

Malignancies in people living with HIV

Qiqiang Zhou¹, Wei Li¹, Lingbo Xia¹, Ruixiang Zou¹, Xinping Chen², and Wei Zou^{3*}

¹The First Clinical Medical College of Nanchang University; ²Department of Gynecology and Obstetrics; ³Department of Infectious Diseases. The 1st Affiliated Hospital of Nanchang University, Nanchang, China

Abstract

Almost 40 years have passed since the first case of what is known as AIDS was documented. In these 40 years, AIDS has always been a research challenge and hot spot. Researchers and scientists have made tremendous progress in basic and clinical research on HIV. In particular, the widespread use of antiretroviral therapy (ART) has made it less of a deadly disease today and more of a manageable one. In the post- ART era when ART can significantly improve the immunity of people living with HIV (PLWH) and extend their life, the incidence of non-AIDS-defined cancers is greatly increased. Factors related to immunosuppression do not seem to explain this problem sufficiently. This suggests that besides immunosuppression, there are other mechanisms that may also contribute to the increased incidence of cancer in PLWH. Here, we summarized and discussed four possible mechanisms for the increased incidence of cancers in PLWH: immunosuppression, oncogenic viral infection, chronic infection, inflammatory damage, and the direct impact of HIV.

Keywords

Chronic inflammation. HIV. Immunodeficiency. Malignancy. Virus infection.

Introduction

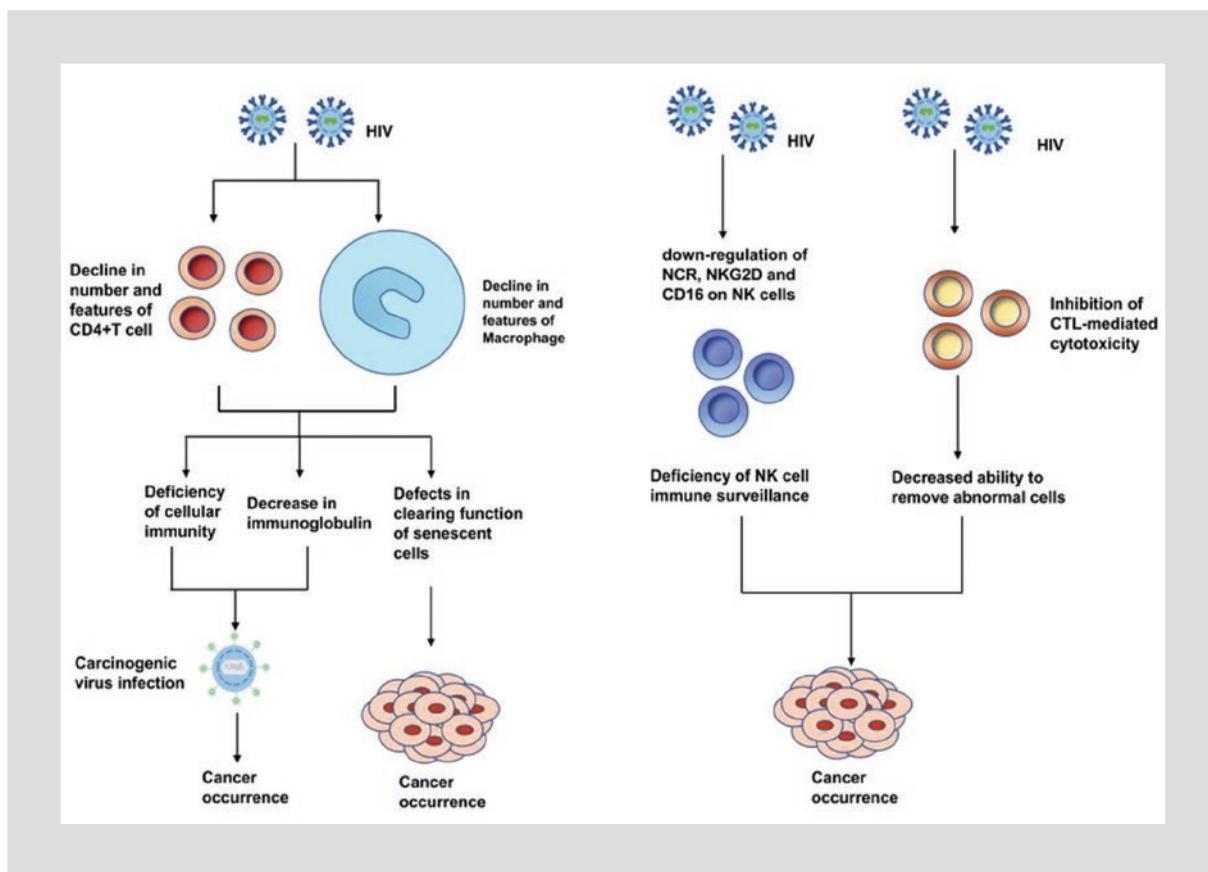
In 1981, the first case of AIDS was reported in the world. 40 years have passed and great progress has been made in both basic and clinical research on AIDS. In particular, antiretroviral therapy (ART) is widely used. ART inhibits HIV replication and reduces the mortality of people living with HIV (PLWH). However, PLWH still have a higher risk of cancer development and a lower rate of cancer survival than non-HIV infected individuals¹. Before the advent of ART, AIDS-defining cancers (ADCs) such as Kaposi's sarcoma (KS), cervical cancer, and non-Hodgkin's lymphoma (HL) occurred very frequently. With the wide use of ART, the incidence of ADCs decreased significantly, but the incidence of non-AIDS-defined cancers

(NADCs) increased, such as lung cancer, hepatocellular carcinoma, and HL². Nowadays, malignancies have become one of the leading causes of death in PLWH³⁻⁵. Therefore, there is an urgent need for strategies to prevent and control cancers in PLWH, and understanding the mechanisms by which HIV increases cancer incidence is certainly essential. Here, we summarize four possible mechanisms of increased tumorigenesis in PLWH: immunosuppression, oncogenic viral infection, chronic infection and inflammatory damage, and the direct role of HIV.

