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Introduction

In 1981, the first case of AIDS was reported in the 
world. 40 years have passed and great progress has 
been made in both basic and clinical research on 
AIDS. In particular, antiretroviral therapy (ART) is wide-
ly used. ART inhibits HIV replication and reduces the 
mortality of people living with HIV (PLWH). However, 
PLWH still have a higher risk of cancer development 
and a lower rate of cancer survival than non-HIV in-
fected individuals1. Before the advent of ART, AIDS-
defining cancers (ADCs) such as Kaposi’s sarcoma 
(KS), cervical cancer, and non-Hodgkin’s lymphoma 
(HL) occurred very frequently. With the wide use of 
ART, the incidence of ADCs decreased significantly, 
but the incidence of non-AIDS-defined cancers 

(NADCs) increased, such as lung cancer, hepatocel-
lular carcinoma, and HL2. Nowadays, malignancies 
have become one of the leading causes of death in 
PLWH3-5. Therefore, there is an urgent need for strate-
gies to prevent and control cancers in PLWH, and 
understanding the mechanisms by which HIV increas-
es cancer incidence is certainly essential. Here, we 
summarize four possible mechanisms of increased 
tumorigenesis in PLWH: immunosuppression, onco-
genic viral infection, chronic infection and inflamma-
tory damage, and the direct role of HIV.

Immunodeficiency

Immunodeficiency is a recognized mechanism that 
explains a higher risk of cancer incidence in PLWH 
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(Fig. 1). Immunodeficiency compromises immune sur-
veillance. Numerous studies have demonstrated a 
negative correlation between CD4+T cell count and the 
risk of ADC and NADCs1-3. People with reduced CD4 
cell counts are not able to produce an effective CD4+T 
cell response, nor are they able to produce immuno-
globulin to deal with potential infections. Impaired T cell 
function leads to an increased susceptibility to human 
papillomavirus (HPV) infection and HPV associated ma-
lignancies4. Studies have shown that CD4+ T cells and 
macrophages are necessary to eliminate senescent 
cells, which is essential for cancer prevention and re-
gression5. Without a functioning immune system, senes-
cent cells will promote tumor growth and metastasis, 
although the underlying mechanism remains to be elu-
cidated6. In addition, the decrease in natural killer (NK) 
cell-mediated immune surveillance in PLWH is mainly 

due to the long-term consequences of chronic HIV in-
fection. Although the administration of inhibitory cART 
can partially restore the properties of NK cells, NK cells 
still undergo many functional and phenotypic changes 
related to HIV infection. As is well known, natural cyto-
toxicity receptors (NCR), natural-killergroup2, memberD 
(NKG2D), and CD16 receptors are involved in effective 
NK cell activation and cytotoxicity7. In chronic HIV in-
fection and cancer, the recognition of abnormal cells 
by NK cells through above receptors is defective. This 
is mainly because long-term exposure to their respec-
tive ligands resulted in downregulation of NCR, NKG2D, 
and CD16 on NK cells8. Besides, women living with HIV 
are more likely to progress from a low-grade disease 
to a more severe one9. One potential reason is that HIV 
can inhibit cytotoxic T lymphocytes (CTL)-mediated cy-
totoxic responses; this inhibits the body’s ability to clear 

