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Abstract

Highly pathogenic avian influenza viruses (HPAIVs) have undergone ecological and evolutionary shifts in recent years, bro-
adening both their host range and geographic distribution. This manuscript explores the emergence and dissemination of
HPAIVs, tracing their origins from wild waterfowl! reservoirs to domestic poultry, and examining their increasing ability to infect
mammalian species, including swine and humans. We detail the molecular transition insights from low pathogenic avian
influenza to highly pathogenic avian influenza (HPAI) within poultry populations as drivers of adaptation and enhanced
virulence. Key zoonotic episodes involving human and other hosts are reviewed, with attention to the role of viral reassortment
and adaptation. Current risk assessments are analyzed, suggesting measures to mitigate the impact of HPAI from a One
Health perspective, including public health interventions, coordinated international surveillance, early warning and containment
systems, as well as prophylactic and therapeutic options.
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Introduction

Avian influenza refers to the zoonotic disease caused
by a series of strains belonging to multiple subtypes of
the Influenza A virus circulating in wild birds as well as
domestic poultry. Among these subtypes, H5 and, to a
lesser extent, H7 are known for their ability to become
highly pathogenic in poultry, referred to as highly patho-
genic avian influenza viruses (HPAIVs), presenting a
very high death rate in these animals. The virus’s gene-
tic features are characterized by a high mutation rate
and a segmented RNA genome, which allows for gene
reassortment with other influenza virus strains, contri-
buting to its adaptability to infect different species,
including mammals and particularly humans.

The study of avian influenza is particularly relevant
due to its potential to cause pandemics. While human-
to-human transmission of H5 influenza remains limited,
the virus has shown the ability to cross species barriers
and infect mammals.

Understanding the virology, epidemiology, transmis-
sion, and pathogenicity of avian influenza viruses is
crucial for developing effective prevention and control
strategies. At this time, it is not possible to predict
whether a specific avian influenza virus strain will ini-
tiate a human pandemic. Therefore, we need constant
surveillance and research to prepare contingency mea-
sures that can mitigate the threat, including existing
improved antivirals and vaccines.

This manuscript provides a comprehensive review of
the zoonotic potential of avian influenza viruses, cove-
ring key genetic characteristics and mechanisms of
mutation, reassortment, and adaptation. It also evalua-
tes their epidemiology and transmission, including their
spread in animal populations, potential human infec-
tions, and the risk of zoonotic transmission. The review
further explores the pathogenesis and clinical impact
of avian influenza, focusing on the factors contributing
to its high pathogenicity in both animals and humans.
Finally, it discusses current preventive and therapeutic
measures, including vaccine development, antiviral
treatments, and biosecurity strategies to control HPAIV
outbreaks.

Transmission and life cycle of avian
influenza

Avian influenza viruses naturally circulate among wild
waterfowl, such as ducks, geese, and shorebirds,
which serve as reservoirs for the virus. Transmission
occurs primarily through direct contact with infected

birds or exposure to contaminated water, feces, or sur-
faces. These viruses can spill over into domestic poul-
try, where the virus spreads rapidly in farms through
respiratory secretions, fecal-oral routes, and contami-
nated equipment, feed, or human handling. Intermediate
hosts, such as pigs, have played a key role in previous
zoonotic events resulting in human pandemics'.

Zoonotic transmission for influenza viruses usually
refers to the occasional spillover of avian influenza
viruses from birds to humans or other mammals, tipi-
cally through direct contact with infected animals or
their secretions. These infections are typically isolated
cases or small outbreaks with limited human-to-human
transmission. For sustained human transmission to
occur, the virus must require adaptations that enable
efficient human-to-human spread, similar to seasonal
influenza viruses. So far, HPAIVs have not evolved this
capacity, although mutations or reassortment events
could potentially facilitate such adaptation. A mink air-
borne transmission model has identified potential muta-
tions that may predict inter-mammalian transmission?.

Highly pathogenic avian influenza (HPAI) strains have
demonstrated the ability to directly infect mammals,
including humans, through direct or indirect contact
with infected birds or contaminated fomites. These
events typically occur while handling animals in high-
risk environments such as live poultry markets and
farms, where viral amplification leads to high concen-
trations of infectious particles in the air and on surfa-
ces, or through handling of infected birds. While human
infections remain rare, they can result in severe respi-
ratory illness with higher fatality rates as compared to
seasonal influenza. However, underdiagnosis of mild or
asymptomatic cases likely contributes to an overesti-
mation of severity, making the true human lethality rate
uncertain. Transmission to other mammals, including
domestic animals such as cows, cats, and dogs, and
wild carnivores such as foxes and seals, among others,
has been documented, often due to the exposure or
consumption of infected birds®.