Immunodeficiency

Immunodeficiency is a recognized mechanism that explains a higher risk of cancer incidence in PLWH

Correspondence to:


*Wei Zou

E-mail: ieeeeif@hotmail.com

Received in original form: 26-07-2021

Accepted in final form: 15-01-2022

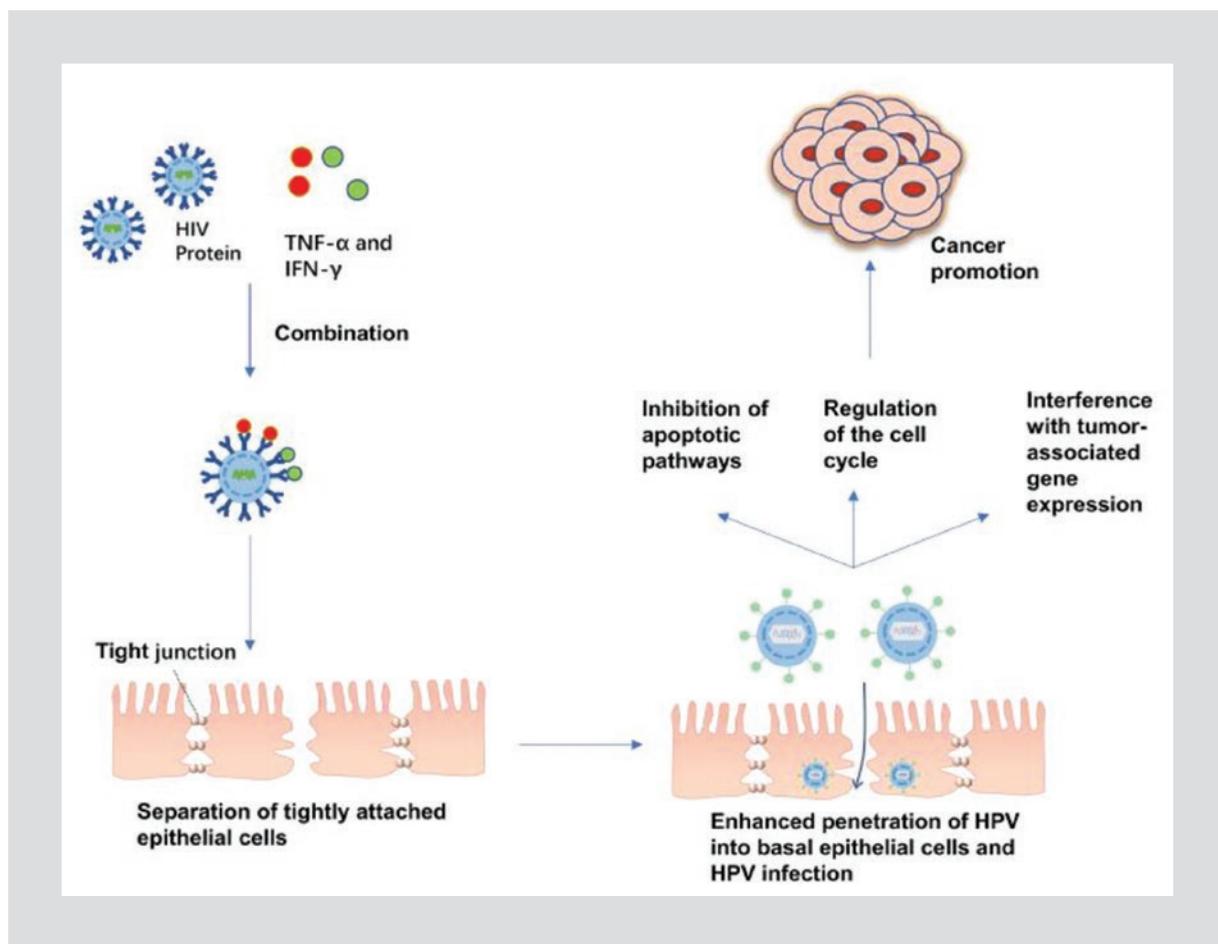

DOI: 10.24875/AIDSRev.21000057

Figure 1. Immune mechanism of a higher cancer risk in PLWH. Chronic HIV infection leads to a decrease in the number of CD4+ T cells and impaired function so that the body cannot produce effective cellular immunity, nor can it produce immunoglobulins to deal with potential infections. This will make the body more susceptible to certain infections of cancer-causing viruses. In addition, CD4+ T cells and macrophages are essential for eliminating senescent cells. In an abnormal immune system, senescent cells will promote tumor growth and metastasis. In addition, long-term exposure to HIV will lead to down-regulation of NCR, NKG2D and CD16 on NK cells, and thus NK cell recognition of abnormal cells through above receptors is defective. Another potential reason is that HIV can inhibit the cytotoxic response mediated by CTL. This inhibits the body's ability to eliminate abnormal cells. Chronic HIV infection can cause immunosuppression through the above-mentioned mechanisms and increase the risk of cancer.

(Fig. 1). Immunodeficiency compromises immune surveillance. Numerous studies have demonstrated a negative correlation between CD4+ T cell count and the risk of ADC and NADCs¹⁻³. People with reduced CD4 cell counts are not able to produce an effective CD4+ T cell response, nor are they able to produce immunoglobulin to deal with potential infections. Impaired T cell function leads to an increased susceptibility to human papillomavirus (HPV) infection and HPV associated malignancies⁴. Studies have shown that CD4+ T cells and macrophages are necessary to eliminate senescent cells, which is essential for cancer prevention and regression⁵. Without a functioning immune system, senescent cells will promote tumor growth and metastasis, although the underlying mechanism remains to be elucidated⁶. In addition, the decrease in natural killer (NK) cell-mediated immune surveillance in PLWH is mainly

due to the long-term consequences of chronic HIV infection. Although the administration of inhibitory cART can partially restore the properties of NK cells, NK cells still undergo many functional and phenotypic changes related to HIV infection. As is well known, natural cytotoxicity receptors (NCR), natural-killergroup2, memberD (NKG2D), and CD16 receptors are involved in effective NK cell activation and cytotoxicity⁷. In chronic HIV infection and cancer, the recognition of abnormal cells by NK cells through above receptors is defective. This is mainly because long-term exposure to their respective ligands resulted in downregulation of NCR, NKG2D, and CD16 on NK cells⁸. Besides, women living with HIV are more likely to progress from a low-grade disease to a more severe one⁹. One potential reason is that HIV can inhibit cytotoxic T lymphocytes (CTL)-mediated cytotoxic responses; this inhibits the body's ability to clear

Figure 2. The mechanism of tumorigenesis in HPV/HIV co-infected patients. HIV proteins (Tat and gp120) bind to cytokines (tumor necrosis factor- α , interferon- γ , and interferon- α) produced by HIV-infected cells. This leads to the separation of tight junctions along epithelial cells, which increases the penetration of HPV into the basal epithelial cells. HPV carcinogenesis involves multiple pathways, including apoptotic pathways and the pathways that regulate cell cycle or interfere with tumor-associated gene expression.