Figure 1. Immune mechanism of a higher cancer risk in PLWH. Chronic HIV infection leads to a decrease in the number of CD4 + T cells 
and impaired function so that the body cannot produce effective cellular immunity, nor can it produce immunoglobulins to deal with poten-
tial infections. This will make the body more susceptible to certain infections of cancer-causing viruses. In addition, CD4 + T cells and 
macrophages are essential for eliminating senescent cells. In an abnormal immune system, senescent cells will promote tumor growth and 
metastasis. In addition, long-term exposure to HIV will lead to down-regulation of NCR, NKG2D and CD16 on NK cells, and thus NK cell 
recognition of abnormal cells through above receptors is defective. Another potential reason is that HIV can inhibit the cytotoxic response 
mediated by CTL. This inhibits the body’s ability to eliminate abnormal cells. Chronic HIV infection can cause immunosuppression through 
the above-mentioned mechanisms and increase the risk of cancer.
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abnormal cells, which, in turn, reduces the host’s abil-
ity to block progression from HPV to advanced abnor-
mal cytology (HSIL)10. Studies have shown that HIV 
co-infection reduces the clearance of HBV and HCV, 
increases the risk of chronic HCV infection and reacti-
vation of latent HCV infection. This is all due to compro-
mised NK cell activity in HIV infection11-13. Increased 
HBV/HCV viral load in HIV co-infection accelerates tu-
mor progression through the expression of HBV/HCV 
viral proteins that are directly involved in cell transfor-
mation14. For example, HBV infection increases the 
chance of insertion mutations and thus the incidence 
of tumorgenesis. HIV-induced immune suppression is 
a potential mechanism by which HIV accelerates the 
progression of HPV infection to cervical cancer. A study 
of 151 women in Brazil found that HPV eradication took 
a significantly longer time in HIV-positive women (7.0 ± 
3.8 months) than in negative women (5.9 ± 3.0 months) 

(p < 0.05). This suggests that HIV-mediated immune 
dysfunction can lead to a longer duration of HPV 
infection in the cervix and subsequent oncogenic 
transformation15. A  prospective study by Konopicki et 
al. showed that CD4+ count at more than 500 cells/ML 
for 18  months in HIV-positive women was associated 
with a reduced risk of high-risk HPV infection (odds 
ratio, 0.88; 95% CI: 82-0.94; p = 0.0002)16.

However,  HIV-infected patients with good immune 
reconstitution (CD4+T cell count > 500/ml) still have a 
higher risk of HL and liver cancer than uninfected 
people17. Similarly, the incidence of anal cancer in 
PLWH is increased despite ART18,19.

Viral infection

In the pathogenesis of AIDS-related malignancies, 
the complex interactions among different viruses or 

Figure 2. The mechanism of tumorgenesis in HPV/HIV co-infected patients. HIV proteins (Tat and gp120) bind to cytokines (tumor necrosis 
factor-α, interferon-γ, and interferon-α) produced by HIV-infected cells. This leads to the separation of tight junctions along epithelial cells, 
which increases the penetration of HPV into the basal epithelial cells. HPV carcinogenesis involves multiple pathways, including apoptotic 
pathways and the pathways that regulate cell cycle or interfere with tumor-associated gene expression.
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concurrent multiple viral infections are important. 
Most ADCs and NADCs are related to viral infec-
tions20. Studies show that 40% of malignant tumors in 
PLWH are related to viral infections while this number 
is only 5% in the general population21,22. This may be 
because HIV has the same transmission route as 
some cancer-causing viruses, or because HIV sup-
presses host immunity making hosts susceptible to 
viral infections. It is worth noting that studies have 
shown that HIV proteins (Tat and gp120) together with 
the cytokines produced by HIV-infected cells (tumor 
necrosis factor-α, interferon-γ, and interferon-α) leads 
to compromised tight junctions along the epithelium 
and increased penetration of HPV to its target cells, 
the basal epithelial cells23. On the other hand, due to 
immunodeficiency women with HIV are particularly 
susceptible to HPV infection. The carcinogenesis of 
oncogenic viruses involves a variety of pathways, and 
they include the apoptotic pathway and the pathways 
that regulate cell cycle or interfere with the expression 
of tumor-related genes (Fig. 2)24. Recent studies have 
shown that certain miRNAs expressed by oncogenic 
viruses may promote the development of malignant 
tumors25,26. For example, EBV infection is associated 
with various types of lymphomas. The targets of EBV-
encoded miR-BHRF1-1 include the tumor suppressor 
gene p53, and another miR-BART1 encoded by EBV 
is predicted to target Bcl-2, an anti-apoptotic gene. 
miRNAs synthesized by EBV either inhibit their trans-
lation or induce their degradation by binding to the 
mRNA targets. So EBV produces both miRNAs that 
may be pro-oncogenic (miR-BHRF1-1that inhibits p53 
translation) and anti-oncogenic (miR-BART1 that in-
hibits Bcl-2 translation). EBV oncogenesis is the result 
of a trade-off between strict controls of cell prolifera-
tion signals27. EBV may also cause insertional muta-
tions. Recent studies have shown that the integration 
of EBV occurs less randomly28. This non-random in-
tegration may be one of the factors leading to the 
onset of certain H-NHL because development of ma-
lignant tumors usually requires accumulating abnor-
mal proliferation.

