

Malignant Melanoma in People Living with HIV/AIDS: Can We Know More, Can We Do Better?

Mattia Trunfio¹#, Simone Ribeiro²#, Stefano Bonora¹, Giovanni Di Perri¹, Pietro Quaglino² and Andrea Calcagno¹

¹*Unit of Infectious Diseases, Department of Medical Sciences, Amedeo di Savoia Hospital; ²Dermatologic Clinic, Department of Medical Sciences, University of Torino, Torino, Italy*

#These authors contributed equally to this work.

Abstract

Thanks to the advancement in understanding of molecular mechanisms driving immune surveillance, we have now approached a revolutionary era for the treatment of malignant melanoma (MM). Meanwhile, people living with HIV/AIDS (PLWHA) are aging and non-AIDS-related cancers have become a leading cause of death. Both HIV infection and melanoma share common immune-pathological pathways: immune checkpoints are being targeted for melanoma immunotherapy and investigated as a “shock and kill” strategy for latency reversion among HIV-positive individuals. Nevertheless, a substantial lack of information exists on epidemiology, clinical features, and management of MM in HIV, due to compartmentalized approaches and poor awareness about the problem. In this narrative review, we aimed at analyzing available data regarding MM in PLWHA to point out key knowledge gaps and future opportunities from an integrated dermatology, oncology, and infectious diseases standpoint. To date, a strong association between HIV infection and MM risk still needs to be effectively demonstrated; nevertheless, once this cancer has developed in HIV-positive people, it shows more aggressive course, worse prognosis, and seemingly peculiar clinical and histological features. Despite these challenges, a syndemic framework should lead us toward a tailored and multidisciplinary approach not to miss valuable opportunities from the worst situations including the enrolment of HIV-positive patients in the ongoing trials with immune checkpoint inhibitors. (AIDS Rev. 2019;21:65-75)

Corresponding author: Mattia Trunfio, mattia.trunfio@edu.unito.it

Key words

HIV. Melanoma. Cancer. Immune checkpoint inhibitors. Programmed cell death 1.

Introduction

Over the past decade, we have witnessed revolutionary changes regarding both malignant melanoma (MM) and HIV infection. While MM prognosis promises to

change rapidly thanks to signaling pathway-targeted and immune therapy¹, life expectancy of people living with HIV/AIDS (PLWHA) is going to match the one of the general populations². A more in-depth insight into immune surveillance, escaping, and microenvironment

Correspondence to:

Mattia Trunfio
Clinica Universitaria I Piano
Ospedale Amedeo di Savoia
Corso Svizzera, 164
10149 Torino, Italy
E-mail: mattia.trunfio@edu.unito.it

Received in original form: 03-12-2018
Accepted in final form: 07-04-2019
DOI: 10.24875/AIDSRev.19000038

have been milestones for changing route of both these chronic conditions. Despite these striking steps forward, when their pandemics overlap, resulting outcomes may overcome the positive goals attained in both the individual fields and progress decelerates if it is compartmentalized, not sustained by a translational approach of multidisciplinary interchange and the "one size fits all" rule still prevails. Although new therapeutic strategies and earlier diagnosis, MM death rates are expected to remain stable until 2030³. Meanwhile, in highly active antiretroviral therapy (HAART) era, PLWHA age and non-AIDS-defining cancers (nADCs) have become a relevant cause of death⁴. Cancer in PLWHA has a more aggressive course⁵; additionally, HAART together with MM immunotherapies may reciprocally influence both the diseases so that MM in this population should require a tailored management. Nevertheless, until recently, PLWHA have experienced an unmet need being excluded from all the immunotherapy trials⁶. Comparing the immune checkpoints similarities and differences would not only benefit PLWHA suffering from MM but it may also synergistically push forward advancements in both the fields. Furthermore, revolutionary changes such as HAART introduction first and then HAART administration to anyone at any stage modified what we already knew about the co-occurrence of these conditions from pre-HAART era. There is an increasing need of better understanding the natural history, the standard of care and the possible therapies interactions, and opportunities for MM in PLWHA. Therefore, in this narrative review, we analyzed recent data and pointed out key knowledge gaps about MM epidemiology, clinical aspects, and new therapies among PLWHA from an integrated dermatology and infectious diseases point of view.

Epidemiology: do PLWHA have a higher risk for MM?

MM incidence among PLWHA has been reported around 16.4-175.7/100.000 persons-years during early HAART era in selected American and European cohorts^{4,7-11}. While overall projected nADCs incidence rates are expected to decrease until 2030¹², MM incidence is increasing in the general population^{3,13,14}. In 2018, 91,270 and 144,209 new cases of MM have been estimated in the United States and Europe, respectively^{13,14}. From pre-HAART era to the first decade of the current century, four studies reported no cumulative MM incidence trend among PLWHA^{7,15-17} and only one observed an increasing incidence⁴. Standardized

incidence rate (SIR) and other effect measures of risk for MM in PLWHA in pre- and post-HAART era are listed in Table 1. In both the periods, the overall pooled SIR has been reported to be close to 1, suggesting that MM incidence in PLWHA is increasing in parallel with the one of the general population without differences in terms of incidence and risk rates. Nevertheless, some studies were featured by high prevalence of African ethnicity people, where an overall lower risk for MM compared to Caucasian has been found both for HIV-negative and HIV-positive individuals^{10,18,19}. Interestingly, an increased MM risk has been reported among PLWHA in India, but no evaluation according to skin pigmentation was made²⁰. The possibility that HIV infection by itself may overcome or attenuate ethnicity-related factors protecting from MM development is still far from being understood. Moreover, study design and analyses were very heterogeneous^{8,10,17,19-26} with possible representativeness, surveillance, case definition/inclusion, comparison, and/or computational bias, while AIDS-related competing risks may have not always been considered by pre-HAART era studies. Nevertheless, despite the wide variability in methods and sample populations which may explain the apparently contradictory data, some studies may still point toward a higher prevalence of MM among PLWHA, if only Caucasian ethnicity would be taken into account^{10,19,27,28}. In accordance with this, a recent meta-analysis on MM risk in PLWHA reported a significant heterogeneity and a pooled relative risk of 1.3 and 1.5 after ethnicity-adjustment during pre- and post-HAART eras, respectively²⁷. This 20% increase in MM risk between the periods seems to be more explainable by the longer longevity of PLWHA, rather than by HAART-induced carcinogenic risks as hypothesized by some¹⁵. In fact, age has been reported as a significant risk factor for melanoma²⁹ and higher MM rates have been associated with older age also in PLWHA^{8,19}. If any increment in MM risk is ascribable to HIV infection, then the evidence of HIV-related risk factors should be investigated. Cases of eruptive dysplastic nevi have been reported among patients soon after progressing into AIDS³⁰; still, no attempt to demonstrate that HIV-induced immune deficiency may promote nevi development has been successful: PLWHA may have higher number of small nevi, but similar amount of larger and atypical nevi compared to age, sex, and hair color matched controls³¹. Ultraviolet/sun exposure, fair skin (phototypes 1-2), higher number of common and atypical nevi, and family history are acknowledged risk factors for MM¹⁸. Sunbath use is more common among

