviral DNA PBMC resis-
tance testing in place of, or in addition to, ribonucleic
acid (RNA) plasma samples look promising but remain
to be determined, but two-compartment testing may
provide a more complete picture of viral resistance in
patients with complex treatment history8291,

Gap 2: Recommendations to provide consistency
and standardization of definitions and practice for
genotyping resistance mutations

Current guidelines inadequately address resistance
mutations and lack consistency in their definitions33:86,
Virologic failure is a prime example: definitions include
“VL > 50 copies/mL 6 months after starting therapy3,”
“VL > 1000 copies/mL based on two consecutive mea-
surements in 3 months®,” and “inability to achieve or
maintain suppression of viral replication to an RNA
level of < 200 copies/mL®.” Misconceptions of resis-
tance terminology may have implications on the clinical
interpretations of resistance testing. Addressing this
gap through clear definitions of terms relied on in
resistance technologies will facilitate consistent, com-
parable data collection and analyses.

Population sequencing

Sanger (population) sequencing is the current stan-
dard of care for clinical use. Viral genes are amplified
with multiple primers using polymerase chain reaction
(PCR) to generate DNA for sequencing that is com-
piled into a consensus sequence by analysis software.

Gap 3: Consistent bioinformatics and data analyses

The reliability of electropherogram analysis varies
extensively between individuals, assays, and labo-
ratories®*%; appropriate quality control is critical to
ensure the validity and comparability of resistance
testing. Sequence interpretation is dependent on an
individual’s ability to recognize low-frequency muta-
tions and quality assurance programs are in place
to minimize erroneous reporting, but subjective
analyses can hinder consistent evaluation® 9297 The
bioinformatics tool recall has been developed with
external validation to help overcome this problem
(and provide much faster turnover) and may go
some way to addressing this gap®°7 (http://pssm.
cfenet.ubc.cal).

Next-generation sequencing (NGS)

Next-generation deep sequencing represents a
powerful approach to sequence multiple individual
template molecules by physical separation, providing
enhanced sensitivity for the detection of low-frequency
variants and tropism prediction®%%  NGS can
sequence the multiple variants present in a single
specimen and detects minority variants more reliably
than Sanger sequencing®-1%,

NGS is prone to its own inherent sources of system-
atic error, including insertions/deletions associated
with homopolymer stretches and sampling —errors,
which further confound the already challenging bioin-
formatic processing of this technology®+9%.101.192 Fyr-
thermore, the same errors as made by HIV RT which
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contribute to resistance development are also com-
monly made by enzymes used in NGS. For example,
K65R is based on an RT error in a homopolymer
stretch, an area also prone to errors by NGS%.

Gap 4: Establishing a clinically relevant interpreta-
tion threshold for sequencing analysis

The limited ability of Sanger sequencing to detect
minority variants can lead to an underestimation of the
resistance burden. This technique does not have the
sensitivity to detect minority variants that form < 20%
of the population; and the lower the VL, the less sen-
sitive it is for minority variants®1%. In contrast, NGS
detects minority variants of 1% provided the VL is
high enough, but the clinical significance of such
sensitivity has yet to be agreed by experts. For
example, apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like (APOBEC)-induced muta-
tions contribute to the generation of inactivated HIV
variants, the majority of such mutations are unlikely to
enhance viral adaptation'®. This suggests variants
with signs of APOBEC editing can be excluded from
analysis'®.

A convenient interpretation cutoff of 10% is often
used, similar to the output from Sanger sequencing.
This cutoff allows collection of data, while not
over-interpreting minority variants. As such, minority
variants below 10% are detected but not taken into
account, despite a lack of evidence to determine their
clinical importance. However, an increased risk of
virologic failure on NNRTI-based ART (particularly EFV
or NVP) has been observed when minority variants are
present63,100,106,107_

The dose-dependent relationship between resistance
and virologic failure risk implies that the proportion
and quantity of resistant variants impacts ART out-
come®31% Although it is clear that a lower threshold
identifies more mutations, a sensitivity balance must
be reached for each drug class that optimizes clinical
benefit while reducing the potential for misinterpreta-
tion'%8199_ The cutoff is likely to be mutation- and drug-
specific, e.g., a 2% interpretation cutoff has been
proposed for K103N in patients starting predominant-
ly 2NRTIs + EFV, whereas others may require more
sensitive detection'®. A further confounding factor to
selecting an interpretation threshold is the clinical rel-
evance of absolute numbers of a mutant versus the
percentage of a variant within a population, an
approach adopted by some studies but which has yet
to be fully characterized®®. For example, K103N may
reach clinical significance only at a presence of 2000

copies/mL, whereas others may require more sensitive
detection (Fig. 2)'°.

