

Efficacy and safety of triple versus dolutegravir-based dual therapy in patients with HIV-1 infection: A meta-analysis of randomized controlled trials

Yuanlu Shu¹, Chengfeng Qiu^{1,2*}, Xiaojun Tu¹, Ziwei Deng^{1,2}, Ye Deng^{1,2}, Hongqiang Wang^{1,2}, Xiang Zhao^{1,3}, and Zhihua Shi^{1,2}

¹Department of Evidence-based Medicine and Clinical Center; ²Department of Clinical Pharmacy; ³Department of General Practice, The First People's Hospital of Huaihua, University of South China, Huaihua, China

Abstract

A new strategy of simplification therapy shown the unique benefits in clinical treatment, by reducing pill burden and avoid drug exposure. To provide more evidence for the strategy, we compared the efficacy and safety of dolutegravir (DTG)-containing simplified dual combination antiretroviral therapy (cART) and traditional triple cART for people living with HIV/AIDS. The meta-analysis of randomized controlled trials compared DTG-containing dual therapy with triple cART. The primary outcome was virologic suppression. The secondary outcomes included CD4T cell recovery, lipids change from baseline, and adverse events (AEs). A total of 7 studies, 4852 patients were eligible, 2423 (49.9%) received DTG-based simplified dual cART, and 2429 (50.1%) received triple cART. The viral suppression rate was 94.7% at 24 weeks, 93.0% at 48 weeks, and 96.6% at 96 weeks in dual cART. The viral suppression rate of dual cART was non-inferior to triple cART at 24 weeks (risk difference [RD], -0.00; 95% confidence interval [CI] -0.02-0.01), at 48 weeks (RD, -0.01; 95% CI -0.02-0.01), and at 96 weeks (RD, -0.01; 95% CI -0.02-0.00). Sub-analysis results were consistent with the overall results. With regard to other outcomes (CD4T counts, lipids, any AEs, and AEs grade ≥ 3), there was no significant statistical difference between the two regimens. DTG-based simplified dual cART was non-inferior to triple cART in terms of efficacy and safety. This finding provides strong support for current consensus guidelines recommended the dual regimen as first-line treatment. (AIDS Rev. 2021;23:133-142)

Corresponding author: Chengfeng Qiu, qiuchengfeng0721@163.com

Key words

Dolutegravir. Dual therapy. Meta-analysis. Efficacy. Safety.

Introduction

Triple combination antiretroviral therapy (cART) recommended by WHO changed the progression of HIV infection, which has made HIV become a chronic manageable disease¹. To a certain extent, it was the

key of patients to reduce mortality and improve the quality of life for quite a long time. The addition of antiretrovirals to cART was no enhanced effectiveness². In contrast, prolonged standard cART has significant challenges due to the drug-drug interactions, cumulative phytotoxicity, pill burden, resistance, and

Correspondence to:

*Chengfeng Qiu

E-mail: qiuchengfeng0721@163.com

Received in original form: 27-08-2020

Accepted in final form: 22-04-2021

DOI: 10.24875/AIDSRev.20000103

suboptimal adherence, which might result in treatment modification or interruption. To reduce pill burden and drug exposure, developing a more simplified strategy is necessary³⁻⁵.

Dolutegravir (DTG) was one of the first fixed-dose, single-tablet dual therapy regimen approved by the FDA (USA). The dual therapy regimens composed DTG (50 mg) and plus rilpivirine (RPV, 25 mg) or lamivudine (3TC, 300 mg), which the official recommends, the evidence was mainly based on GEMINI-1/2^{6,7} and SWORD-1/2^{8,9}. Meanwhile, in real-world observational studies, switched to a two-drug regimen of DTG in cART-experienced patients have high rates of virological suppression¹⁰⁻¹³. These results support the dual regimens of DTG and plus RPV or 3TC^{14,15}, and both regimens indicated the same effect¹⁶.

To evaluate the efficacy and safety of a simplified regimen, we compared the difference between DTG with PRV or 3TC and triple cART in treatment-naïve and treatment-experienced patients. Previous to this study, a meta-analysis showed that raltegravir (RAL)-based dual therapy, other integrase inhibitors (INIs), has demonstrated similar effects as the traditional three-drug regimen¹⁷. Therefore, we conducted a meta-analysis to provide more evidence supporting DTG-based simplified therapy.

Methods

Data sources and searches

Systematic searches included all of the literature regarding DTG of English, published in PubMed, Embase, Cochrane Library, and Web of Science databases (up to July 2020). To evaluate the efficacy and safety of dual therapy, we considered all randomized controlled trials (RCTs).

All database searches will be based on the combination of subject words and free words and will be adjusted according to the specific database. The following keywords were used: "DTG," "rilpivirine," "lamivudine," and "dual therapy."

Study selection and data extraction

RCTs compared dual cART with triple cART in treatment-naïve or treatment-experienced people living with HIV/AIDS (PLWHA) (age more than 18 years old) and evaluated at least one outcome of effective and/or safety. The dual cART included only DTG/RPV or DTG/3TC, because this dual cART was WHO

recommended¹⁸. Studies with the following characteristics were excluded: (1) non-randomized studies, reviews, letters, observations studies, cohort studies, and retrospective studies; (2) *in vitro* model and animal test; (3) age younger than 18 years old; (4) pregnant; and (5) repetitive publish data. If the same study were overlapped in multiple publications, only the most complete or most recent literature was included in the present study.

The primary outcome from each trial was selected to undetectable HIV-RNA (plasma HIV-1 viral load [VL] < 50 copies/mL). Secondary outcomes of interest included CD4 T cell counts, lipids, and the measure of safety were any adverse events (AEs) and AEs \geq grade 3 (3 = severe, 4 = potentially life-threatening, 5 = death).

After removal of duplicates, all studies identified in the search were screened by title and abstract by two independent reviewers (YS and XT), then full-texts were reviewed to determine eligibility. All the incongruity was resolved by group discussion arbitration. Data extracted included: (1) research characteristics (author, years of publication, study design, follow-up, and sample size); (2) patient demographics (age, sex, and ethnicity) and baseline characteristics (CD4T cell counts, VL, and lipids); and (3) results at the end of the study.

Risk of bias assessment

The risk of bias was evaluated by Cochrane Collaboration tool (Cochrane Handbook for Systematic Reviews of Intervention, version 5.1.0). Assessed risk of bias included six specific domains: sequence generation, allocation concealment, blinding, incomplete data, selection outcome reporting, and other possible biases. The risk of bias in each domain was judged as "low risk," "high risk," or "unclear risk," with the last category bias indicating either lack of information or uncertainty over the potential source of bias.