Table 1. Effect measures of MM risk in PLWHA from the pre-HAART era to current days

Period	Location	Cohort	Effect Measure	Features	References
Pre-HAART and early HAART era					
1981-1996	USA	AIDS ≥ 60 years old patients	RR 1.5 (0.8-2.6)	Cross-matched registries §	21
1988-2003	USA	HIV/AIDS military	RR 10.5 (9.0-11.9)		10
1980-2002	USA, Europe, Australia	HIV/AIDS adults	SIR 1.24 (1.0-1.5)	Meta-analysis	28
1995-2004	South Africa	HIV/AIDS African ethnicity adults	aOR 1.7 (0.7-3.8)	Cancer questionnaires	24
1980-2004	USA	AIDS adults	SIR 1.3 (1.1-1.4)	Cross-matched registries §	19
1987-2002	USA	HIV ≥ 66 years old	OR 0.89 (0.6-1.3)		22
1978-1996	USA, Europe, Australia	HIV/AIDS adults	pRR 1.26 (1.1-1.4)-1.28 (1.1-1.5)*	Meta-analysis	27
1997-2009			pRR 1.26 (0.9-1.6)-1.50 (1.1-2.0)*		
Early and Late HAART era					
1996-2008	USA	HIV/AIDS veterans	SIR 1.04 (0.8-1.4) versus 2.50 (2.1-3.0)	Cancer registries versus ICD-9 codes §	25
1996-2008	Pune (India)	HIV/AIDS patients	SIR 6.0 (1.2-17.4)	Cross-matched registries §	20
1996-2009	USA, Canada	HIV/AIDS Caucasian adults only	SIR 1.15 (0.9-1.4)		8
1996-2012	USA	HIV/AIDS adults	SIR 0.87 (0.7-1.1)-0.85 (0.7-1.0) in HIV-AIDS	Registry-linkage study	26
1995-2017	Denmark	HIV/AIDS ≥ 16-year-old	IRR 0.60 (0.3-1.3)	Scarcity of MM events	23
		Danish patients			

MM: malignant melanoma; PLWHA: people living with HIV/AIDS; SIR: standardized incidence rate.

Only the most recent publication from the same clinical cohorts and studies not included in the listed meta-analyses were reported in the table. HAART: highly active antiretroviral therapy; RR: rate ratio; SIR: rate ratio; aOR: adjusted odds ratio; OR: odds ratio; pRR: pooled relative risk; NA: not available; IRR: incidence rate ratio. MM: malignant melanoma. *After ethnicity adjustment; §SEER: surveillance, epidemiology and end results program) data, for which no information/specification is available about the immune status of the cohort individuals, was used as control.

Table 2. Effect measures of risk of MM according to viroimmunological parameters in PLWHA

Viroimmunological parameters (cutoff/Model)	Effect measure of association	References
AIDS episodes	HR _i 2.81 (0.38-20.87)	15
Length of HIV infection (5 years)	HR _i 1.04 (0.14-7.91)	15
CD4 + T cells Nadir (\leq 200 cells/mmc)	HR _i 0.10 (0.01-1.04)	15
Current CD4 + T-cells (\leq 200 cells/mmc) (201-499 cells/mmc) (\geq 500 cells/mmc) (Every 100 cells/mmc less)	RR _u 2.1 (0.8-5.0)/RR _i 1.8 (0.6-6.0) RR _u 2.5 (1.6-3.9)/RR _i 2.3 (1.0-5.3) RR _u 1.1 (0.5-2.1) HR _i 1.0 (0.92-1.09)	8, 11
Being on HAART	HR _i 0.38 (0.05-2.69)-HR _i 1.45 (0.83-2.55)	8, 15
Time on HAART (10% increase over prior 2 years) (10% increase over prior 180-900 days)	HR _i 1.16 (1.03-1.3) HR _i 1.14 (1.01-1.28)	8
Plasma HIV-RNA ($>$ 10,000 cp/mL) (501-9999 cp/mL) (< 500 cp/mL) (Every Log10 more)	RR _u 2.6 (1.3-5.1)/RR _i 1.9 (0.8-4.6) RR _u 2.2 (1.0-5.0)/RR _i 1.5 (0.6-3.8) RR _u 1.5 (1.0-2.4) HR _i 1.08 (0.9-1.32)	8, 11

MM: malignant melanoma; PLWHA: people living with HIV/AIDS

AIDS: acquired immunodeficiency syndrome; HAART: highly active antiretroviral therapy. Effect measures (HR: hazard ratio; RR: rate ratio) are reported with "u" as subscript if the ratio is between rate in HIV-positive versus rate in HIV-negative patients, with an "i" if the ratio is between rates within HIV-infected patients

homosexual and bisexual people than in the general population³² and some authors have observed higher MM risk solely in this HIV-positive group¹⁹. While specific extrinsic risk factors for melanoma have a higher prevalence among community more at risk for HIV, the reported data can induce us to speculate for a negative indirect association between lower phototype and atypical mole syndrome toward HIV risk. Nevertheless, no specific HIV-related risk factor has been clearly identified to date, as shown in Table 2. Recently, Park et al. observed that in different nADCs, including MM, the longer is the period of continuous viral suppression, the lower is the cancers incidence³³, but no studies have investigated possible associations between MM and HIV-induced chronic inflammation, immune activation, immune senescence, and possible legacy effect and no data are available after the START study. Probably, a 10-year span is still necessary to evaluate any change in melanoma incidence among PLWHA starting HAART immediately after HIV diagnosis. To date, a modest number of MM cases have been included in larger and varied nADCs cohorts so that studies specifically designed to assess MM risk and incidence in PLWHA are poorly represented and stratifying for subgroup analyses according to HIV-related parameters can be hardly performed.

Clinical features of MM in PLWHA: same face, same story?