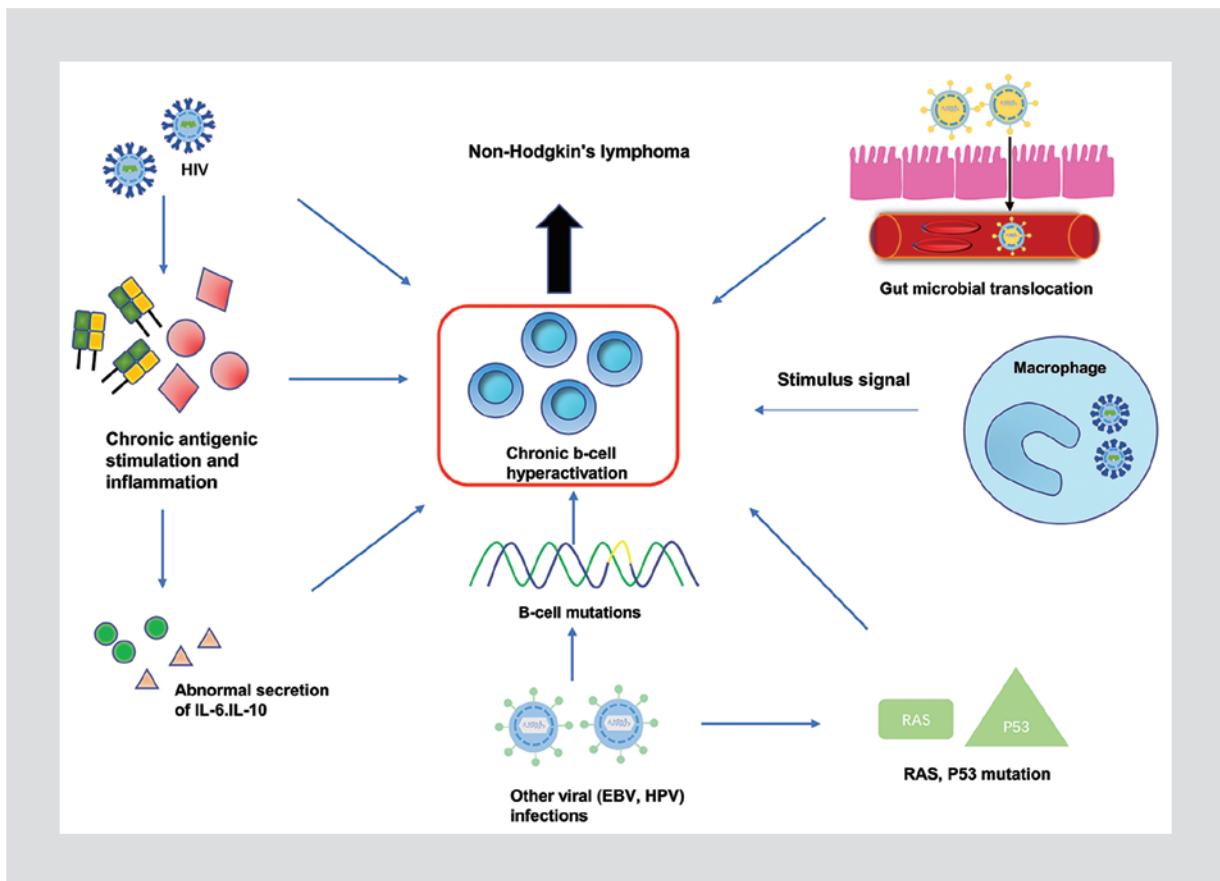
abnormal cells, which, in turn, reduces the host's ability to block progression from HPV to advanced abnormal cytology (HSIL)¹⁰. Studies have shown that HIV co-infection reduces the clearance of HBV and HCV, increases the risk of chronic HCV infection and reactivation of latent HCV infection. This is all due to compromised NK cell activity in HIV infection¹¹⁻¹³. Increased HBV/HCV viral load in HIV co-infection accelerates tumor progression through the expression of HBV/HCV viral proteins that are directly involved in cell transformation¹⁴. For example, HBV infection increases the chance of insertion mutations and thus the incidence of tumorigenesis. HIV-induced immune suppression is a potential mechanism by which HIV accelerates the progression of HPV infection to cervical cancer. A study of 151 women in Brazil found that HPV eradication took a significantly longer time in HIV-positive women (7.0 ± 3.8 months) than in negative women (5.9 ± 3.0 months)

($p < 0.05$). This suggests that HIV-mediated immune dysfunction can lead to a longer duration of HPV infection in the cervix and subsequent oncogenic transformation¹⁵. A prospective study by Konopicki et al. showed that CD4 $^{+}$ count at more than 500 cells/ML for 18 months in HIV-positive women was associated with a reduced risk of high-risk HPV infection (odds ratio, 0.88; 95% CI: 82-0.94; $p = 0.0002$)¹⁶.

However, HIV-infected patients with good immune reconstitution (CD4 $^{+}$ T cell count $> 500/\text{ml}$) still have a higher risk of HL and liver cancer than uninfected people¹⁷. Similarly, the incidence of anal cancer in PLWH is increased despite ART^{18,19}.

Viral infection

In the pathogenesis of AIDS-related malignancies, the complex interactions among different viruses or


concurrent multiple viral infections are important. Most ADCs and NADCs are related to viral infections²⁰. Studies show that 40% of malignant tumors in PLWH are related to viral infections while this number is only 5% in the general population^{21,22}. This may be because HIV has the same transmission route as some cancer-causing viruses, or because HIV suppresses host immunity making hosts susceptible to viral infections. It is worth noting that studies have shown that HIV proteins (Tat and gp120) together with the cytokines produced by HIV-infected cells (tumor necrosis factor- α , interferon- γ , and interferon- α) leads to compromised tight junctions along the epithelium and increased penetration of HPV to its target cells, the basal epithelial cells²³. On the other hand, due to immunodeficiency women with HIV are particularly susceptible to HPV infection. The carcinogenesis of oncogenic viruses involves a variety of pathways, and they include the apoptotic pathway and the pathways that regulate cell cycle or interfere with the expression of tumor-related genes (Fig. 2)²⁴. Recent studies have shown that certain miRNAs expressed by oncogenic viruses may promote the development of malignant tumors^{25,26}. For example, EBV infection is associated with various types of lymphomas. The targets of EBV-encoded miR-BHRF1-1 include the tumor suppressor gene p53, and another miR-BART1 encoded by EBV is predicted to target Bcl-2, an anti-apoptotic gene. miRNAs synthesized by EBV either inhibit their translation or induce their degradation by binding to the mRNA targets. So EBV produces both miRNAs that may be pro-oncogenic (miR-BHRF1-1 that inhibits p53 translation) and anti-oncogenic (miR-BART1 that inhibits Bcl-2 translation). EBV oncogenesis is the result of a trade-off between strict controls of cell proliferation signals²⁷. EBV may also cause insertional mutations. Recent studies have shown that the integration of EBV occurs less randomly²⁸. This non-random integration may be one of the factors leading to the onset of certain H-NHL because development of malignant tumors usually requires accumulating abnormal proliferation.