Data analysis

Triple cART was used as the control group in this meta-analysis. We assessed efficacy using the risk difference (RD) for dichotomous outcomes, mean difference (MD) for continuous outcomes, and 95% confidence interval (CI). By combined studies to obtain the difference of the overall estimate, if the difference was > 0 favored dual cART.

For those eligible trials that had monotherapy arm or dual therapy arm or triple therapy arm within the same

study, we only collect data of qualified arm. Considering some data were incomplete or not reported uniformly, the Mantel-Haenszel method may be less satisfactory in this context. Therefore, according to the clinical registration number in the articles, we searched the detailed results of the study in the clinical trial registry center. Due to the missing virological data caused by discontinued study (that is, loss of follow-up, treatment dropout, AEs, or death), which is a certain influence on the judgment of the results. So, if virologic data with more than 10% of missing data than the per-protocol population was used, the intention to treat exposed population was otherwise applied. Patients with no virological data will be excluded when analyzing the virological suppression effect of dual cART versus triple cART. Therefore, we included the analysis that may be slightly different from the results of the published articles.

To reduce heterogeneity, in studies with predefined subgroups, we performed subgroup analysis including female and male, age ≥ 50 years and < 50 years, different level CD4T cell counts, VL $\geq 100,000$ copies per ml and $< 100,000$ copies per ml, treatment-experienced and treatment-naïve, and the class of the dual cART arm.

Statistical analysis of heterogeneity using Cochrane's Q test, depending on I^2 statistic and P value. If the test results were $P \geq 0.10$ and $I^2 \leq 50\%$, using the fixed-effect model for homogenous studies, in contrast, using the random-effect model for non-homogenous studies. To test whether the primary outcome may be influences, sensitivity analysis was conducted using the leave-one-out method, that is, iteratively removing one study each time and repeating the analysis. We also mutual transformation by the use of the fixed-models or random-effects models to test the stability of the primary result. Due to the insufficiency of studies or reported data, preliminary analysis of subgroup and sensitivity was not performed. Funnel plot was used for the primary endpoint analysis.

All data analyses were performed with Review Manager 5.4 (Cochrane Collaboration, London, UK).

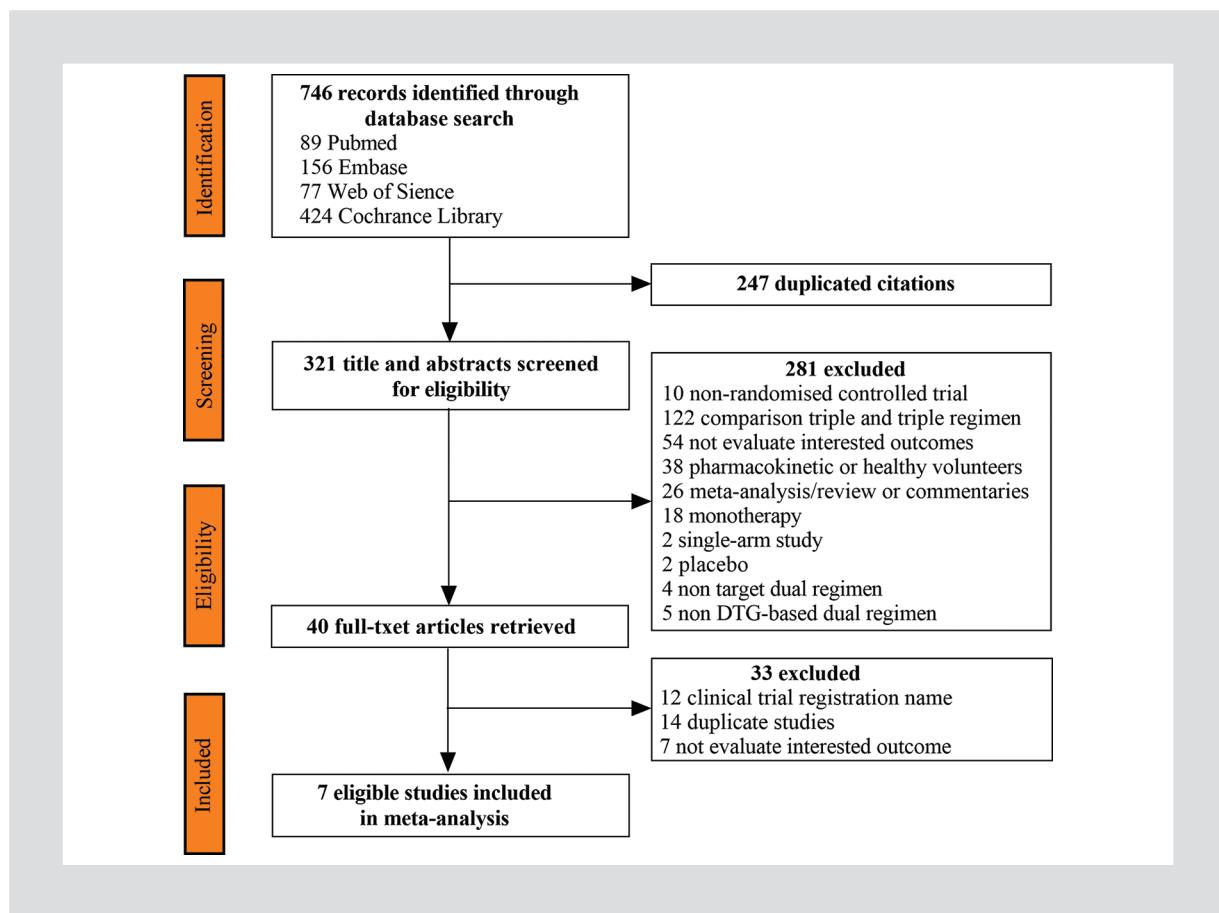
Results

The flow chart summarized the detailed retrieval steps (Fig. 1). A total of 746 potentially relevant studies from four databases were selected by the initial screening. By screening titles, abstracts, and full texts, seven eligible studies were included in this systematic review^{6,7,9,19-22}.

Study characteristics

The main features of the included studies are summarized in table 1. Of 4852 patients who were randomized in the seven eligible studies (6 RCTs), 2423 participants were allocated to receive dual cART, and 2429 served as triple cART. Six studies combined DTG and 3TC^{6,7,19-22}, and one study combined DTG and RPV⁹. Meanwhile, five studies included treatment-experienced patients^{9,19-22} and two studies included treatment-naïve patients^{6,7}.