While a strong association between HIV infection and MM still needs to be effectively established, once this cancer develops in PLWHA, a second question to be answered is whether the presentation and prognosis are similar to those of the general population. In 2018, 27,147 and 9320 deaths due to MM have been estimated in Europe and the United States, respectively^{13,14}. Up to 2011, MM deaths were 0.2-3% of all the deaths due to nADCs among PLWHA^{5,34}; current data are missing. We know that nADCs occur at more advanced stages at diagnosis and that PLWHA are less likely than the HIV negatives to receive any first-line course of cancer therapy⁵. In the USA, during 1996-2010, PLWHA showed a significantly higher cancer-specific mortality for overall MM cases (HR 1.72) and for locoregional stages (HR 2.27), even after adjusting for receipt first course cancer treatment (HR 1.93)⁵. In Italy, during 2006-2011, people with AIDS diagnosed with MM died of cancer-related causes 10 times more frequently than the HIV-negative patients with MM (overall sex-/age-standardized mortality ratio of 10.9)³⁴. Similar data should be carefully collected and assessed nowadays, after the introduction of new targets

and immunotherapies. This higher mortality could also be due to the greater portion of patients diagnosed with late-stage disease: PLWHA are more than twice as likely to have a distant metastasis from MM and almost twice as likely a regional lymph node metastasis from MM at diagnosis compared to HIV-negative cases matched for age, sex, and race³⁵. Furthermore, they showed reduced disease-free survival (16 vs. 42 months) compared to HIV negatives matched for age, sex, histotype, primary site, and thickness³⁶. Whether the worse prognosis and the more aggressive clinical course are mainly influenced by HIV-related sociodemographic, clinical or viroimmunological factors have not yet been clearly addressed. MM case reports from HAART era are listed in Table 3. To date, there have been over 30 English published reports from pre- and post-HAART eras; nowadays, patients with concurrent MM and HIV infection are predominantly Caucasian males and do not seem to differ in terms of age from HIV-negative cases (median age 50 years). The median Breslow thickness is 1.4 mm; 64.3% has metastatic disease at the diagnosis. Some authors reported the trunk as preferential primary site^{16,31} and rarer localizations have been described³⁷⁻⁴⁴ with SIR of MM of atypical sites reported as the highest among PLWHA¹⁹. Nevertheless, possible publication bias limits the generalizability of this picture. No association between CD4⁺ T-cells count and overall survival or Breslow thickness at diagnosis has been observed³⁶, but higher CD4⁺ count has been related with longer disease-free survival³⁶. Interestingly, a lack or scarcity of tumor-infiltrating lymphocyte (TIL) has been repeatedly described⁴⁵⁻⁴⁷; if MM among PLWHA was confirmed as a more prevalent non-brisk TIL type, also this would explain its poorer prognosis. In fact, the presence of TIL and histological regression has been associated to lower risk of sentinel lymph node involvement and to more favorable prognosis in HIV-negative patients⁴⁸. Moreover, atypical presentations including multiple MMs in the context of not familial melanoma^{46,47,49} and "animal type" histotype⁵⁰ have also been reported, but to date, there is no evidence that rarer forms of MM are more common in PLWHA.

Clinical management of MM in PLWHA: the untold story

Tailored guidelines for screening and managing MM in PLWHA do not exist and HIV is not included among those factors determining the extent of investigations and follow-up of MM. Awareness about the problem is

still poor, and the current scientific debate in MM clinical management includes several hot topics urgently requiring an international consensus that, however, may differ for PLWHA:

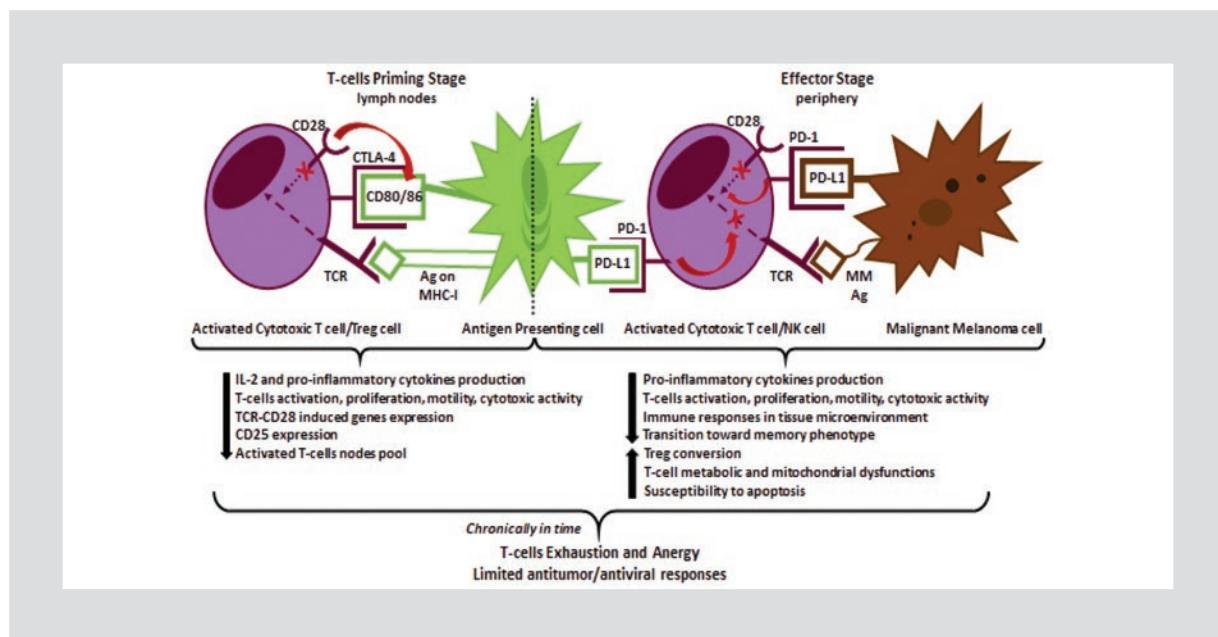
1. The sentinel node biopsy controversy: after MSLT-II trial, several *pros* and *cons* emerged to choose between complete lymph node dissection and active nodal basin surveillance with ultrasonography following a positive sentinel node⁵¹. HIV-related lymphoid hyperplasia as well as infective and lymphoproliferative lymphadenopathies may affect histological evaluation (ulceration, regression, infiltrating lymphocytes, and micro/macrosatellitosis) and should be carefully taken into consideration. While surgical or ultrasonography options should be ideally discussed case by case, in the light of current knowledge, the latter option seems to be more risky to undertake in PLWHA. Ultrasound-guided fine-needle aspiration cytology may prove to be an intermediate option to identify candidates for the complete nodal dissection in a population presenting a wide range of alternative causes of palpable nodes. Furthermore, the promising application of serum S-100 β and osteopontin as predictive markers of metastasis in non-sentinel and sentinel nodes⁵² should also be carefully evaluated, considering that both have been described as altered by HIV infection^{53,54}.
2. The excision margins controversy: most of the current guidelines now recommend 2 cm as the maximum margins around thicker MM⁵⁵. To date, no strong data may inform us to prefer wider elective excision margins in PLWHA, but the lack of evidence of higher risk of local recurrence and different microsatellites distribution in this group of patients is not the evidence of their absence and further studies are warranted.
3. The biomarkers challenges: circulating microRNAs (miRNAs) are emerging as potential diagnostic, prognostic, and predictive biomarkers of MM⁵². Furthermore, miRNAs literature in HIV is proliferating leading to the almost daily discovery of miRNAs alterations. Considering the possibility of shared or opposite up- and down-regulated miRNAs, diagnostic and prognostic miRNA clusters should be carefully assessed in PLWHA versus HIV-negative patients with and without MM, avoiding over- or under-estimation of cancer burden and prognosis in the former group.
4. The accompanying HAART: nelfinavir, an old protease inhibitor for HIV infection, repeatedly