Chronic infection and inflammatory injury

Chronic inflammation greatly promotes cancer in PLWH. HIV infection induces a series of immune activation events²⁹. Even with long-term virological suppression, inflammatory markers in HIV-infected individuals are still at a high level¹⁹. Studies have shown that the inflammatory response and cytokines induced

by HIV infection may aggravate HBV/HCV-associated liver diseases^{30,31}. HIV facilitates microbes in the intestine to migrate to the liver, which is reported to accelerate liver fibrosis¹⁴ and therefore may play a role in the development of HBV/HCV associated hepatocellular carcinoma. Besides, some reports indicate that in patients with HBV/HIV co-infection, HIV-induced immunosuppression and persistent inflammation facilitates robust HBV/HCV replication and chronic viral hepatitis, which helps select out the viruses containing carcinogenicity enhanced mutations and subsequently increase the risk of liver cancer in these patients^{32,33}. Besides, chronic antigen stimulation and inflammation will lead to polyclonal or oligoclonal proliferation of dysregulated B lymphocytes, which is also conducive to the abnormal secretion of cytokines such as IL-6 and IL-10 that promote the growth of B cells³⁴. There are several mechanisms of chronic B cell activation in PLWH. First, chronic antigen stimulation of B cells in HIV infection itself may promote the excessive activation and transformation of B cells. Second, genetic mutations, chromosomal rearrangements (BCL-6 and c-MYC), and deletions (6q) in B cells have been shown to be related to chronic B cell activation due to chronic stimulation in viral infections (including EBV, HPV, and HCV) as well as mutations in Ras and p53 genes. Another proposed mechanism involves HIV-infected macrophages that provide B cells with stimulating signals leading to B cell activation and malignant transformation³⁵. Finally, leakage of bacterial components and products from intestine into blood (microbial translocation) is considered a potential cause of chronic immune activation in PLWH³⁵. These factors lead to continuous stimulation of B cells. Chronic polyclonal B cell activation is very important in the pathogenesis of AIDS associated non-Hodgkins lymphoma³⁶. Besides, chronic B cell activation also contributes to B cell dysfunction and thus impairs de novo antibody responses, which may lead to the continuing growth of AIDS associated non- HL (Fig. 3)³⁷.

Recently, the significance of inflammatory biomarkers in predicting tumorigenesis in PLWH has been confirmed by a cohort study³⁸. HIV proteins can induce the production of reactive oxygen species (ROS)³⁹. The ROS themselves are weak carcinogens but are strong tumor promoters. Overproduction of ROS during an extended period of time leads to spontaneous tumor formation³⁹, indicating that ROS also participate in tumor formation in PLWH. A study showed that transient expression of HIV-1 reverse transcriptase (RT) in mammalian cells induced the

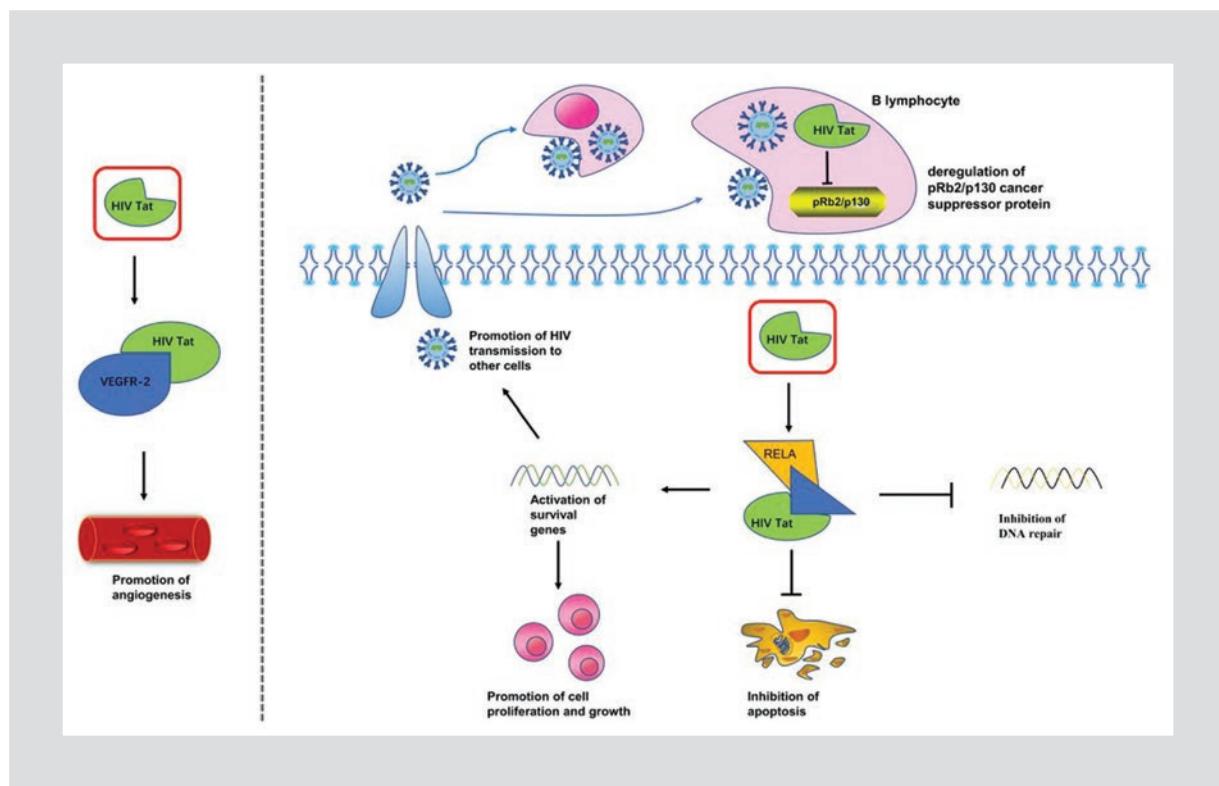
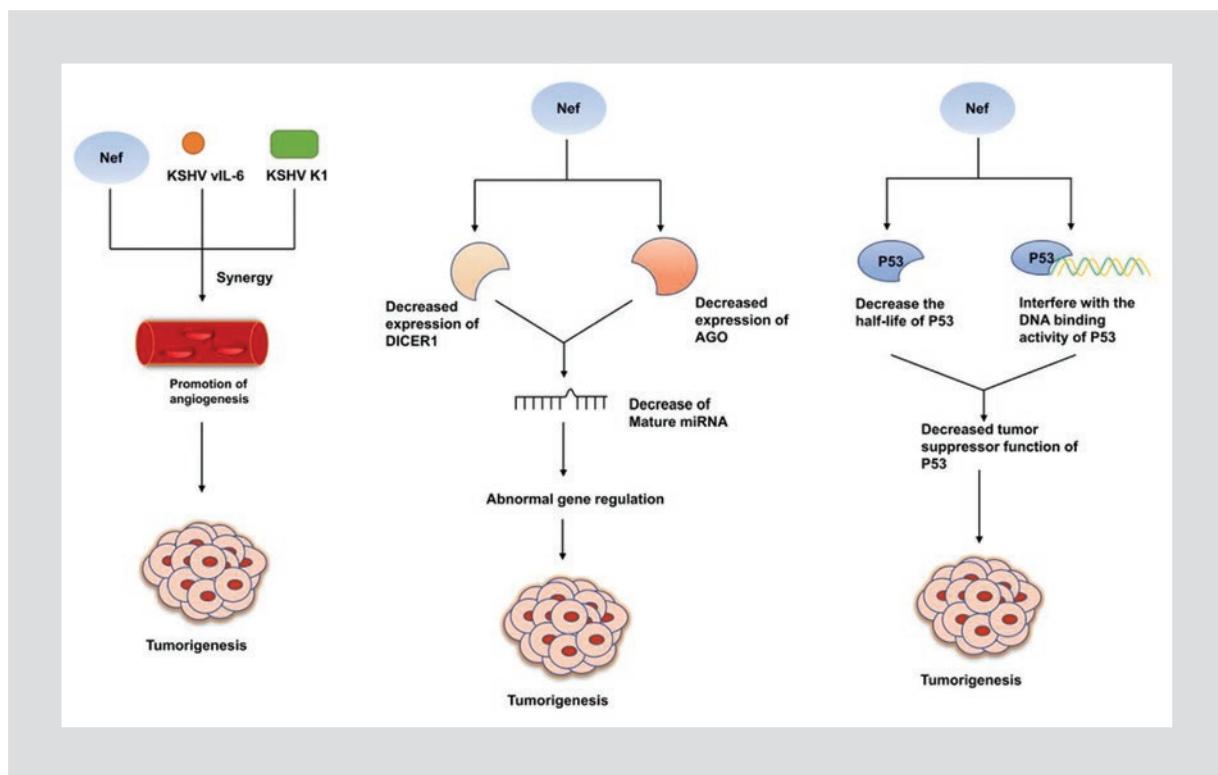