Chronic infection and inflammatory injury

Chronic inflammation greatly promotes cancer in 
PLWH. HIV infection induces a series of immune 
activation events29. Even with long-term virological 
suppression, inflammatory markers in HIV-infected in-
dividuals are still at a high level19. Studies have shown 
that the inflammatory response and cytokines induced 

by HIV infection may aggravate HBV/HCV-associated 
liver diseases30,31. HIV facilitates microbes in the intes-
tine to migrate to the liver, which is reported to accel-
erate liver fibrosis14 and therefore may play a role in 
the development of HBV/HCV associated hepatocel-
lular carcinoma. Besides, some reports indicate that in 
patients with HBV/HIV co-infection, HIV-induced im-
munosuppression and persistent inflammation facili-
tates robust HBV/HCV replication and chronic viral 
hepatitis, which helps select out the viruses containing 
carcinogenicity enhanced mutations and subsequently 
increase the risk of liver cancer in these patients32,33. 
Besides, chronic antigen stimulation and inflammation 
will lead to polyclonal or oligoclonal proliferation of 
dysregulated B lymphocytes, which is also conducive 
to the abnormal secretion of cytokines such as IL-6 and 
IL-10 that promote the growth of B cells34. There are 
several mechanisms of chronic B cell activation in 
PLWH. First, chronic antigen stimulation of B cells in 
HIV infection itself may promote the excessive activa-
tion and transformation of B cells. Second, genetic 
mutations, chromosomal rearrangements (BCL-6 and 
c-MYC), and deletions (6q) in B cells have been shown 
to be related to chronic B cell activation due to chron-
ic stimulation in viral infections (including EBV, HPV, 
and HCV) as well as mutations in Ras and p53 genes. 
Another proposed mechanism involves HIV-infected 
macrophages that provide B cells with stimulating sig-
nals leading to B cell activation and malignant trans-
formation35. Finally, leakage of bacterial components 
and products from intestine into blood (microbial trans-
location) is considered a potential cause of chronic 
immune activation in PLWH35. These factors lead to 
continuous stimulation of B cells. Chronic polyclonal B 
cell activation is very important in the pathogenesis of 
AIDS associated non-Hodgkins lymphoma36. Besides, 
chronic B cell activation also contributes to B cell dys-
function and thus impairs de novo antibody responses, 
which may lead to the continuing growth of AIDS as-
sociated non- HL (Fig. 3)37.

Recently, the significance of inflammatory biomark-
ers in predicting tumorigenesis in PLWH has been 
confirmed by a cohort study38. HIV proteins can in-
duce the production of reactive oxygen species 
(ROS)39. The ROS themselves are weak carcinogens 
but are strong tumor promoters. Overproduction of 
ROS during an extended period of time leads to spon-
taneous tumor formation39, indicating that ROS also 
participate in tumor formation in PLWH. A  study 
showed that transient expression of HIV-1 reverse 
transcriptase (RT) in mammalian cells induced the 
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production of ROS40. The effect of reverse transcrip-
tion-induced ROS production on the growth and me-
tastasis of 4T1luc2 cells, the mouse breast adenocar-
cinoma cells, was studied in vitro and in vivo41. The 
cells were made to express a panel of HIV-1 RT vari-
ants, and stable expression of RT in these cells was 
found leading to increased production of ROS that 
even exceeded the level observed in parental tumor 
cells. RT-expressing cells showed an enhanced mi-
gration activity and were transformed into a mesen-
chymal phenotype with increased expression of the 
transcription factors Twist and snail that coordinate 
as epithelial-mesenchymal transition (EMT)40. In syn-
geneic immunocompetent mice, these properties of 
RT-expressing cells lead to an enhanced tumor 