Table 3. MM in PLWHA: case reports from the HAART era

Sex	Age (years)	Ethnicity	Breslow's thickness (mm)	Stage*	Primary Site	CD4 count (cells/mm ³)	Treatment	Outcome	Note	References
M	33	—	—	IV	Unknown	> 500	IFN- α , γ -knife radiosurgery	Death	Seminal vesicles metastasis	38
M	54	—	1.3	IV	Scalp	> 200	—	—	Fine-needle biopsy	39
M	53	Caucasian	5.6	IV	Lower limb	190	IFN- α , IL-2, vindesine	Death	—	76
M	27	African	2.7	IIb	Thigh	42	—	—	Animal type	50
M	60	Hispanic	—	—	Esophagus	—	Esophagectomy	—	—	40
M	50	Caucasian	3.01	IIIC	Trunk	700	IFN- α , temozolamide	Death	—	77
M	50	—	—	IV	Unknown	320	IL-2, ipilimumab	Stable 8 months	First report of anti-CTLA-4	64
M	48	Caucasian	—	IV	Cheek	38	Ipilimumab, stereotactic radiosurgery	Stable 9 months	—	37
F	30	African	1.45	IIb	Oral mucosa	177	—	DF 21 months	Pregnancy	41
M	47	Caucasian	0.8	Ia	Trunk	—	Ipilimumab, IL-2, dabrafenib/ trametinib, pembrolizumab	Death	First report of anti-PD1	65
M	51	—	—	IV	—	610	Ipilimumab, nivolumab	Death	CD4, CD8, HIV-RNA and HIV-DNA kinetic during anti-CTLA-4	59, 66
NA	NA	African	—	NA	Orbit	—	Orbital exenteration	LFU	Achromic MM	42
M	33	Indian	—	IV	Lower limb, multiple	< 200	—	LFU	—	49

(Continue)

Table 3. MM in PLWHA: case reports from the HAART era (Continued)										
Sex	Age (years)	Ethnicity	Breslow's thickness (mm)	Stage*	Primary Site	CD4 count (cells/mm ³)	Treatment	Outcome	Note	References
F	53	–	–	I	Retro-orbital	–	Orbital exenteration, RT	DF 3.5 years	–	43
M	66	–	–	I	Anorectal	–	Chemotherapy	Death	Anorectal cytology	44
M	72	Caucasian	6.0	IIIC	Lower limb	–	Ipilimumab, nivolumab, RT	Death	–	67


MM: malignant melanoma; PLWHA: people living with HIV/AIDS
M: male; F: female; MM: malignant melanoma; RT: radiotherapy; LFU: lost to follow-up; DF: disease free; CTLA-4: cytotoxic T-lymphocyte antigen 4; PD-1: programmed cell death protein 1. *Stage at diagnosis according to the American Joint Committee on Cancer classification

investigated for its broad antitumor activity, can inhibit MM cell lines proliferation *in vitro* and suppress PAX3/microphthalmia-associated transcription factor pathway, implicated in MM metastatic phenotype and resistance to MAPK inhibitors⁵⁶. No other HIV protease inhibitors have been investigated in this respect nor preferable antiretrovirals combination exists in case of coexisting MM. Therefore, studies addressing all these issues are highly required, also considering the possibility of shared properties among protease inhibitors and their alternative use as a booster for cancer therapies.

Despite MM in PLWHA presents a more aggressive course, worse prognosis, and probably peculiar clinical and histological features, no tailored recommendations on threshold for biopsy, timing for skin examination, staging, frequency, and procedures of follow-up can be drafted based on current available data. Prospective studies and trials are advocated and until then, a strong cooperation between infectious diseases, dermatology and oncology specialists is strongly advisable.

New perspectives in MM therapy: friend or foe in HIV settings?