All the studies were assessed at low risk of selection and reporting bias. Five articles were randomized and open-label trials^{9,19-22}, we judged as "high risk" of the performance bias, and the other two studies were randomized and double-blind trials^{6,7}. Two studies only reported partial outcomes^{20,22}, we judged as "high risk" of the attrition bias, even if we visited the database of the clinical trial registry and viewed the original data, to incorporate these studies into other results analysis. Due to the baseline CD4, T cell counts were unequal in two groups of one study²², we judged as "high risk" of the other bias from one study. Risk of bias graphs in Supplementary material (Figs. S1 and S2) summarized methodological quality items.


Primary outcome

Comparative virological suppression of dual versus triple cART

The results of the meta-analysis indicated dual cART (DTG plus RPV/3TC) versus triple cART have equal effects. At 24 weeks, 1621 patients in dual cART (95.0%) versus 1633 patients in triple cART (95.4%) has viral suppression at 6 studies (RD, -0.00; 95% CI -0.02-0.01)^{7,9,19-22}. Data from 5 studies included 1561 (93.0%) patients in triple cART and 1577 (93.8%) in dual cART show same results at 48 weeks (RD, -0.01; 95% CI -0.02-0.01)^{7,9,20-22}. Moreover, one study followed up to 96 weeks⁶, the data indicated that the results were consistently in agreement (RD, -0.01; 95% CI -0.03-0.00) (Fig. 2).

A sensitivity analysis of the primary outcome was stable and reliable, which were not affected by the leave-one-out method, random-effects model, or fixed-effects model.

Pre-specified subgroup analyses showed that the results did not vary considerably among baseline

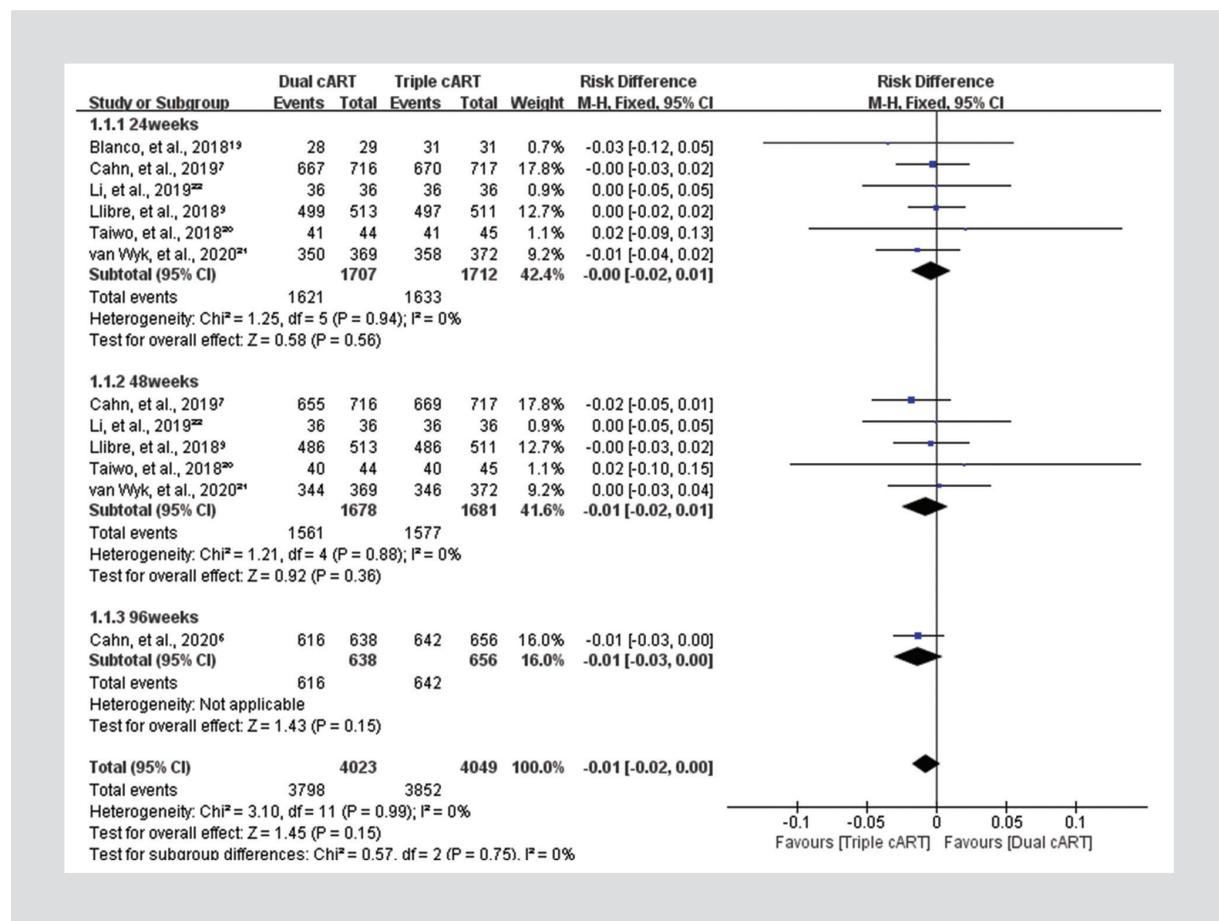
Figure 1. Flow diagram: study screening process.

characteristics (sex, age, ethnicity, CD4T cell counts, VL, treatment, and dual regimen) (Fig. 3).

Secondary outcomes

Comparative CD4T counts, lipids, and safety of dual versus triple cART

Only four studies contribute to the changes of CD4T cell counts analysis among these studies^{7,9,20,21}. Two of four studies use the median to express the average CD4T cell counts^{20,21}. To efficient merging, we have converted the median and IQR into mean and SD^{23,24}. Dual cART was a significantly higher recovery of CD4T cell counts than triple cART at 48 weeks, but there was no significant statistical difference between the two regimens (MD, 10.49; 95% CI -0.30-21.27) (Fig. 4).


Four of the seven studies reported the changes from baseline in lipids^{7,9,20,21}. Since some articles did not report detailed changes in lipid levels, we visited the

database of the clinical trial registry by the registration number provided in the articles, and some studies data were transformed. We used the random-effect model because there was significant heterogeneity of lipids levels between the two regimens ($P \leq 0.001$, $I^2 \geq 85\%$). The results show that, compared to controls, total cholesterol (MD, 0.04; 95% CI -0.39-0.47), HDL cholesterol (MD, 0.03; 95% CI -0.05-0.10), LDL cholesterol (MD, 0.07; 95% CI -0.18-0.31), and triglycerides (MD, -0.10; 95% CI -0.28-0.09) were no significant different in dual cART (Fig. 5).