Figure 3. The mechanism of chronic B-cell activation in HIV-1 infection. There are several mechanisms of chronic B-cell activation in HIV-1 infection. First, chronic antigenic stimulation and inflammation triggered by HIV infection may lead to dysregulated B-lymphocyte proliferation. In addition, abnormal secretion of cytokines such as IL-6 and IL-10 by HIV-1 promotes B-cell growth. Second, chronic antigenic stimulation of B cells by HIV itself may promote excessive activation and transformation of B cells. Third, chronic stimulation by other viral infections (including EBV, HPV, and HCV) may lead to mutations in B cells, as well as mutations in Ras and p53 genes. Fourth, macrophages provide stimulatory signals to B cells leading to B cell activation and malignant growth. Finally, leakage of bacterial components and products from the gut into the bloodstream (microbial translocation) is thought to be a potential cause of chronic immune activation in HIV infection. These factors in combination lead to continuous stimulation of B cells. Chronic polyclonal B-cell activation may eventually lead to the development of AIDS-related non-HL.

production of ROS⁴⁰. The effect of reverse transcription-induced ROS production on the growth and metastasis of 4T1luc2 cells, the mouse breast adenocarcinoma cells, was studied *in vitro* and *in vivo*⁴¹. The cells were made to express a panel of HIV-1 RT variants, and stable expression of RT in these cells was found leading to increased production of ROS that even exceeded the level observed in parental tumor cells. RT-expressing cells showed an enhanced migration activity and were transformed into a mesenchymal phenotype with increased expression of the transcription factors Twist and snail that coordinate as epithelial-mesenchymal transition (EMT)⁴⁰. In syngeneic immunocompetent mice, these properties of RT-expressing cells lead to an enhanced tumor

growth and metastatic activity. At the same time, HIV-1 infection can block the expression of NADH: ubiquinone oxidoreductase subunit A6 (NDUFA6) protein of the complex I subunit on the mitochondrial membrane, thereby directly reducing the activity of complex I⁴². Inhibition of complex I in turn increased the production of ROS. ROS can then activate nuclear factor kappa-B (NF- κ B) and upregulate the expression of HIV-1 viral genes through HIV-1 long terminal repeats⁴³.

A recent study suggests that HIV is associated with an increased prevalence of clonal hematopoiesis of indeterminate potential (CHIP). CHIP is a recently recognized risk factor for hematologic malignancies. It is not entirely clear what causes the increased


Figure 4. The mechanism how HIV Tat promotes tumorigenesis. HIV Tat interacts with AKT1 and RELA (part of NF- κ B). On the one hand, this interaction inhibits cell apoptosis and DNA repair. On the other hand, it activates survival genes to help HIV spread between cells and promote cell growth. In addition, Tat binds to VEGFR-2 due to its electronic property and promotes angiogenesis. Tat also interacts with and enters B lymphocytes causing dysfunction of pRb2/p130 tumor suppressor protein in the cells.

prevalence of CHIP in PLWH. One plausible reason is that HIV infection accelerates biological aging and leads to chronic low-grade inflammation, which provides a favorable microenvironment for the development of CHIP⁴⁴. Another possible cause is the direct effect of ART. The real contribution of these factors to CHIP risk requires further studies. Another study showed that HIV infection led to a greater risk of myelodysplastic syndromes (MDS), which are precursors of myeloid malignancies⁴⁵. There is evidence that inflammatory signals promote the development of MDS⁴⁶. The inflammatory environment induced by HIV infection may favor the growth and development of MDS-initiating cells. It is worth of noting that CHIP has been shown to be associated with the development of MDS⁴⁷.

Direct action of HIV

More and more pieces of evidence show that HIV directly participates in the development of malignant tumors. The interference with the apoptotic pathway by

HIV may be related to the pathogenesis of tumors. In some studies, Tat, the transactivator protein of HIV, has shown carcinogenic effects *in vitro* and *in vivo*. For example, Tat was proven contributing to the pathogenesis of HIV-related KS^{48,49}. Transgenic expression of Tat in mice contributes to the formation of KS-like lesions⁵⁰. Studies revealed that Tat affected the life cycle of KS-associated herpesvirus (KSHV) and promoted the development of HIV-related KS by inducing cell proliferation and pro-inflammatory gene expression. Besides, interaction between Tat and AKT serine/threonine kinase 1 (AKT1)/NF- κ Bp65 (RELA) inhibited apoptosis and DNA repair of mutated cells^{51,52}. Activation of certain survival genes by NF- κ B may not only help HIV spread but also inadvertently promote the growth and proliferation of cancerous cells. Studies also show that extracellular Tat can enter uninfected cells and trans-activate cellular genes such as tumor necrosis factor, interleukin (IL)-2 and IL-6⁵³. Tat is positively charged and can bind negatively-charged molecules such as vascular endothelial growth factor receptor 2 (VEGFR-2), an angiogenetic factor. With this

Figure 5. The mechanism how HIV Nef promotes tumorigenesis. Nef promotes the occurrence of cancers through following mechanisms. KSHV vIL-6 and 2.117 mmNef act synergistically with KSHV K1 to promote blood vessel formation. Nef also caused a decrease in the expression of DICER1 and AGO (Argonaute), and subsequently a decrease in mature miRNA level in the cells. This dysregulation leads to abnormal gene regulation and promotes tumorigenesis. Besides, Nef inhibits the apoptotic function of P53 by reducing its half-life and interfering with its DNA binding activity.

effect, Tat is likely to cause abnormal angiogenesis induced by KSHV during the formation of KS. Tat may also interact with and enter B lymphocytes leading to the deregulation of pRb2/p130 tumor suppressor protein (Fig. 4)^{22,54}.