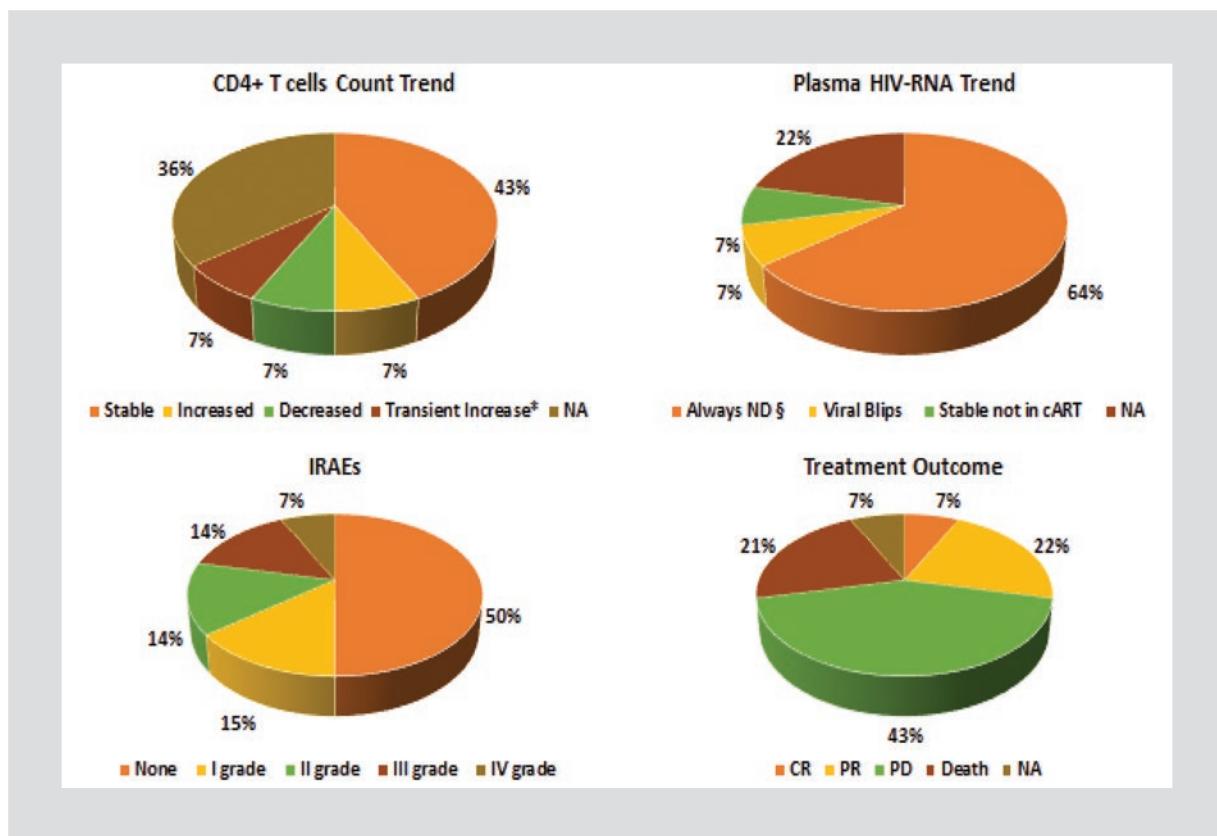

Over the past decade, improved molecular and immunologic understanding turned MM into a model prototype for studying cancer immune editing processes^{1,57}. The most remarkable step forward has been represented by immune checkpoint inhibitors (ICIs). These monoclonal antibodies target key regulatory pathways in immune T-cell, inducing a response toward cancer cells^{1,57}. Specifically, by blocking programmed cell death protein 1 (PD-1, nivolumab and pembrolizumab) and cytotoxic T-lymphocytes antigen 4 (CTLA-4, ipilimumab), ICIs have unprecedentedly prolonged MM relapse free, distant metastasis free, and overall survival times¹. A schematic representation of PD-1 and CTLA-4 immune checkpoints pathways and their role in MM is depicted in Figure 1. The current standard of care for Stage IV melanoma is now mono/combination therapy with ICIs following or not anti-BRAF/MEK (according to BRAF mutant status)¹. Considering that their use in BRAF/MEK mutant MM is still under debate and that adjuvant immunotherapy has proved to give survival benefit in patients without evidence of distant metastases too¹, further additional indications for ICIs are expected to be released soon. Surprisingly, HIV is able to exploit the same immune

Figure 1. Major schematic stages of the role of PD-1 and CTLA-4 immune checkpoints in T-cellular responses against viral and tumoral threats. The figure shows some of the major mechanisms by which Cytotoxic T-Lymphocytes Antigen 4 (CTLA-4) and Programmed cell Death protein 1 (PD-1) immune checkpoints limit T-cells activation in melanoma (the same mechanisms are shared with chronic HIV infection). While these pathways normally regulate exaggerated or prolonged T-cells responses, their persistent activation by cancers or chronic infections leads to T-cell exhaustion. During T-cells priming, antigen presenting cells (APCs) present tumor antigen (Ag) to T-cells receptor (TCR) of D8+ cytotoxic T-cells by major histocompatibility complex-I (MHC-I); concurrent costimulatory binding of CD80/86 to CD28 drives lymphocytes towards an activated phenotype. In the presence of CTLA-4, possessing higher affinity than CD28 for CD80/86, the costimulation is prevented and TCR downstream signaling is interrupted, leading to energy. Similarly, in tumor microenvironment APCs and melanoma cells express PD-ligand 1 (PD-L1) which binds to PD-1 of activated T-cells; interfering with TCR-CD28 downstream signaling leading to T-cell functions suppression.

checkpoints for suppressing host immune defences⁵⁷⁻⁵⁹, proving to possess further mechanisms by which it may facilitate MM development. Nevertheless, at least until recently, immunotherapies have not been investigated in HIV to the same extent as they have been in MM since PLWHA have been considered trial ineligible due to fear of impaired efficacy of ICIs, burst of immune reconstitution inflammatory syndrome (IRIS), or more frequent immune-related adverse events (IRAEs)^{6,60,61}. Therefore, most of the available current data come from *in vitro*, *ex vivo*, and animal models. CTLA-4 is overexpressed on CD4⁺ T-cells and correlates with loss of HIV-specific T-cells functions and disease progression⁵⁷, while PD-1 has been identified as one of the major drivers of T-cell exhaustion and viral latency in HIV/SIV infection^{57-59,62,63}. Its expression is the highest on HIV-specific human CD4⁺ and CD8⁺ T-cells, correlates with HIV antigen burden and disease progression, and is downregulated by HAART^{57-59,62,63}. In SIV-positive macaques, PD-1 blockade reduced plasma viremia, delayed viral rebounds after HAART interruption, and improved overall survival by restoring HIV-specific T- and B-cells

functions^{58,62}. Preliminary animal models suggest a role for PD-1 blockade also in reducing microbial translocation, immune activation, and incidence of opportunistic infections⁵⁸. So far, 14 cases of metastatic MM treated with ICIs in PLWHA have been described^{6,37,64-67}: they were all on HAART but one, and no drug-drug interactions were observed. Pooled viroimmunological dynamics, IRAEs, and treatment outcome are depicted in Figure 2. Despite Chang et al. reported a significantly higher number of IRAEs for PLWHA⁶⁰, the vast majority were Grade 1-2 reactions not requiring therapy discontinuation⁶⁰ and other studies did not raise concerns about ICIs safety and tolerability^{61,68}. No studies observed IRIS nor worrying changes in median CD4⁺ count and viral load^{60,61,68}; on the contrary, favorable CD4⁺ T-cells increase, similar response rates compared to HIV-negative patients and durable benefit regardless of baseline CD4⁺ count were documented⁶⁰. Given current evidence, only fear about more frequent IRAEs may be justified, but HIV-related anomaly in absolute number and functions of Th17⁶⁹, determinant drivers of IRAEs⁷⁰, should raise questions. ICIs safety concerns are currently undergo-

Figure 2. Pooled clinical and viroimmunological outcomes of the 14 reported cases of metastatic malignant melanoma treated with anti-PD1 and/or anti-CTLA-4 in HIV-positive patients from literature.