Six articles contained the results of safety entered the meta-analysis^{6,7,9,19-21}. According to model diagnostics, the random-effect model was used for safety outcomes of any AEs ($P = 0.004$, $I^2 = 74\%$), and the fixed-effect model was used for safety outcomes of AEs grade ≥ 3 ($P = 0.17$, $I^2 = 38\%$). There was no significant difference in any AEs (RD, 0.01; 95% CI -0.04-0.06) and AEs of grade ≥ 3 (RD, 0.00; 95% CI -0.01-0.02) between the two groups (Fig. 6).

Table 1. Characteristics of the included studies in the meta-analysis

Study name	Methods	Clinical characteristic	Interventions	Cases	Age (median, IQR, range, mean \pm SD)	Male (%)	White (%)	Start ART duration (median, months)	Baseline CD4T (median, IQR, range, mean \pm SD)
Libre et al., 2018 ⁹ NCT02429791 NCT02422797	Multicentre, randomized (1:1), open-label, phase 3	Stable suppression of HIV-RNA < 50 copies/mL for at least 6 months, age \geq 18 years	DTG/RPV Triple cART	513 511	43 (21, 79) 43 (22, 76)	393 (76.6) 403 (78.9)	421 (82.1) 398 (77.9)	51 53	611 (3, 1774) 638 (9, 1671)
Taiwo et al., 2018 ²⁰ NCT02263326	Multicentre, randomized (1:1), open-label, phase 3	Stable suppression of HIV-RNA < 50 copies/mL within 48 weeks, age \geq 18 years	DTG/3TC Triple cART	44 45	46 (37, 56) 50 (41, 53)	39 (88.6) 39 (86.7)	23 (52.3) 29 (64.4)	63.4 72.4	694 (533, 1034) 646 (380, 819)
van Wyk et al., 2020 ²¹ NCT03446573	Multicentre, randomized (1:1), open-label, phase 3	Stable suppression of HIV-RNA < 50 copies/mL for at least 6 months, age \geq 18 years	DTG/3TC Triple cART	369 372	40 (20, 74) 39 (18, 73)	344 (93.2) 339 (91.1)	297 (80.5) 289 (77.7)	33.8 35.1	682 (133, 1904) 720 (119, 1810)
Li et al. 2019 ²²	Randomized (1:1), open-label	HIV-1 RNA < 50 copies/mL within 48 weeks, age \geq 18 years	DTG/3TC Triple cART	36 36	45.5 50.5	33 (91.7) 31 (86.1)	21 (58.3) 26 (72.2)	64.4 72.5	677 637
Blanco et al., 2018 ¹⁹ EudraCT: 201500027435	Multicentre, randomized (1:1), open-label, phase 3	Stable suppression of HIV-RNA < 50 copies/mL at least 12 months, age \geq 18 years	DTG/3TC Triple cART	29 31	44 \pm 9 46 \pm 12	23 (79.3) 27 (87.1)	NA NA	NA NA	753 \pm 214 675 \pm 265
Cahn et al., 2019 ⁷ NCT02831673 NCT02831764	Multicentre, randomized (1:1), double-blind, phase 3	HIV-RNA < 500000 copies/mL, age \geq 18 years	DTG/3TC DTG/TDF/EMB	716 717	32 (26, 40) 33 (26, 42)	603 (84.2) 619 (86.3)	480 (67.0) 497 (69.3)	ART-naive ART-naive	462 \pm 219.2 461 \pm 213.1
Cahn et al., 2020 ⁶ NCT02831673 NCT02831764	Multicentre, randomized (1:1), double-blind, phase 3	HIV-RNA 1000 to 500000 copies/mL, age \geq 18 years	DTG/3TC DTG/TDF/EMB	716 717	32 (26, 40) 33 (26, 42)	603 (84.2) 619 (86.3)	484 (67.6) 497 (69.6)	ART-naive ART-naive	462 \pm 219.2 461 \pm 213.1

Figure 2. Forest plot of compared viral suppression with the two regimens.

Publication bias

Funnel plot was performed to evaluate the publication bias of the studies in this meta-analysis. The funnel plot of seven studies compared dual cART with triple cART shows symmetrical, which indicated a lower possibility of publication bias, and reliable (Supplementary material: Fig. S3). However, since the small number of studies, such bias could not be entirely ruled out.

Discussion

The major findings of this meta-analysis can be summarized as follows, DTG-based dual cART was non-inferior to triple cART in the efficacy of virological suppression. In subgroups, results were consistent between treatment-naïve, treatment-experienced, high baseline VL ($VL \geq 100,000$ copies per ml), or low baseline CD4T cell counts ($0-200$ cells per μ l). Moreover, the same result of CD4T cell counts recovery, changes

in lipids from the baseline, and AEs in both regimens. These findings support the use of dual regimens, composed of DTG and RPV or 3TC, in treatment-naïve and treatment-experienced PLWHA.

The classical standard regimens, two nucleoside reverse-transcriptase inhibitors plus third core drug, are falling into the predicament, especially in patients with poor therapeutic outcomes. The addition of DTG made the antiretroviral regimen break away from the predicament and optimize treatment further. DTG-based triple cART versus the traditional regimens demonstrated non-inferior, more effective, or fewer discontinuations²⁵⁻²⁷. However, in fact, long-term use of multiple antiretrovirals so that they are unable to tolerate and overcome the pain of psychological and physical. To improve adherence and avoid drug exposure, clinicians have been constantly trying how to simplify the regimens. Dual cART and monotherapy containing DTG are emerged as the times required. However, the monotherapy showed that the major disadvantage of