growth and metastatic activity. At the same time, HIV-
1 infection can block the expression of NADH: ubiqui-
none oxidoreductase subunit A6 (NDUFA6) protein of 
the complex I subunit on the mitochondrial mem-
brane, thereby directly reducing the activity of com-
plex I42. Inhibition of complex I in turn increased the 
production of ROS. ROS can then activate nuclear 
factor kappa-B (NF-κB) and upregulate the expres-
sion of HIV-1 viral genes through HIV-1 long terminal 
repeats43.

A recent study suggests that HIV is associated with 
an increased prevalence of clonal hematopoiesis of 
indeterminate potential (CHIP). CHIP is a recently 
recognized risk factor for hematologic malignancies. 
It is not entirely clear what causes the increased 

Figure 3. The mechanism of chronic B-cell activation in HIV-1 infection. There are several mechanisms of chronic B-cell activation in HIV-
1 infection. First, chronic antigenic stimulation and inflammation triggered by HIV infection may lead to dysregulated B-lymphocyte prolif-
eration. In addition, abnormal secretion of cytokines such as IL-6 and IL-10 by HIV-1 promotes B-cell growth. Second, chronic antigenic 
stimulation of B cells by HIV itself may promote excessive activation and transformation of B cells. Third, chronic stimulation by other viral 
infections (including EBV, HPV, and HCV) may lead to mutations in B cells, as well as mutations in Ras and p53 genes. Fourth, macro-
phages provide stimulatory signals to B cells leading to B cell activation and malignant growth. Finally, leakage of bacterial components 
and products from the gut into the bloodstream (microbial translocation) is thought to be a potential cause of chronic immune activation in 
HIV infection. These factors in combination lead to continuous stimulation of B cells. Chronic polyclonal B-cell activation may eventually 
lead to the development of AIDS-related non-HL.
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prevalence of CHIP in PLWH. One plausible reason is 
that HIV infection accelerates biological aging and 
leads to chronic low-grade inflammation, which pro-
vides a favorable microenvironment for the develop-
ment of CHIP44. Another possible cause is the direct 
effect of ART. The real contribution of these factors to 
CHIP risk requires further studies. Another study 
showed that HIV infection led to a greater risk of my-
elodysplastic syndromes (MDS), which are precursors 
of myeloid malignancies45. There is evidence that in-
flammatory signals promote the development of MDS46. 
The inflammatory environment induced by HIV infection 
may favor the growth and development of MDS-initiat-
ing cells. It is worth of noting that CHIP has been 
shown to be associated with the development of 
MDS47.

Direct action of HIV

More and more pieces of evidence show that HIV 
directly participates in the development of malignant 
tumors. The interference with the apoptotic pathway by 

HIV may be related to the pathogenesis of tumors. In 
some studies, Tat, the transactivator protein of HIV, has 
shown carcinogenic effects in vitro and in vivo. For 
example, Tat was proven contributing to the pathogen-
esis of HIV-related KS48,49. Transgenic expression of 
Tat in mice contributes to the formation of KS-like le-
sions50. Studies revealed that Tat affected the life cycle 
of KS-associated herpesvirus (KSHV) and promoted 
the development of HIV-related KS by inducing cell 
proliferation and pro-inflammatory gene expression. 
Besides, interaction between Tat and AKT serine/thre-
onine kinase 1 (AKT1)/NF-κBp65 (RELA) inhibited 
apoptosis and DNA repair of mutated cells51,52. Activa-
tion of certain survival genes by NF-kB may not only 
help HIV spread but also inadvertently promote the 
growth and proliferation of cancerous cells. Studies 
also show that extracellular Tat can enter uninfected 
cells and trans-activate cellular genes such as tumor 
necrosis factor, interleukin (IL)-2 and IL-653. Tat is 
positively charged and can bind negatively-charged 
molecules such as vascular endothelial growth factor 
receptor 2 (VEGFR-2), an angiogenetic factor. With this 