*This single patient was assessed for and presented a transient increase of CD4+ activation, CD4+ total memory and effector memory cells and CD8+ cells after each ipilimumab infusion⁶⁶; §For 1 patient single-copy assay HIV-RNA, cell-associated unspliced HIV-RNA in CD4+ T-cells and HIV-DNA were assessed after ipilimumab infusion and found to decrease, increase and remain stable, respectively⁶⁶. NA: Not available data; ND: Not Detectable plasma HIV-RNA; IRAEs: Immune-Related Adverse Events; CR: Complete Response; PR: Partial Response; PD: Progressive Disease.

ing evaluation through Phase-I trials for PLWHA (NCT03304093; NCT02595866; NCT03239899). Under investigation is also the possible role of ICIs in reverting HIV latency. Dynamics of cell-associated unspliced HIV-RNA in CD4+ T-cells, HIV-DNA, and plasma ultrasensitive or single-copy HIV-RNA have been reported with significantly variable trends after nivolumab or ipilimumab administration for different cancers, including MM, in single case reports^{59,66,71-73} and preliminary prospective studies⁶⁸ (CROI conference 2018, abstract 656LB), either suggesting or questioning possible effects on destabilizing latent viral reservoir. Recently, pembrolizumab proved to decrease HIV latency establishment when administered before HIV infection in CD4+ T-cells *in vitro*⁵⁹. Whether or not ICIs may be exploited as a “shock and kill” strategy, reverting latency while concurrently reactivating HIV-specific immune responses may also depend on ICIs molecules and doses, presence and type of cancer, concomitantly involved immune checkpoints and cor-

responding inhibitors, and specific viroimmunological features of subgroups of patients so that no conclusion but hopes can be drawn to date. Furthermore, about 70% of MM shows primary or secondary resistance to PD-1 inhibition¹. Increased understanding of resistance mechanisms could help in developing predictive biomarkers for ICIs response; among them, PD-1 expression, presence and location of TIL and Th17, and composition of gut microbiome are under investigations^{1,69,70}. All of them are variably altered by HIV infection. Studies regarding HIV-related dendritic cells and lymphocyte migration as well as the precise definition of the entity, frequency, and role of TIL in MM of PLWHA may improve our current knowledge about immune-histological prognostic and predictive markers of treatment response, advantaging both HIV-positive and negative patients. Considering further the respective positive and negative correlations between CD4+ count and viral load with PD-1/PD-L1 expression on different cell types^{57,58,62,63}, the opportunity of ex-

ploiting routine HIV-related parameters as predictive biomarkers of ICIs response should be evaluated. As a gathering framework for all of this, Vitamin D, largely acknowledged for its immunomodulatory properties and highly deficient among PLWHA⁷⁴, affects MM onset and prognosis through intricate networks of intra/intercellular pathways⁷⁵. Interactions between Vitamin D and ICIs may take place at different levels including antiproliferative activity against MM cells, PD-L1 up-regulation, and Th17 inhibition⁷⁵ so that further studies are warranted to define possible adjuvant role of Vitamin D supplementation in MM and HIV.

Conclusions

We have entered a revolutionary era for the treatment of both MM and HIV. Although MM risk factors and incidence among PLWHA are still hazy, considering what follows such a diagnosis, HIV clinicians must keep an extremely high attention threshold toward the problem, becoming experienced with simple tools such as the ABCDE rule and the revised Glasgow checklist in their routine practice; on the other hand, dermatologists and oncologists must recognize that more than ever the management of these patients requires a tailored multidisciplinary approach to be defined case by case. When the Berlin patient underwent stem cells transplant for acute myeloid leukemia, despite the planned selection of a CCR5Δ32-mutated donor, no one would have certainly expected the impressive resulted outcome, the cure of HIV. Taking into account the promising premises, trials based on ICIs and immune-pathological studies specifically retailed for MM among PLWHA are, therefore, heartily solicited being conceivable that they may pave a way forward further Berlin patients.