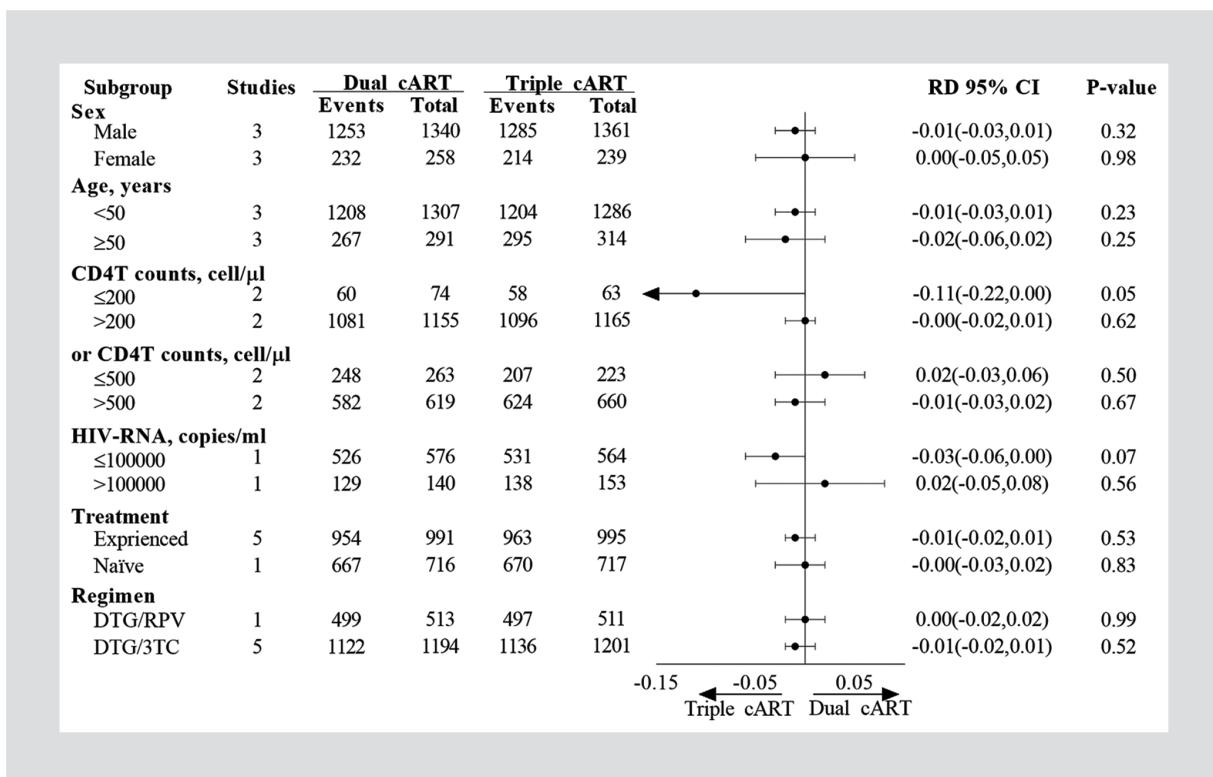


Figure 3. Subgroup analysis according to baseline characteristics at 48 weeks.

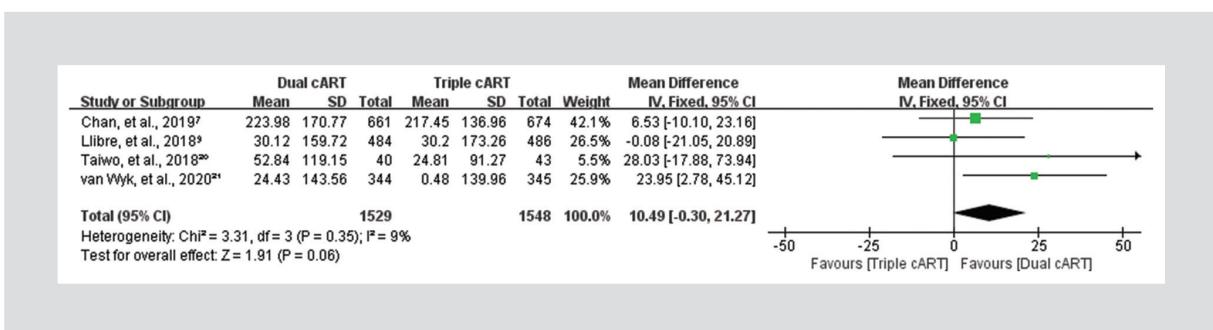
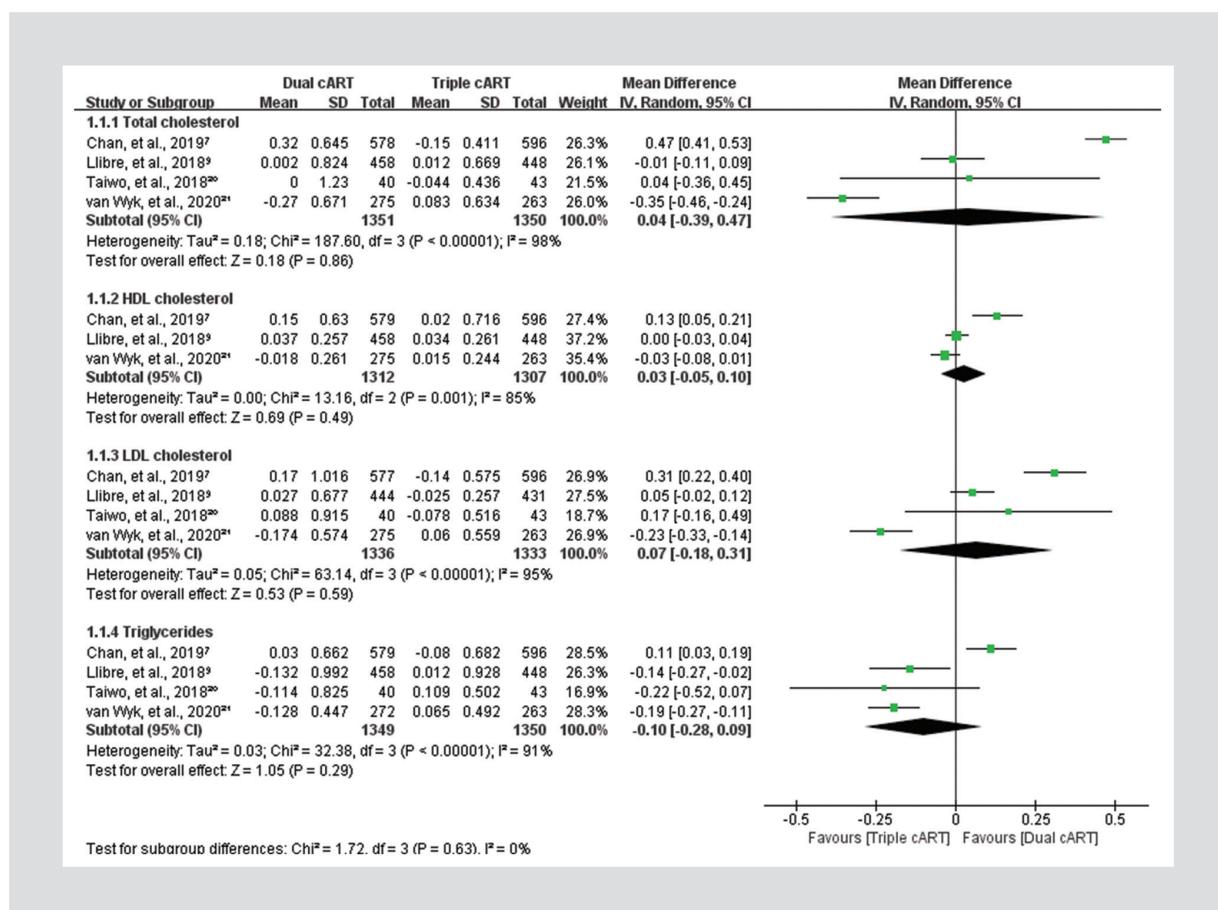
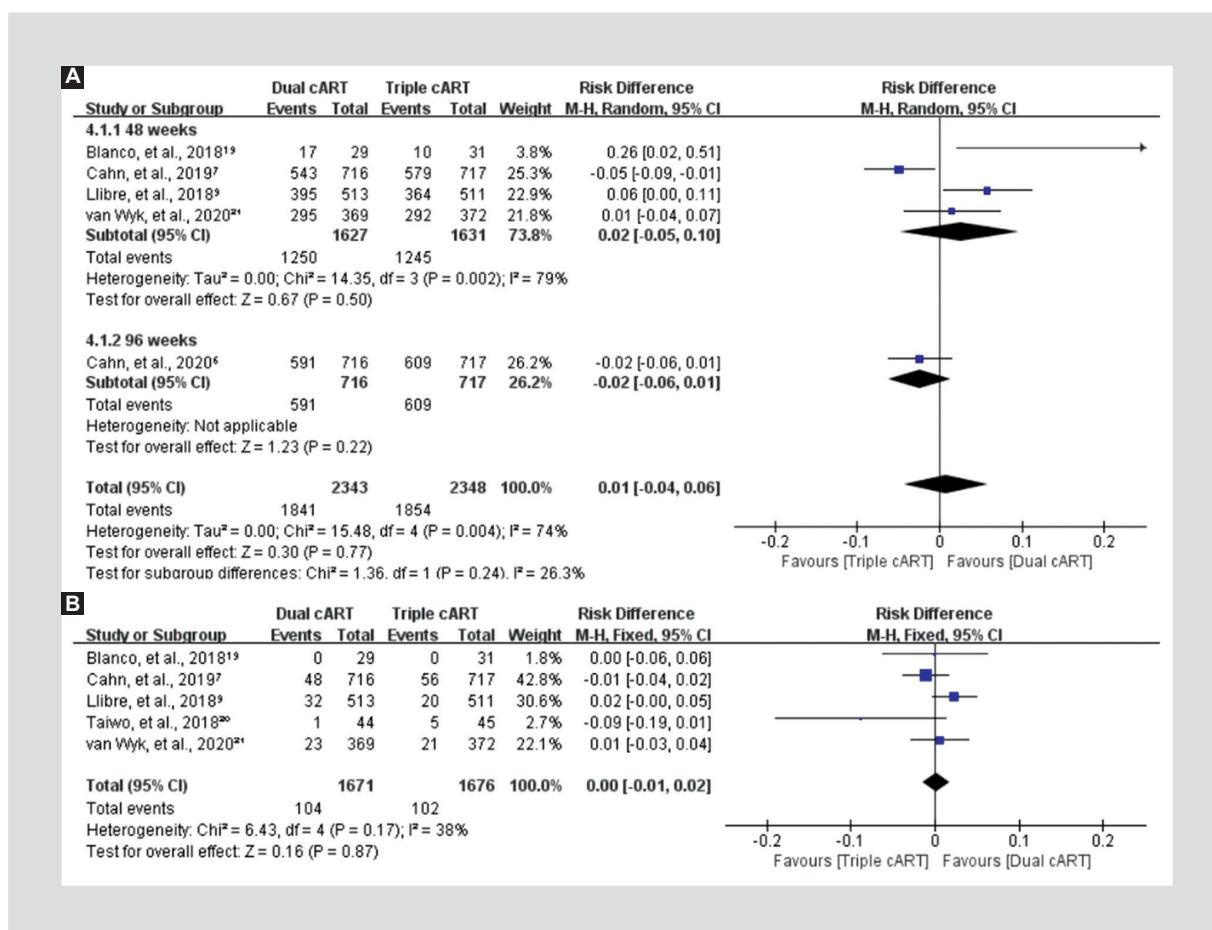