HIV Nef was found having a similar effect as Tat: Nef promoted the angiogenesis and tumorigenesis of KSHV by manipulating the AKT signaling pathway⁵⁵. *In vivo* experiments showed that Nef could promote KSHV Viral IL-6 (vIL-6)-induced angiogenesis and tumorigenesis, and KSHV vIL-6 and Nef cooperated with KSHV K1 (A unique transmembrane glycoprotein encoded by the KSHV genome) to promote the proliferation and microtubule production of human umbilical cord vascular endothelial cells^{56,57}.

Another study demonstrated that Nef could reprogram the initial stage during lung cancer development by manipulating cellular metabolism, cell survival and invasion, and angiogenesis. Nef also caused decreased expression of dicer 1 ribonuclease type III (DICER1) and Argonaute (AGO) and a subsequent decrease of mature miRNA in lung cells.

Dicer, encoded by the DICER1 gene in the human body, is an RNase that plays an important role in RNA interference and belongs to type III RNase (RNase III). AGO protein is a key protein in RNA-mediated post-transcriptional gene regulation, providing an anchor site for miRNA to achieve the purpose of degrading target mRNA or inhibiting translation. miRNAs play a key role in cell signal transduction and homeostasis, and act like oncogenes or tumor suppressor genes⁵⁸. Their dis-regulation promotes tumorigenesis. Besides, Nef inhibits the apoptotic function of P53 by reducing its half-life and interfering with its DNA binding activity. These studies indicate that Nef is directly involved in preventing cell death and promoting tumor progression (Fig. 5)⁵⁸.

It was recently discovered that variants of HIV p17 protein carried by certain HIV-infected patients with lymphoma have an enhanced B cell clonal activity. HIV p17 variants were secreted from infected cells and accumulated in lymphoid tissues, mainly in the germinal centers of lymph nodes. These variants may be the key microenvironmental factors that

promote the development of lymphoma^{59,60}. Studies have shown that transgenic mice with genetically modified HIV-1 provirus that lacks a part of the gag-pol region and over-expresses p17, gp120, and Nef developed B-cell lymphoma. These all support the pathogenic role of abnormal expression of HIV proteins and B cell-stimulating factors in lymphoid tumorigenesis⁶¹. P17 produces a microenvironment that promotes lymph angiogenesis and the invasiveness of human triple-negative breast cancer cells⁶⁰. The HIV-1 glycoprotein gp120 stimulates glycolysis⁴¹. Increased glycolysis is a feature of most tumors and supports unrestricted proliferation and invasion of tumor cells. Wherever it is expressed on viral particles, the surface of infected cells or as a virus-free soluble protein, gp120 promotes the proliferation, migration, and survival of tumor cells. Exposure of the oral keratinocytes from HIV-negative individuals to Tat or gp120 alone induces EMT. Also, introduction of Tat into human cervical cancer cells resulted in the up-regulation of HPV E6 but p53 level was reduced. HIV viral protein-experienced keratinocytes can be transformed by HPV 16 and then demonstrate the property of loss of cell adhesion and increased proliferation and migration^{40,41}. These studies indicate that urogenital mucosal EMT driven by HIV protein may be one of the mechanisms by which HIV-1 enhances the carcinogenic effect of HPV oncoproteins.

Conclusion

ART has transformed HIV infection from a fatal disease into a chronic disease, but at the same time makes cancer one of the leading causes of death in this patient population. Immunodeficiency is the earliest described mechanism, and it increases the incidence of various cancers. Furthermore, HIV shares the same transmission pathway as certain cancer-causing viruses, or because HIV infection suppresses host immunity, making PLWH vulnerable to viral infection. The oncogenic effects of viruses involve multiple pathways, including the apoptotic pathway and pathways that regulate the cell cycle or interfere with tumor-associated gene expression. Besides, chronic inflammation also greatly promotes carcinogenesis^{31,62}. The inflammatory response induced by HIV may aggravate HBV or HCV associated liver diseases³¹. Microbial translocation from the intestine to the liver in HIV infection accelerates liver fibrosis¹⁴.

Therefore, above factors may contribute to the development of hepatocellular carcinoma in HIV infection, especially in the context of HBV/HCV infection. Potential chronic antigen stimulation and inflammation is also thought to relate to dysregulated polyclonal or oligoclonal proliferation of B lymphocytes. Chronic polyclonal B cell activation is very important in the pathogenesis of cancer because chronic B cell activation contributes to not only the occurrence of HIV associated non-Hodgkins lymphoma but also B cell dysfunction and subsequent impaired *de novo* antibody response. It is reasonable to speculate that suppression of HIV may inhibit microbial translocation and subsequent immune activation despite that there is currently no research directly relating this to the risk of HIV associated non-Hodgkin lymphoma. Till now more and more evidences demonstrate that HIV directly participates in the development of malignancies, which probably is due to the direct action of HIV-encoded viral proteins such as P17 variants, Tat, Nef and gp120. These viral proteins promote tumorigenesis by regulating cell cycle, promoting cell growth and angiogenesis, inhibiting cell apoptosis and DNA repair and enhancing the clonal activity of B cells. Recently some studies evaluated whether P17 variants could be used as biomarkers to more accurately identify those HIV-infected individuals with an increased risk of lymphoma⁶². Therefore, identifying specific inhibitors that target the pathways manipulated by HIV proteins is promising. Related research is ongoing and progress has been made, but there are still important issues that need to be resolved before these inhibitors can be applied clinically.

Funding

This work was supported by the National Natural Science Foundation of China (grant No.: 81660279 and 81701629), Jiangxi Department of Science and Technology (grant No.: 20171BCB23088, 20181ACH80002 and 20202BAB206023), and the startup funding for scholars returned from abroad from the Ministry of Education, P.R.C. (grant No.: 2015060020102070).

References

1. Biggar RJ, Chaturvedi AK, Goedert JJ, Engels EA. AIDS-related cancer and severity of immunosuppression in persons with AIDS. *J Natl Cancer Inst.* 2007;99:962-72.
2. Pacheco YM, Jarrin I, Rosado I, Campins AA, Berenguer J, Iribarren JA, et al. Increased risk of non-AIDS-related events in HIV subjects with

persistent low CD4 counts despite cART in the CoRIS cohort. *Antiviral Res.* 2015;117:69-74.