References

1. Schadendorf D, van Akkooi AC, Berking C, et al. Melanoma. *Lancet*. 2018;392:971-84.
2. Wandeler G, Johnson LF, Egger M. Trends in life expectancy of HIV-positive adults on antiretroviral therapy across the globe: comparisons with general population. *Curr Opin HIV AIDS*. 2016;11:492-500.
3. Guy GP Jr., Thomas CC, Thompson T, et al. Vital signs: melanoma incidence and mortality trends and projections United States, 1982-2030. *MMWR Morb Mortal Wkly Rep*. 2015;64:591-6.
4. Patel P, Hanson DL, Sullivan PS, et al. Incidence of types of cancer among HIV-infected persons compared with the general population in the United States, 1992-2003. *Ann Intern Med*. 2008;148:728-36.
5. Coghill AE, Shiels MS, Sunjea G, Engels EA. Elevated cancer-specific mortality among HIV-infected patients in the United States. *J Clin Oncol*. 2015;33:2376-83.
6. Heppert MV, Schlaak M, Eigentler TK, et al. Checkpoint blockade for metastatic melanoma and merkel cell carcinoma in HIV-positive patients. *Ann Oncol*. 2017;28:3104-6.
7. Silverberg MJ, Lau B, Achenbach CJ, et al. Cumulative incidence of cancer among persons with HIV in North America: a cohort study. *Ann Intern Med*. 2015;163:507-18.
8. Yanik EL, Hernández-Ramírez RU, Qin L, et al. Brief report: cutaneous melanoma risk among people with HIV in the United States and Canada. *J Acquir Immune Defic Syndr*. 2018;78:499-504.
9. Bedimo RJ, McGinnis KA, Dunlap M, et al. Incidence of non-AIDS-defining malignancies in HIV-infected versus noninfected patients in the HAART era: impact of immunosuppression. *J Acquir Immune Defic Syndr*. 2009;52:203-8.
10. Burgi A, Brodine S, Wegner S, et al. Incidence and risk factors for the occurrence of non-AIDS-defining cancers among human immunodeficiency virus-infected individuals. *Cancer*. 2005;104:1505-11.
11. Silverberg MJ, Chao C, Leyden WA, et al. HIV infection, immunodeficiency, viral replication, and the risk of cancer. *Cancer Epidemiol Biomarkers Prev*. 2011;20:2551-9.
12. Shiels MS, Islam JY, Rosenberg PS, et al. Projected cancer incidence rates and burden of incident cancer cases in HIV-infected adults in the United States through 2030. *Ann Intern Med*. 2018;168:866-73.
13. American Cancer Society. *Cancer Facts and Figures*. Atlanta: American Cancer Society; 2018.
14. ECIS European Cancer Information System. *Estimates of Cancer Incidence and Mortality*. Europe: European Commission; 2018.
15. Powles T, Robinson D, Stebbing J, et al. Highly active antiretroviral therapy and the incidence of non-AIDS-defining cancers in people with HIV infection. *J Clin Oncol*. 2009;27:884-90.
16. van Leeuwen MT, Vajdic CM, Middleton MG, et al. Continuing declines in some but not all HIV-associated cancers in Australia after widespread use of antiretroviral therapy. *AIDS*. 2009;23:2183-90.
17. Park LS, Tate JP, Sigel K, et al. Time trends in cancer incidence in persons living with HIV/AIDS in the antiretroviral therapy era: 1997-2012. *AIDS*. 2016;30:1795-806.
18. Ribeiro S, Glass D, Bataille V. Genetic epidemiology of melanoma. *Eur J Dermatol*. 2016;26:335-9.
19. Lanoy E, Dores GM, Madeleine MM, et al. Epidemiology of nonkeratinocytic skin cancers among persons with AIDS in the United States. *AIDS*. 2009;23:385-93.
20. Godbole SV, Nandy K, Gauniyal M, et al. HIV and cancer registry linkage identifies a substantial burden of cancers in persons with HIV in India. *Medicine (Baltimore)*. 2016;95:e4850.
21. Biggar RJ, Kirby KA, Atkinson J, et al. Cancer risk in elderly persons with HIV/AIDS. *J Acquir Immune Defic Syndr*. 2004;36:861-8.
22. Lanoy E, Costagliola D, Engels EA. Skin cancers associated with HIV infection and solid-organ transplantation among elderly adults. *Int J Cancer*. 2010;126:1724-31.
23. Omland SH, Ahlström MG, Gerstoft J, et al. Risk of skin cancer in patients with HIV: a Danish nationwide cohort study. *J Am Acad Dermatol*. 2018;79:689-95.
24. Stein L, Urban MI, O'Connell D, et al. The spectrum of human immunodeficiency virus-associated cancers in a South African black population: results from a case-control study, 1995-2004. *Int J Cancer*. 2008;122:2260-5.
25. Park LS, Tate JP, Rodriguez-Barradas MC, et al. Cancer incidence in HIV-infected versus uninfected veterans: comparison of cancer registry and ICD-9 code diagnoses. *J AIDS Clin Res*. 2014;5:1000318.
26. Hernández-Ramírez RU, Shiels MS, Dubrow R, Engels EA. Cancer risk in HIV-infected people in the USA from 1996 to 2012: a population-based, registry-linkage study. *Lancet HIV*. 2017;4:e495-e504.
27. Olsen CM, Knight LL, Green AC. Risk of melanoma in people with HIV/AIDS in the pre and post-HAART eras: a systematic review and meta-analysis of cohort studies. *PLoS One*. 2014;9:e95096.
28. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM. Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. *Lancet*. 2007;370:59-67.
29. Ribeiro S, Stucci LS, Marra E, et al. Effect of age on melanoma risk, prognosis and treatment response. *Acta Derm Venereol*. 2018;98:624-9.
30. Duvic M, Lowe L, Rapini RP, Rodriguez S, Levy ML. Eruptive dysplastic nevi associated with human immunodeficiency virus infection. *Arch Dermatol*. 1989;125:397-401.
31. Grob JJ, Bastuji-Garin S, Vaillant L, et al. Excess of nevi related to immunodeficiency: a study in HIV-infected patients and renal transplant recipients. *J Invest Dermatol*. 1996;107:694-7.
32. Mansh M, Aron ST. Indoor tanning and melanoma: are gay and bisexual men more at risk? *Melanoma Manag*. 2016;3:89-92.
33. Park LS, Tate JP, Sigel K, et al. Association of viral suppression with lower AIDS-defining and non-AIDS-defining cancer incidence in HIV-infected veterans: a prospective cohort study. *Ann Intern Med*. 2018;169:87-96.
34. Zucchetto A, Virdone S, Taborelli M, et al. Non-AIDS-defining cancer mortality: emerging patterns in the late HAART era. *J Acquir Immune Defic Syndr*. 2016;73:190-6.
35. Shiels MS, Copeland G, Goodman MT, et al. Cancer stage at diagnosis in patients infected with the human immunodeficiency virus and transplant recipients. *Cancer*. 2015;121:2063-71.
36. Rodrigues LK, Klencke BJ, Vin-Christian K, et al. Altered clinical course of malignant melanoma in HIV-positive patients. *Arch Dermatol*. 2002;138:765-70.