Figure 4. Forest plot of compared CD4T cell counts recovery with the two regimens at 48 weeks.

switching from treatment-experienced PLWHA²⁸⁻³⁰. It seems that dual cART has become a unique choice. A meta-analysis of dual cART contains PIs and RAL showed that the potential benefits included reduced toxicity, improved tolerability and adherence, and reduced cost³¹. An observational, retrospective study suggests that the comparable efficacy between RAL- and DTG-based dual cART³², but DTG has a higher genetic barrier than RAL.

The meta-analysis showed that dual cART was no inferior virological suppression compared with triple

cART at 24 weeks, 48 weeks, and 96 weeks. Whereas the RAL-based dual cART was superior to the triple cART at 24 weeks¹⁷, of note, we registrant patients were 4 times of this study. Sub-analysis, in different conditions at baseline, showed the same as achieving virological suppression than triple cART, especially in high VLs and lower CD4T cell counts patients, these results support the overall findings. However, the participants with lower response and lower baseline CD4T cell counts in the dual cART should be interpreted with caution⁷. Besides, for the CD4T cell counts, dual cART


Figure 5. Forest plot of compared lipid changes with the two regimens at 48 weeks.

was more likely to promote the recovery than triple cART, unfortunately, but there were no significant statistical differences between the two regimens (MD, 10.49; 95% CI -0.30-21.27). Sensitivity analysis proved that the results were stable and reliable, the funnel plot was also fundamentally symmetric. These results supported the evidence which DTG-based dual cART was suitable for PLWHA.

PLWHA during DTG treatment has been reported to gain weight, especially in treatment-naïve³³. Moreover, a significant role of tenofovir alafenamide (TAF) over tenofovir disoproxil fumarate (TDF) increased the weight³⁴. The regimen containing DTG and FTA showed increased body weight more significantly than the standard-care regimen (TDF plus emtricitabine [FTC] plus efavirenz [EFV])²⁶. Similar results were observed in dual cART⁷. We found the changes in lipids at week 48 were broadly favorable in two groups. Total cholesterol, LDL cholesterol, and HDL cholesterol increased from baseline to week 48 in the dual regimen, whereas

triglycerides decreased from baseline. TDF and TAF were not included in our dual regimen (DTG plus RPV/3TC), but they were one of the most common skeletons in the triple cART. The favorable lipid impact was obtained by replacing ritonavir-boosted protease inhibitors (PI/r) and EFV with RPV and INIs³⁵, dual cART showed improved lipid profile¹⁵, which explained why not the difference in this meta-analysis results we observed. It should be emphasized that when the drugs were administered after consumption of a moderate- or high-fat meal, the absorption of both DTG and RPV were increased, resulting in higher exposures³⁶.