- Lisco A, Vanpouille C, Margolis L. War and peace between microbes: HIV-1 interactions with coinfecting viruses. *Cell Host Microbe.* 2009;6:403-8.
- Collin M, Bigley V, Haniffa M, Hambleton S. Human dendritic cell deficiency: the missing ID? *Nat Rev Immunol.* 2011;11:575-83.
- Kang TW, Yewsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, et al. Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. *Nature.* 2011;479:547-51.
- Chen KC, Wang TY, Chan CH. Associations between HIV and human pathways revealed by protein-protein interactions and correlated gene expression profiles. *PLoS One.* 2012;7:e34240.
- Molfetta R, Zingoni A, Santoni A, Paolini R. Post-translational mechanisms regulating NK cell activating receptors and their ligands in cancer: potential targets for therapeutic intervention. *Front Immunol.* 2019;10:2557.
- Lucar O, Reeves RK, Jost S. A natural impact: NK cells at the intersection of cancer and HIV disease. *Front Immunol.* 2019;10:1850.
- Massad LS, Seaberg EC, Wright RL, Darragh T, Lee YC, Colie C, et al. Squamous cervical lesions in women with human immunodeficiency virus: long-term follow-up. *Obstet Gynecol.* 2008;111:1388-93.
- Andersen MH, Schrama D, Stratton PT, Becker JC. Cytotoxic T cells. *J Invest Dermatol.* 2006;126:32-41.
- Park JS, Saraf N, Dieterich DT. HBV plus HCV, HCV plus HIV, HBV plus HIV. *Curr Gastroenterol Rep.* 2006;8:67-74.
- Goeser F, Glässner A, Kokordelis P, Wolter F, Lutz P, Kaczmarek DJ, et al. HIV mono-infection is associated with an impaired anti-hepatitis C virus activity of natural killer cells. *AIDS.* 2016;30:355-63.
- Lascar RM, Lopes AR, Gilson RJ, Dunn C, Johnstone R, Copas A, et al. Effect of HIV infection and antiretroviral therapy on hepatitis B virus (HBV)-specific T cell responses in patients who have resolved HBV infection. *J Infect Dis.* 2005;191:1169-79.
- Page EE, Nelson M, Kelleher P. HIV and hepatitis C coinfection: pathogenesis and microbial translocation. *Curr Opin HIV AIDS.* 2011;6:472-7.
- Isaakidis P, Pimple S, Varghese B, Khan S, Mansoor H, Ladomirska J, et al. HPV infection, cervical abnormalities, and cancer in HIV-infected women in Mumbai, India: 12-month follow-up. *Int J Womens Health.* 2013;5:487-94.
- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. *CA Cancer J Clin.* 2015;65:87-108.
- Hleyhel M, Hleyhel M, Bouvier AM, Belot A, Tattevin P, Pacanowski J, et al. Risk of non-AIDS-defining cancers among HIV-1-infected individuals in France between 1997 and 2009: results from a French cohort. *AIDS.* 2014;28:2109-18.
- Piketty C, Selinger-Leneman H, Bouvier AM, Belot A, Mary-Krause M, Duvivier C, et al. Incidence of HIV-related anal cancer remains increased despite long-term combined antiretroviral treatment: results from the french hospital database on HIV. *J Clin Oncol.* 2012;30:4360-6.
- Crum-Cianflone NF, Hullsiek KH, Marconi VC, Ganesan A, Weintrob A, Barthel RV, et al. Anal cancers among HIV-infected persons: HAART is not slowing rising incidence. *AIDS.* 2010;24:535-43.
- Park LS, Hernández-Ramírez RU, Silverberg MJ, Crothers K, Dubrow R. Prevalence of non-HIV cancer risk factors in persons living with HIV/AIDS: a meta-analysis. *AIDS.* 2016;30:273-91.
- Martin JN, Ganem DE, Osmond DH, Page-Shafer KA, Macrae D, Kedes DH. Sexual transmission and the natural history of human herpesvirus 8 infection. *N Engl J Med.* 1998;338:948-54.
- Brickman C, Palefsky JM. Human papillomavirus in the HIV-infected host: epidemiology and pathogenesis in the antiretroviral era. *Curr HIV/AIDS Rep.* 2015;12:6-15.
- Konopnicki D, de Wit S, Clumeck N. HPV and HIV coinfection: a complex interaction resulting in epidemiological, clinical and therapeutic implications. *Future Virol.* 2013;8:903-15.
- McLaughlin-Drubin ME, Munger K. Viruses associated with human cancer. *Biochim Biophys Acta.* 2008;1782:127-50.
- Kincaid RP, Sullivan CS. Virus-encoded microRNAs: an overview and a look to the future. *PLoS Pathog.* 2012;8:e1003018.
- Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. *Nature.* 2005;435:834-8.
- Pfeffer S, Voinnet O. Viruses, microRNAs and cancer. *Oncogene.* 2006;25:6211-9.
- Killebrew D, Shiramizu B. Pathogenesis of HIV-associated non-Hodgkin lymphoma. *Curr HIV Res.* 2004;2:215-21.
- Hunt PW. HIV and inflammation: mechanisms and consequences. *Curr HIV/AIDS Rep.* 2012;9:139-47.
- Rivera MM, Soza A, Jazrawski A, Mi L, Kleiner DE, Zhao X, et al. HIV through the looking glass: insights derived from Hepatitis B. *J Acquir Immune Defic Syndr.* 2015;68:123-7.
- Li KW, Kramvis A, Liang S, He X, Chen QY, Wang C, et al. Higher prevalence of cancer related mutations 1762T/1764A and PreS dele-
- tions in hepatitis B virus (HBV) isolated from HBV/HIV co-infected compared to HBV-mono-infected Chinese adults. *Virus Res.* 2017;227:88-95.
- Sung FY, Lan CY, Huang CJ, Lin CL, Liu CJ, Chen PJ, et al. Progressive accumulation of mutations in the hepatitis B virus genome and its impact on time to diagnosis of hepatocellular carcinoma. *Hepatology.* 2016;64:720-31.
- Vendrame E, Hussain SK, Breen EC, Magpantay LI, Widney DP, Jacobson LP, et al. Serum levels of cytokines and biomarkers for inflammation and immune activation, and HIV-associated non-Hodgkin B-cell lymphoma risk. *Cancer Epidemiol Biomarkers Prev.* 2014;23:343-9.
- Epeldegui M, Hussain SK. The role of microbial translocation and immune activation in AIDS-associated non-hodgkin lymphoma pathogenesis: what have we learned? *Crit Rev Immunol.* 2020;40:41-51.
- Martinez-Maza O, Breen EC. B-cell activation and lymphoma in patients with HIV. *Curr Opin Oncol.* 2002;14:528-32.
- Widney DP, Olafsen T, Wu AM, Kitchen CM, Said JW, Smith JB, et al. Levels of murine, but not human, CXCL13 are greatly elevated in NOD-SCID mice bearing the AIDS-associated Burkitt lymphoma cell line, 2F7. *PLoS One.* 2013;8:e72414.
- Borges ÁH, Silverberg MJ, Wentworth D, Grulich AE, Fätkenheuer G, Mitsuhashi R, et al. Predicting risk of cancer during HIV infection: the role of inflammatory and coagulation biomarkers. *AIDS.* 2013;27:1433-41.
- Cerutti PA. Prooxidant states and tumor promotion. *Science.* 1985;237:378-81.
- Bayurova E, Jansons J, Skrastina D, Smirnova O, Mezale D, Kostyushkina A, et al. HIV-1 reverse transcriptase promotes tumor growth and metastasis formation via ROS-dependent upregulation of twist. *Oxid Med Cell Longev.* 2019;2019:6016278.
- Valentín-Guillama G, López S, Kucheryavykh YV, Chorna NE, Pérez J, Ortiz-Rivera J, et al. HIV-1 envelope protein gp120 promotes proliferation and the activation of glycolysis in glioma cell. *Cancers (Basel).* 2018;10:301.
- Ladha JS, Tripathy MK, Mitra D. Mitochondrial complex I activity is impaired during HIV-1-induced T-cell apoptosis. *Cell Death Differ.* 2005;12:1417-28.
- Pyo CW, Yang YL, Yoo NK, Choi SY. Reactive oxygen species activate HIV long terminal repeat via post-translational control of NF-κappaB. *Biochem Biophys Res Commun.* 2008;376:180-5.
- Bick AG, Popadin K, Thorball CW, Uddin MM, Zanni M, Yu B, et al. Increased CHIP prevalence amongst people living with HIV. In: medRxiv: The Preprint Server for Health Sciences; 2020.
- Kaner JD, Thibaud S, Jasra S, Wang Y, Janakiram M, Sharma A, et al. HIV portends a poor prognosis in myelodysplastic syndromes. *Leuk Lymphoma.* 2019;60:3529-35.
- Gafán-Gómez I, Wei Y, Starczynowski D, Colla S, Yang H, Cabrerizo-Calvo M, et al. Deregulation of innate immune and inflammatory signaling in myelodysplastic syndromes. *Leukemia.* 2015;29:1458-69.
- Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. *N Engl J Med.* 2014;371:2488-98.
- Barillari G, Gendelman R, Gallo RC, Ensoli B. The Tat protein of human immunodeficiency virus Type 1, a growth factor for AIDS Kaposi sarcoma and cytokine-activated vascular cells, induces adhesion of the same cell types by using integrin receptors recognizing the RGD amino acid sequence. *Proc Natl Acad Sci USA.* 1993;90:7941-5.
- Huang SK, Martin FJ, Jay G, Vogel J, Papahadjopoulos D, Friend DS. Extravasation and transcytosis of liposomes in Kaposi's sarcoma-like dermal lesions of transgenic mice bearing the HIV tat gene. *Am J Pathol.* 1993;143:10-4.
- Chen X, Cheng L, Jia X, Zeng Y, Yao S, Lv Z, et al. Human immunodeficiency virus Type 1 tat accelerates kaposi sarcoma-associated herpesvirus kaposin a-mediated tumorigenesis of transformed fibroblasts *in vitro* as well as in nude and immunocompetent mice. *Neoplasia.* 2009;11:1272-84.
- Chugh P, Fan S, Panelles V, Maggirwar SB, Dewhurst S, Kim B. Infection of human immunodeficiency virus and intracellular viral Tat protein exert a pro-survival effect in a human microglial cell line. *J Mol Biol.* 2007;366:67-81.
- Deregibus MC, Cantaluppi V, Doublier S, Brizzi MF, Deambrosi I, Albinia A, et al. HIV-1-tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi's sarcoma cells. *J Biol Chem.* 2002;277:25195-202.
- Rusnati M, Tarabolti G, Urbinati C, Tulipano G, Giuliani R, Molinari-Tosatti MP, et al. Thrombospondin-1/HIV-1 tat protein interaction: modulation of the biological activity of extracellular tat. *FASEB J.* 2000;14:1917-30.
- Kim RH, Yochim JM, Kang MK, Shin KH, Christensen R, Park NH. HIV-1 Tat enhances replicative potential of human oral keratinocytes harboring HPV-16 genome. *Int J Oncol.* 2008;33:777-82.
- Xue M, Yao S, Hu M, Li W, Hao T, Zhou F, et al. HIV-1 Nef and KSHV oncogene K1 synergistically promote angiogenesis by inducing cellular miR-718 to regulate the PTEN/AKT/mTOR signaling pathway. *Nucleic Acids Res.* 2014;42:9862-79.