Furthermore, NGS has demonstrated enhanced
detection of low-frequency Pl resistance mutations.
Although the limited available data suggest this has a
low clinical impact™", the full implications of such
screening have yet to be characterized 12, As resis-
tance to established drug classes continues to be
characterized, further data will also be required to
guide the appropriate interpretation of INSTI resistance
analysis.

Gap 5: Simple, affordable assays with consistent
bioinformatics for global use

The future of current technologies will depend on
those in development. As the benefit of genotyping is
increasingly evidenced but the discrepancy of use
remains, there is need for a simple and affordable
assay for global implementation, ideally with alternative
technologies that eliminate the variability introduced by
PCR to ensure greater accuracy''3.

As NGS develops and the ability for multiplexing
increases, this technology has the potential to become
a more cost-effective and efficient option than Sanger
sequencing, particularly in centralized institutes'?,
Centralizing also removes the need for a bioinfor-
matic pipeline at the clinic. NGS whole genome
sequencing (WGS) can be relatively cheap if Ultra
Deep sequencing is not required. However, NGS
technology has yet to be widely implemented beyond
the research setting and currently relies on in-house
protocols that may not allow for reliable comparison
between sites. Intuitive, standardized bioinformatics
methodology, and even interpretation algorithms, will
circumvent limitations introduced by operator error
and enhance the validity of inter-center comparison'?,
Further development and investment into research are
required to fully optimize and standardize this tech-
nique and realize its place in the future of HIV man-
agement.

Recently introduced technologies and those under
development will continue to enhance the relevance
andaccessibility of resistance testing. Mutation-specific
assays demonstrate high sensitivity and specificity;
their associated cost-effectiveness and the wide-
spread expertize of such assays mean they can be
readily implemented in all types of settings. Further-
more, methods of entire genome sequencing, although
more costly, may widen the application and outputs
of resistance testing'®. As the use of such technolo-
gies become more widespread, there will be a par-
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10% interpretation cut-off

Number of resistance variants detected

20% 15% 10% 5% 2% 1%
Population Detection threshold Next-generation
sequencing sequencing

Figure 2. In a patient with minority resistance variants, lowering the detection threshold increases the number of resistance variants de-
tected. Blue areas indicate variants lost at the common interpretation cutoff of 10% (adapted from an original figure by Martin Ddumer'®).

ticular need for guidance on the clinical interpretation
of deep sequencing and a clear indication of the
implications of each result. This will help avoid a ten-
dency to exclude drugs unnecessarily, thereby pre-
serving options.

Genotyping recommendations and
practices

Understanding baseline mutations at treatment fail-
ure informs clinical decisions, thereby decreasing the
likelihood of subsequent treatment failure. Baseline
resistance testing is the current standard of care but
its regional implementation varies according to re-
sources®é 114,

Gap 6: Evidence to establish consistent recommen-
dations for genotyping

Current guidance recommends genotyping before
the selection of ART, but despite the impact and cost-
effectiveness of this approach>"7 it remains to be
fully implemented in regions without appropriate
resources''®. In some instances there may be a per-
ceived advantage of selective genotyping, particularly
for NNRTI-resistant mutations'®. Guidelines that take

into account specific ARV classes may be of greatest
clinical benefit but further investigation is required to
determine the impact of baseline resistance testing
across the drug classes. Current, limited evidence sug-
gests this may have less impact before use of Pls or
INSTIs than NNRTIs'4.119,

Recommendations for genotyping in the presence of
LLV also remain to be defined. While persistent LLV is
a risk factor for resistance, immune activation and
virologic failure®, the significance of associated resis-
tance testing and management remains a source of
debate and is complicated by the issue of adher-
ence'?21 The lack of evidence to define appropriate
thresholds for LLV testing in the era of NGS has led to
recommended cutoffs ranging from 50 to 200 copies/mL,
but the potential for artifacts may mask the relevance
of testing at very low levels of viremia'®'. The high
prevalence of LLV makes this a significant knowledge
gap in guiding appropriate testing'?%.21,

There is a need for consensus guidelines on the tim-
ing and degree of resistance testing, and on subse-
quent treatment choice in the resistance environment.
Reversion dynamics differ between viral variants in the
absence of drug selection pressure, often according
to the fitness cost of a mutation'??. Therefore, the timing
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of resistance testing may influence the success of
future ART. Furthermore, informed consensus guid-
ance will rely on a greater knowledge of the impact of
mutations on treatment choice, supporting the need for
full characterization of resistance mutations as they are
identified.