Only analyzed limited classes of AEs (any AEs and AEs grade ≥ 3), due to these studies did not clearly report the AEs types and inconsistent the evaluation criteria. Compared to controls, the occurrence of any AEs and AEs grade ≥ 3 in dual cART was no statistical significance. These results were similar to findings from RAL-based dual cART¹⁷. However, more patients discontinued treatment due to safety events in triple cART

Figure 6. Forest plot of compared AEs with the two regimens. **A:** any AEs; **B:** AEs grade ≥ 3 .

compared with PI/s-based dual cART at 48 weeks³⁷. Unfortunately, these studies did not provide a reasonable solution strategy to this problem, the short- and long-term AEs from dual cART.

This study has some limitations. Although we conducted a meaningful subgroup analysis based on reported articles, without public disclosure, dual therapy applies is still unknown, such as opportunistic infection, potential interactions of DTG with other drugs. Only one study reported adherence, we did not discuss the differences in adherence at both regimens, but the adherence in dual cART was higher than triple cART¹⁷. Moreover, compared to atazanavir, darunavir, efavirenz, or RAL, the discontinuation rate was lowest for DTG³⁸. Virologic non-inferiority is the main endpoint for simplification therapy, not the only endpoint, as virologic non-inferiority alone is not a benefit³⁹. It was not currently recommended for switching to dual cART for all patients. Further supplementary data demonstrate that dual cART strategies provide adequate efficacy and safety in the long term.

Conclusion

In this review, the effects of dual cART appear to be non-inferiority to triple cART, in treatment-naïve or treatment-experienced adults with HIV-1 infection. This finding favors strong support for current consensus guidelines recommended DTG-containing dual cART as first-line treatment.

Funding

CQ received grants from the Natural Science Foundation of Hunan Province, China (2017JJ3250), and Project of Science and Technology of Health Commission of Hunan Province, China (B2019034); XZ received grants from the Natural Science Foundation of Hunan Province, China (2019JJ40230), and Project of Science and Technology of Health Commission of Hunan Province, China (B2019035); the other authors had no financial relationships with any organizations;

no other relationship or activities that could appear to have influenced the submitted work.

Supplementary Data

Supplementary data are available at AIDS Reviews online (<http://www.aidsreviews.com/>). These data are provided by the corresponding author and published online for the benefit of the reader. The contents of supplementary data are the sole responsibility of the authors.