55. Yan Q, Ma X, Shen C, Cao X, Feng N, Qin D, et al. Inhibition of Kaposi's sarcoma-associated herpesvirus lytic replication by HIV-1 Nef and cellular microRNA hsa-miR-1258. *J Virol.* 2014;88:4987-5000.
56. Zhu X, Guo Y, Yao S, Yan Q, Xue M, Hao T, et al. Synergy between Kaposi's sarcoma-associated herpesvirus (KSHV) vIL-6 and HIV-1 Nef protein in promotion of angiogenesis and oncogenesis: role of the AKT signaling pathway. *Oncogene.* 2014;33:1986-96.
57. Santerre M, Chatila W, Wang Y, Mukerjee R, Sawaya BE. HIV-1 Nef promotes cell proliferation and microRNA dysregulation in lung cells. *Cell Cycle.* 2019;18:130-42.
58. Martorelli D, Muraro E, Mastorci K, Dal Col J, Faè DA, Furlan C, et al. A natural HIV p17 protein variant up-regulates the LMP-1 EBV oncprotein and promotes the growth of EBV-infected B-lymphocytes: implications for EBV-driven lymphomagenesis in the HIV setting. *Int J Cancer.* 2015;137:1374-85.
59. Dolcetti R, Giagulli C, He W, Selleri M, Caccuri F, Eyzaguirre LM, et al. Role of HIV-1 matrix protein p17 variants in lymphoma pathogenesis. *Proc Natl Acad Sci USA.* 2015;112:14331-6.
60. Curreli S, Krishnan S, Reitz M, Lunardi-Iskandar Y, Lafferty MK, Garzino-Demo A, et al. B cell lymphoma in HIV transgenic mice. *Retrovirology.* 2013;10:92.
61. Marks MA, Rabkin CS, Engels EA, Busch E, Kopp W, Rager H, et al. Markers of microbial translocation and risk of AIDS-related lymphoma. *AIDS.* 2013;27:469-74.
62. Dolcetti R, Gloghini A, Caruso A, Carbone A. A lymphomagenic role for HIV beyond immune suppression? *Blood.* 2016;127:1403-9.