Gap 7: Use of whole-genome next-generation se-
quencing in clinical practice

As the availability and cost-effectiveness of NGS
technologies improve, WGS will become a more
accessible and viable option, with the potential to
transform the field of resistance testing?3124. As tech-
nologies evolve to make WGS a possibility, it will be
important to understand if and how it can be optimally
utilized. While the relevance and clinical application of
WGS remains to be determined, there are multiple
avenues of preliminary support for WGS. The ability of
WGS to accurately determine cell tropism before the
use of MVC makes it an attractive alternative to phe-
notypic assays and conventional sequencing'?-127,
The technique also allows the routine sequencing of
larger sections of Gag, which are known to influence
Pl resistance, including in the absence of protease
mutations'™®. WGS is also of scientific interest. For
example, the technique has identified low-frequency
variants, not detected by conventional sequencing,
that impact the early immune response. Such research
presents potential pathways for better understanding
of how the body responds to early viremia'®. Finally,
although not covered in the scope of this review, it is
worth also noting that the ability to rapidly sequence
whole genomes may have particular application in the
surveillance of HIVDR through accurate profiling of
viral diversity!2%130,

Gap 8: Value of sequencing novel regions

The knowledge gap associated with WGS also
includes arguments for extending the current practice
to sequence beyond traditional regions of the genome.
This is discussed above in relation to Pl resistance. The
recent characterization of the multi-step activity of Pls
serves as an example of how our evolving knowledge
of ARV classes must be used to appropriately update
resistance testing practices. As PI resistance testing
continues to be optimized, there is a need to establish
which regions may be important to genotype, but are
not currently recommended, across each class of ARV.
This need may prove particularly relevant as we gain
further understanding of INSTIs.

Gap 9: Necessity for genotyping ahead of initiating
an INSTI or entry inhibitor

While the impact of baseline resistance testing has
yet to be fully characterized across the ARV classes,
the significance of low-frequency NNRTI resistance
mutations has received extensive attention. In contrast,
the impact of low-frequency mutations on NRTIs + IN-
STl combinations remains to be determined. Where
baseline screening has been carried out, there has
generally been an absence of INSTI resistance in ART-
naive patients®, but low frequency of mutations have
been identified in some studies, adding to the debate
over INSTI screening in ART-naive patients™!. It
remains to be determined if such patients are suitable
to receive INSTIs and, if so, which*®. Studies such as
SAILING and VIKING are paving the way, with evi-
dence for the use of INSTIs in the management of
ART-experienced, INSTI-naive patients as well as those
with extensive multi-class resistance, including INSTI
mutations?6:132.133,

Conclusion

Appropriate selection and sequencing of ART is
the most efficacious and cost-effective method of
managing lifelong HIV therapy at a population level.
As trials investigate alternatives to NNRTI-based
first-line therapy, simplified regimens show promise
asamethod of preserving future options??:30.68.71.72.76.77
Such strategies may also overcome problems as-
sociated with ART availability. Our current under-
standing of resistance mechanisms and their subse-
quent impact on ART selection is incomplete,
including the optimal application of the coreceptor
blocker, MVC. Defining the genetic barrier to resis-
tance of combination therapies and the consequenc-
es of failure will help optimize first-line therapy and
also inform decision-making in the event of treatment
failure. This understanding will, in turn, lead to opti-
mized genetic resistance testing to facilitate im-
proved clinical management at an individualized
level. In particular, INSTIs represent an important
knowledge gap in resistance science. The gaps
identified in this review highlight a particular need
for a more complete understanding of INSTIs and the
impact of resistance on the use of this class. Such
knowledge will allow for more informed decision-
making and provide support for optimizing future
guidelines.

Applying this knowledge relies on the accurate
identification and appropriate interpretation of resis-
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tance mutations. Baseline genotyping provides impor-
tant information for clinical decisions, but the rele-
vance and application of testing need continual
review and updating. The adoption of routine resis-
tance testing within the clinical setting may have dra-
matic implications for the management of HIV, but
gaps remain in the use and interpretations of these
technologies. The ability of NGS to detect minority
variants down to 1% and the ease of sequencing
whole genomes provide significant advantages over
other assays®:1%, Deep sequencing has demonstrat-
ed its potential as an all-inclusive genotypic and co-
receptor tropism assay, detecting multiple minority
variants from samples with >1000 copies/mL'%9%134 |ts
applications are multiple and may extend to improv-
ing the prediction of virologic outcomes on ART, in-
cluding salvage therapy, which will facilitate the prob-
lematic management of ART-experienced patients'®.
The primary gap identified in resistance technologies
is the appropriate interpretation of these assays. Es-
tablishing a clinically relevant threshold will not only
guide therapeutic decisions but also promote compa-
rable data analyses.

In summary, the identification of data gaps within HIV
resistance science and technology represent an
opportunity to guide future research, facilitate scien-
tific exchange and, ultimately, lead to progress in the
clinical management of HIVDR.
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