Figure 4. The mechanism how HIV Tat promotes tumorigenesis. HIV Tat interacts with AKT1 and RELA (part of NF-kB). On the one hand, 
this interaction inhibits cell apoptosis and DNA repair. On the other hand, it activates survival genes to help HIV spread between cells and 
promote cell growth. In addition, Tat binds to VEGFR-2 due to its electronic property and promotes angiogenesis. Tat also interacts with 
and enters B lymphocytes causing dysfunction of pRb2/p130 tumor suppressor protein in the cells.
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effect, Tat is likely to cause abnormal angiogenesis 
induced by KSHV during the formation of KS. Tat may 
also interact with and enter B lymphocytes leading to 
the deregulation of pRb2/p130 tumor suppressor pro-
tein (Fig. 4)22,54.

HIV Nef was found having a similar effect as Tat: Nef 
promoted the angiogenesis and tumorigenesis of 
KSHV by manipulating the AKT signaling pathway55. 
In vivo experiments showed that Nef could promote 
KSHV Viral IL-6 (vIL-6)-induced angiogenesis and tu-
morigenesis, and KSHV vIL-6 and Nef cooperated with 
KSHV K1 (A unique transmembrane glycoprotein en-
coded by the KSHV genome) to promote the prolifera-
tion and microtubule production of human umbilical 
cord vascular endothelial cells56,57.

Another study demonstrated that Nef could repro-
gram the initial stage during lung cancer develop-
ment by manipulating cellular metabolism, cell sur-
vival and invasion, and angiogenesis. Nef also 
caused decreased expression of dicer 1 ribonucle-
ase type  III (DICER1) and Argonaute (AGO) and a 
subsequent decrease of mature miRNA in lung cells. 

Dicer, encoded by the DICER1 gene in the human 
body, is an RNase that plays an important role in RNA 
interference and belongs to type III RNase (RNase III). 
AGO protein is a key protein in RNA-mediated post-
transcriptional gene regulation, providing an anchor 
site for miRNA to achieve the purpose of degrading 
target mRNA or inhibiting translation. miRNAs play a 
key role in cell signal transduction and homeostasis, 
and act like oncogenes or tumor suppressor genes58. 
Their dis-regulation promotes tumorigenesis. Besides, 
Nef inhibits the apoptotic function of P53 by reducing 
its half-life and interfering with its DNA binding activ-
ity. These studies indicate that Nef is directly involved 
in preventing cell death and promoting tumor progres-
sion (Fig. 5)58.

It was recently discovered that variants of HIV 
p17 protein carried by certain HIV-infected patients 
with lymphoma have an enhanced B cell clonal ac-
tivity. HIV p17 variants were secreted from infected 
cells and accumulated in lymphoid tissues, mainly 
in the germinal centers of lymph nodes. These vari-
ants may be the key microenvironmental factors that 