37. Ruzevick J, Nicholas S, Redmond K, et al. A patient with HIV treated with ipilimumab and stereotactic radiosurgery for melanoma metastases to the brain. *Case Rep Oncol Med*. 2013;2013:946392.
38. Meng MV, Werboff LH. Hematospermia as the presenting symptom of metastatic malignant melanoma of unknown primary origin. *Urology*. 2000;56:330.
39. Solomon RK, Lundein SJ, Hamlar DD, Pambuccian SE. Fine-needle aspiration diagnosis of unusual cutaneous neoplasms of the scalp in HIV-infected patients: a report of two cases and review of the literature. *Diagn Cytopathol*. 2001;24:186-92.
40. Fredricks JR, Bejarano PA. Primary malignant melanoma of the esophagus with separate foci of melanoma *in situ* and atypical melanocytic hyperplasia in a patient positive for human immunodeficiency virus: a case report and review of the literature. *Arch Pathol Lab Med*. 2008;132:1675-8.
41. Lyons AB, Warren MP, Ferguson C, Katdare M, Harvey VM. Oral melanoma in a gravid, HIV-positive woman. *JAAD Case Rep*. 2015;1:120-2.
42. Giles K, Bilong Y, Arlette N, Chantal N, Lucienne BA. Orbital exenteration in immunodeficiency virus-infected patients. *Clin Ophthalmol*. 2016; 10:2055-9.
43. Haskins CP, Nurkic S, Fredenburg KM, Dziegielewski PT, Mendenhall WM. Primary orbital melanoma treated with orbital exenteration and postoperative radiotherapy: a case report and review of the literature. *Head Neck*. 2018;40:E17-20.
44. Lau RP, Chiaffarano J, Alexander M, et al. Primary anorectal mucosal melanoma detected by anorectal cytology. *Diagn Cytopathol*. 2017;45:452-5.
45. Massi D, Borgognoni L, Reali UM, Franchi A. Malignant melanoma associated with human immunodeficiency virus infection: a case report and review of the literature. *Melanoma Res*. 1998;8:187-92.
46. Aboulafia DM. Malignant melanoma in an HIV-infected man: a case report and literature review. *Cancer Invest*. 1998;16:217-24.
47. Pereira F, Carey W, Shibata H, Burnier MN Jr, Wang B. Multiple nevoid malignant melanomas in a patient with AIDS: the role of proliferating cell nuclear antigen in the diagnosis. *J Am Acad Dermatol*. 2002;47:S172-4.
48. Ribeiro S, Gualano MR, Osella-Abate S, et al. Association of histologic regression in primary melanoma with sentinel lymph node status: a systematic review and meta-analysis. *JAMA Dermatol*. 2015;151:1301-7.
49. Gupta V, Patra S, Arava S, Sethuraman G. Hidden acral lentiginous melanoma with cutaneous metastases masquerading as Kaposi's sarcoma in an HIV-positive Indian man. *BMJ Case Rep*. 2016;2016:pii: bcr2015213529.
50. Sass U, Kolivras A, André J. Malignant "animal-type" melanoma in a seropositive African man. *J Am Acad Dermatol*. 2006;54:547-8.
51. Faries MB, Thompson JF, Cochran AJ, et al. Completion dissection or observation for sentinel-node metastasis in melanoma. *N Engl J Med*. 2017;376:2211-22.
52. Ankeny JS, Labadie B, Luke J, et al. Review of diagnostic, prognostic, and predictive biomarkers in melanoma. *Clin Exp Metastasis*. 2018;35:487-93.
53. Chagan-Yasutan H, Saitoh H, Ashino Y, et al. Persistent elevation of plasma osteopontin levels in HIV patients despite highly active antiretroviral therapy. *Tohoku J Exp Med*. 2009;218:285-92.
54. Pemberton LA, Brew BJ. Cerebrospinal fluid S-100beta and its relationship with AIDS dementia complex. *J Clin Virol*. 2001;22:249-53.
55. Hayes AJ, Maynard L, Coombes G, et al. Wide versus narrow excision margins for high-risk, primary cutaneous melanomas: long-term follow-up of survival in a randomised trial. *Lancet Oncol*. 2016;17:184-92.
56. Kim H, Ronai ZA. HIV drug to aid melanoma therapies? *Cancer Cell*. 2016;29:245-6.
57. Dyck L, Mills KHG. Immune checkpoints and their inhibition in cancer and infectious diseases. *Eur J Immunol*. 2017;47:765-79.
58. Velu V, Shetty RD, Larsson M, Shankar EM. Role of PD-1 co-inhibitory pathway in HIV infection and potential therapeutic options. *Retrovirology*. 2015;12:14.
59. Evans VA, van der Sluis RM, Solomon A, et al. Programmed cell death-1 contributes to the establishment and maintenance of HIV-1 latency. *AIDS*. 2018;32:1491-7.
60. Chang E, Sabichi AL, Kramer JR, et al. Nivolumab treatment for cancers in the HIV-infected population. *J Immunother*. 2018;41:379-83.
61. Ostios-Garcia L, Faig J, Leonardi GC, et al. Safety and efficacy of PD-1 inhibitors among HIV-positive patients with non-small cell lung cancer. *J Thorac Oncol*. 2018;13:1037-42.
62. Gill AL, Green SA, Abdullah S, et al. Programmed death-1/programmed death-ligand 1 expression in lymph nodes of HIV infected patients: results of a pilot safety study in rhesus macaques using anti-programmed death-ligand 1 (Avelumab). *AIDS*. 2016;30:2487-93.
63. Rallón N, García M, García-Samaniego J, et al. Expression of PD-1 and Tim-3 markers of T-cell exhaustion is associated with CD4 dynamics during the course of untreated and treated HIV infection. *PLoS One*. 2018;13:e0193829.
64. Burke MM, Kluger HM, Golden M, et al. Case report: response to ipilimumab in a patient with HIV with metastatic melanoma. *J Clin Oncol*. 2011;29:e792-4.
65. Davar D, Wilson M, Pruckner C, Kirkwood JM. PD-1 blockade in advanced melanoma in patients with hepatitis C and/or HIV. *Case Rep Oncol Med*. 2015;2015:737389.
66. Wightman F, Solomon A, Kumar SS, et al. Effect of ipilimumab on the HIV reservoir in an HIV-infected individual with metastatic melanoma. *AIDS*. 2015;29:504-6.
67. Tomlitz D, Hein R, Biedermann T, Kohlmeyer J. Treatment of a patient with HIV and metastatic melanoma with consecutive ipilimumab and nivolumab. *J Eur Acad Dermatol Venereol*. 2018;32:e26-e28.
68. Gay CL, Bosch RJ, Ritz J, et al. Clinical trial of the anti-PD-L1 antibody BMS-936559 in HIV-1 infected participants on suppressive antiretroviral therapy. *J Infect Dis*. 2017;215:1725-33.
69. Wacleche VS, Landay A, Routy JP, Ancuta P. The th17 lineage: from barrier surfaces homeostasis to autoimmunity, cancer, and HIV-1 pathogenesis. *Viruses*. 2017;9:???
70. Anderson R, Rapoport BL. Immune dysregulation in cancer patients undergoing immune checkpoint inhibitor treatment and potential predictive strategies for future clinical practice. *Front Oncol*. 2018;8:80.
71. Scully EP, Rutishauser RL, Simoneau CR, et al. Inconsistent HIV reservoir dynamics and immune responses following anti-PD-1 therapy in cancer patients with HIV infection. *Ann Oncol*. 2018;29:2141-2.
72. Guihot A, Marcellin AG, Massiani MA, et al. Drastic decrease of the HIV reservoir in a patient treated with nivolumab for lung cancer. *Ann Oncol*. 2018;29:517-8.
73. Le Garff G, Samri A, Lambert-Niclot S, et al. Transient HIV-specific T cells increase and inflammation in an HIV-infected patient treated with nivolumab. *AIDS*. 2017;31:1048-51.
74. Hsieh E, Yin MT. Continued interest and controversy: vitamin D in HIV. *Curr HIV/AIDS Rep*. 2018;15:199-211.
75. Stucci LS, D'Oronzo S, Tucci M, et al. Vitamin D in melanoma: controversies and potential role in combination with immune check-point inhibitors. *Cancer Treat Rev*. 2018;69:21-8.
76. Hoffmann C, Horst HA, Weichenthal M, Hauschild A. Malignant melanoma and HIV infection aggressive course despite immune reconstitution. *Onkologie*. 2005;28:35-7.
77. Saba NS, George TJ Jr, Boulmay BC. Adjuvant high-dose interferon- α for resected melanoma in a patient with HIV infection. *Oncologist*. 2010;15:695-8.