References

1. Summers NA, Armstrong WS. Management of advanced HIV disease. *Infect Dis Clin North Am.* 2019;33:743-67.
2. Feng Q, Zhou A, Zou H, Ingle S, May MT, Cai W, et al. Quadruple versus triple combination antiretroviral therapies for treatment naïve people with HIV: systematic review and meta-analysis of randomised controlled trials. *BMJ.* 2019;366:i4179.
3. Duarte F, Soares MA. Simplified two-drug antiretroviral HIV treatment: novel data and expected impact. *AIDS.* 2019;33:2266-8.
4. Ribera E. New dual combination of dolutegravir-rilpivirine for switching to maintenance antiretroviral therapy. *AIDS Rev.* 2018;20:179-86.
5. Dupont E, Yombi JC. Is antiretroviral two-drug regimen the new standard for HIV treatment in naïve patients? *AIDS Rev.* 2019;21:143-56.
6. Cahn P, Madero JS, Arribas J, Antinori A, Ortiz R, Clarke AE, et al. Durable efficacy of dolutegravir (DTG) Plus lamivudine (3TC) in antiretroviral treatment-naïve adults with HIV-1 infection: 96-week results from the GEMINI studies. *Journal of Infection and Public Health.* 2020;13:349-50.
7. Cahn P, Madero JS, Arribas JR, Antinori A, Ortiz R, Clarke AE, et al. Dolutegravir plus lamivudine versus dolutegravir plus tenofovir disoproxil fumarate and emtricitabine in antiretroviral-naïve adults with HIV-1 infection (GEMINI-1 and GEMINI-2): week 48 results from two multicentre, double-blind, randomised, non-inferiority, phase 3 trials. *Lancet.* 2019;393:143-55.
8. Aboud M, Orkin C, Podzamczer D, Bogner JR, Baker D, Khuong-Josses MA, et al. Efficacy and safety of dolutegravir-rilpivirine for maintenance of virological suppression in adults with HIV-1: 100-week data from the randomised, open-label, phase 3 SWORD-1 and SWORD-2 studies. *Lancet HIV.* 2019;6:e576-87.
9. Llibre JM, Hung CC, Brinson C, Castelli F, Girard PM, Kahl LP, et al. Efficacy, safety, and tolerability of dolutegravir-rilpivirine for the maintenance of virological suppression in adults with HIV-1: phase 3, randomised, non-inferiority SWORD-1 and SWORD-2 studies. *Lancet.* 2018;391:839-49.
10. Capetti AF, Cossu MV, Sterrattino G, Barbarini G, di Giambenedetto S, de Socio GV, et al. Dolutegravir plus rilpivirine as a switch option in CART-experienced patients: 96-week data. *Ann Pharmacother.* 2018;52:740-6.
11. Revuelta-Herrero JL, Chamorro-de-Vega E, Rodríguez-González CG, Alonso R, Herranz-Alonso A, Sanjurjo-Sáez M. Effectiveness, safety, and costs of a treatment switch to dolutegravir plus rilpivirine dual therapy in treatment-experienced HIV patients. *Ann Pharmacother.* 2018;52:11-8.
12. Gantner P, Cuzin L, Allavena C, Cabilie A, Pugliese P, Valantin MA, et al. Efficacy and safety of dolutegravir and rilpivirine dual therapy as a simplification strategy: a cohort study. *HIV Med.* 2017;18:704-8.
13. Maggiolo F, Gulminetti R, Pagnucco L, Digaetano M, Benatti S, Valentini D, et al. Lamivudine/dolutegravir dual therapy in HIV-infected, virologically suppressed patients. *BMC Infect Dis.* 2017;17:215.
14. Cento V, Perno CF. Two-drug regimens with dolutegravir plus rilpivirine or lamivudine in HIV-1 treatment-naïve, virologically-suppressed patients: latest evidence from the literature on their efficacy and safety. *J Glob Antimicrob Resist.* 2020;20:228-37.
15. Ciccullo A, Baldin G, Capetti A, Rusconi S, Sterrattino G, d'Ettorre G, et al. A comparison between two dolutegravir-based two-drug regimens as switch strategies in a multicentre cohort of HIV-1-infected patients. *Antivir Ther.* 2019;24:63-7.
16. Galizzi N, Poli A, Galli L, Muccini C, Mastrangelo A, Dell'Acqua R, et al. Retrospective study on the outcome of two-drug regimens based on dolutegravir plus one reverse transcriptase inhibitor in virologically-suppressed HIV-infected patients. *Int J Antimicrob Agents.* 2020;55:105893.
17. Huang Y, Huang X, Chen H, Wu H, Chen Y. Efficacy and safety of raltegravir-based dual therapy in AIDS patients: a meta-analysis of randomized controlled trials. *Front Pharmacol.* 2019;10:1225.
18. World Health Organization. Update of Recommendations on First-and Second-Line Antiretroviral Regimens. Geneva: World Health Organization; 2019. Available from: <https://www.who.int/publications/item/update-of-recommendations-on-first-and-second-line-antiretroviral-regimens>.
19. Blanco JL, Rojas J, Paredes R, Negredo E, Mallolas J, Casadella M, et al. Dolutegravir-based maintenance monotherapy versus dual therapy with lamivudine: a planned 24 week analysis of the DOLAM randomized clinical trial. *J Antimicrob Chemother.* 2018;73:1965-71.
20. Taiwo BO, Marconi VC, Berzins B, Moser CB, Nyaku AN, Fichtenbaum CJ, et al. Dolutegravir plus lamivudine maintains human immunodeficiency virus-1 suppression through week 48 in a pilot randomized trial. *Clin Infect Dis.* 2018;66:1794-7.
21. van Wyk J, Ajana F, Bisshop F, de Wit S, Osiyemi O, Portilla J, et al. Efficacy and safety of switching to dolutegravir/lamivudine fixed-dose two-drug regimen versus continuing a tenofovir alafenamide-based three- or four-drug regimen for maintenance of virologic suppression in adults with HIV-1: phase 3, randomized, non-inferiority TANGO study. *Clin Infect Dis.* 2020;71:1920-9.
22. Li J, Sax P, Marconi V, Fajnzylber J, Berzins B, Nyaku A, et al. No significant changes to residual viremia after switch to dolutegravir and lamivudine in a randomized trial. *J Int AIDS Soc.* 2018;21 Suppl 8:7-8.
23. Luo D, Wan X, Liu J, Tong T. Optimally estimating the sample mean from the sample size, median, mid-range, and/or mid-quartile range. *Stat Methods Med Res.* 2018;27:1785-805.
24. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol.* 2014;14:135.
25. Venter WF, Moorhouse M, Sokhela S, Fairlie L, Mashabane N, Masenya M, et al. The ADVANCE trial: phase 3, randomized comparison of TAF/FTC/DTG, TDF/FTC/DTG or TDF/FTC/EFV for firstline treatment of HIV-1 infection. *J Int AIDS Soc.* 2019;22:e25327.
26. Venter WD, Moorhouse M, Sokhela S, Fairlie L, Mashabane N, Masenya M, et al. Dolutegravir plus two different prodrugs of tenofovir to treat HIV. *N Engl J Med.* 2019;381:803-15.
27. Orrell C, Hagini DP, Belonosova E, Porteiro N, Walmsley S, Falcó V, et al. Fixed-dose combination dolutegravir, abacavir, and lamivudine versus ritonavir-boosted atazanavir plus tenofovir disoproxil fumarate and emtricitabine in previously untreated women with HIV-1 infection (ARIA): week 48 results from a randomised, open-label, non-inferiority, phase 3b study. *Lancet HIV.* 2017;4:e536-46.
28. Wijting I, Rokx C, Boucher C, van Kampen J, Pas S, de Vries-Sluits T, et al. Dolutegravir as maintenance monotherapy for HIV (DOMONO): a phase 2, randomised non-inferiority trial. *Lancet HIV.* 2017;4:e547-54.
29. Hoquequelou L, Allavena C, Prazuck T, Bernard L, Sunder S, Esnault JL, et al. Dolutegravir monotherapy versus dolutegravir/abacavir/lamivudine for HIV-1-infected virologically suppressed patients: results from the randomized non-inferiority MONCAY trial. *J Int AIDS Soc.* 2018;21.
30. Wijting I, Rutsaert SL, Rokx C, Burger DM, Verbon A, van Kampen J, et al. Predictors of virological failure in HIV-1-infected patients switching to dolutegravir maintenance monotherapy. *HIV Med.* 2019;20:63-8.
31. Baril JG, Angel JB, Gill MJ, Gathe J, Cahn P, van Wyk J, et al. Dual therapy treatment strategies for the management of patients infected with HIV: a systematic review of current evidence in ARV-naïve or ARV-experienced, virologically suppressed patients. *PLoS One.* 2016;11:e0148231.
32. Calza L, Colangeli V, Borderi M, Testi D, Granozzi B, Bon I, et al. Simplification to dual therapy containing lamivudine and raltegravir or dolutegravir in HIV-infected patients on virologically suppressive antiretroviral therapy. *J Antimicrob Chemother.* 2020;75:3327-33.
33. Taramasso L, Bonfanti P, Ricci E, Orofino G, Squillace N, Menzaghi B, et al. Factors associated with weight gain in people treated with dolutegravir. *Open Forum Infect Dis.* 2020;7:ofaa195.
34. Taramasso L, Berruti M, Brianò F, di Biagio A. The switch from tenofovir disoproxil fumarate to tenofovir alafenamide determines weight gain in patients on rilpivirine-based regimen. *AIDS.* 2020;34:877-81.
35. Taramasso L, Tatarelli P, Ricci E, Madeddu G, Menzaghi B, Squillace N, et al. Improvement of lipid profile after switching from efavirenz or ritonavir-boosted protease inhibitors to rilpivirine or once-daily integrase inhibitors: results from a large observational cohort study (SCOLTA). *BMC Infect Dis.* 2018;18:357.
36. Mehta R, Piscitelli J, Wolstenholme A, Fu C, Crauwels H, Wynne B, et al. The effect of moderate-and high-fat meals on the bioavailability of dolutegravir/rilpivirine fixed-dose combination tablet. *Clin Pharmacol.* 2020;12:49-52.
37. Perez-Molina JA, Pulido F, di Giambenedetto S, Ribera E, Moreno S, Zamora J, et al. Individual patient data meta-analysis of randomized controlled trials of dual therapy with a boosted PI plus lamivudine for maintenance of virological suppression: GeSIDA study 9717. *J Antimicrob Chemother.* 2018;73:2927-35.
38. Fettiplace A, Stainsby C, Winston A, Givens N, Puccini S, Vannapagari V, et al. Psychiatric symptoms in patients receiving dolutegravir. *J Acquir Immune Defic Syndr.* 2017;74:423-31.
39. Carr A, Hoy J, Pozniak A. The ethics of switch/simplify in antiretroviral trials: non-inferior or just inferior? *PLoS Med.* 2012;9:e1001240.