Figure 5. The mechanism how HIV Nef promotes tumorigenesis. Nef promotes the occurrence of cancers through following mechanisms. 
KSHV vIL-6 and 2.117 mmNef act synergistically with KSHV K1 to promote blood vessel formation. Nef also caused a decrease in the 
expression of DICER1 and AGO (Argonaute), and subsequently a decrease in mature miRNA level in the cells. This dysregulation leads to 
abnormal gene regulation and promotes tumorigenesis. Besides, Nef inhibits the apoptotic function of P53 by reducing its half-life and 
interfering with its DNA binding activity.
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promote the development of lymphoma59,60. Studies 
have shown that transgenic mice with genetically 
modified HIV-1 provirus that lacks a part of the gag-
pol region and over-expresses p17, gp120, and Nef 
developed B-cell lymphoma. These all support the 
pathogenic role of abnormal expression of HIV pro-
teins and B cell-stimulating factors in lymphoid tu-
morigenesis61. P17 produces a microenvironment 
that promotes lymph angiogenesis and the inva-
siveness of human triple-negative breast cancer 
cells60. The HIV-1 glycoprotein gp120 stimulates 
glycolysis41. Increased glycolysis is a feature of 
most tumors and supports unrestricted proliferation 
and invasion of tumor cells. Wherever it is ex-
pressed on viral particles, the surface of infected 
cells or as a virus-free soluble protein, gp120 pro-
motes the proliferation, migration, and survival of 
tumor cells. Exposure of the oral keratinocytes from 
HIV-negative individuals to Tat or gp120 alone in-
duces EMT. Also, introduction of Tat into human 
cervical cancer cells resulted in the up-regulation 
of HPV E6 but p53 level was reduced. HIV viral 
protein-experienced keratinocytes can be trans-
formed by HPV 16 and then demonstrate the prop-
erty of loss of cell adhesion and increased prolif-
eration and migration40,41. These studies indicate 
that urogenital mucosal EMT driven by HIV protein 
may be one of the mechanisms by which HIV-1en-
hances the carcinogenic effect of HPV oncopro-
teins.

Conclusion

ART has transformed HIV infection from a fatal dis-
ease into a chronic disease, but at the same time 
makes cancer one of the leading causes of death in 
this patient population. Immunodeficiency is the ear-
liest described mechanism, and it increases the inci-
dence of various cancers. Furthermore, HIV shares 
the same transmission pathway as certain cancer-
causing viruses, or because HIV infection suppress-
es host immunity, making PLWH vulnerable to viral 
infection. The oncogenic effects of viruses involve 
multiple pathways, including the apoptotic pathway 
and pathways that regulate the cell cycle or interfere 
with tumor-associated gene expression. Besides, 
chronic inflammation also greatly promotes carcino-
genesis31,62. The inflammatory response induced by 
HIV may aggravate HBV or HCV associated liver dis-
eases31. Microbial translocation from the intestine to 
the liver in HIV infection accelerates liver fibrosis14. 

Therefore, above factors may contribute to the devel-
opment of hepatocellular carcinoma in HIV infection, 
especially in the context of HBV/HCV infection. Po-
tential chronic antigen stimulation and inflammation 
is also thought to relate to dysregulated polyclonal or 
oligoclonal proliferation of B lymphocytes. Chronic 
polyclonal B cell activation is very important in the 
pathogenesis of cancer because chronic B cell acti-
vation contributes to not only the occurrence of HIV 
associated non-Hodgkins lymphoma but also B cell 
dysfunction and subsequent impaired de novo anti-
body response. It is reasonable to speculate that 
suppression of HIV may inhibit microbial transloca-
tion and subsequent immune activation despite that 
there is currently no research directly relating this to 
the risk of HIV associated non-Hodgkin lymphoma. 
Till now more and more evidences demonstrate that 
HIV directly participates in the development of ma-
lignancies, which probably is due to the direct action 
of HIV-encoded viral proteins such as P17 variants, 
Tat, Nef and gp120. These viral proteins promote 
tumorgenesis by regulating cell cycle, promoting cell 
growth and angiogenesis, inhibiting cell apoptosis 
and DNA repair and enhancing the clonal activity of 
B cells. Recently some studies evaluated whether 
P17 variants could be used as biomarkers to more 
accurately identify those HIV-infected individuals with 
an increased risk of lymphoma62. Therefore, identify-
ing specific inhibitors that target the pathways ma-
nipulated by HIV proteins is promising. Related re-
search is ongoing and progress has been made, but 
there are still important issues that need to be re-
solved before these inhibitors can be applied clini-
cally.
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