HPAIV virulence hallmarks

Avian influenza viruses are categorized into low-
pathogenic avian influenza (LPAI) and HPAI strains
based on their severity in poultry. LPAI viruses typically
cause mild or no disease in poultry and wild birds,
though some can mutate into highly pathogenic forms.
In contrast, HPAIV, particularly certain H5 and H7 sub-
types, causes severe disease and high mortality in
poultry, often reaching 90-100% lethality within



48 hours. While some wild birds can carry HPAI without
apparent symptoms, others may suffer severe
illness*.

Specific mutations in viral genes can enhance viru-
lence and potential for zoonotic transmission from birds
into mammals. Some of the most significant mutations
include hemagglutinin (HA) cleavage site mutations,
which allow broader tissue tropism and systemic infec-
tion in birds®.

HA is the receptor-binding protein of the Influenza A
virus. The HA is also responsible for the fusion of the
viral envelope with cell membranes, leading to viral
entry into the infected cell. To acquire its fusogenic
properties, a host protease cleavage of HA into two
subunits is required. The number of basic amino acids,
such as lysines and arginines, present in the HA clea-
vage site hallmarks HPAI strains and discriminates
them from LPAI. The HA protein of HPAIVs has a poly-
basic cleavage site, consisting of multiple basic amino
acids (e.g., R-X-R/K-R). This allows it to be cleaved by
ubiquitous furin-like proteases in every tissue, including
brain, heart, liver, etc., increasing the viral replication
by expanding the virus tissue tropism®’. In contrast,
LPAI viruses are restricted to mucosal tissues from the
respiratory tract and the intestine that express the more
specific HA cleavage proteases (Fig. 1A).

Additional mutations in viral genes have been identi-
fied that enhance the ability of avian influenza viruses
to replicate efficiently in mammalian hosts. Mutations
have been described in the subunits of the viral RNA
polymerase complex, which is composed of the PB1,
PB2, and PA proteins. Among these, the PB2 E627K
substitution is the most frequently observed in HPAI
(Fig. 1B). This mutation facilitates viral replication in
mammalian cells and is considered a key molecular
marker of host adaptation, thereby increasing the risk
of adaptation of zoonotic transmission and potential
emergence in humans®. Adaptation of the PB2 subunit
of the influenza polymerase to human hosts may
depend on an aspartic acid to lysine substitution, which
enhances functional compensation and strengthens
interaction with the host factor ANP32A%1°,

Neuraminidase protein (NA) is, after HA, the second
most abundant influenza virion surface glycoprotein. It
plays a critical role in the final stage of viral egress by
cleaving sialic acid residues that tether newly formed
virions to the host cell through HA binding. Amino acid
deletions in the stalk region of NA have been associa-
ted with increased virulence in poultry by enhancing
viral fitness in avian cells'. It has been proposed that
by reducing the length and the flexibility of the stalk,
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NA can access more efficiently and cleave sialic acids
more efficiently (Fig. 1C).

Strains with life-threatening potential in
humans

Different influenza viruses are circulating in animal
reservoirs that have been responsible for sporadic
human zoonotic infections, leading to a higher mortality
rate in humans as compared to seasonal influenza,
raising concerns about the possibility that any of these
viruses acquire the ability to transmit from human to
human in the future.

The HPAI H5 and H7 subtypes can cause mass
deaths in poultry populations, posing significant risks
to the global food supply and having a considerable
economic impact on farming. HPAIVs are derived from
LPAI viruses circulating in wild birds that start circula-
ting in domestic poultry, where they have mutated,
becoming HPAIVs. Among HPAIVs, H5N1 has spread
back into wild bird populations, contributing to the
virus's geographic spread through avian migration®.
Through the years, H5N1 viruses have continued to
diversify and to reassort genes with other avian
influenza viruses, leading to continuous outbreaks in
poultry farms all over the world of H5Nx viruses belon-
ging to different clades and genotypes'?. Among these,
some H5N1, H5N6, and H5N8 viruses have been
shown to cause human infections. Although
human-to-human transmission is rare, the potential for
these viruses to adapt and spread more easily among
humans remains a concern, especially in those envi-
ronments and countries with close contact with domes-
tic and farm animals. In addition, an H7N9 LPAI
outbreak in chickens in China was also shown to lead
to multiple human infections for several years, fortuna-
tely, as with the H5Nx viruses, with no significant
human-to-human transmissions'. Although some
H7N9 viruses became highly pathogenic, the H7N9
viruses disappeared from circulation, most likely helped
by a massive campaign of poultry vaccination in
China'.

H5N1 has been a major concern since its emer-
gence in 1997. This HPAIV has caused numerous out-
breaks in birds and sporadic but severe infections in
humans, with a high mortality rate'>. Since this year,
some recent reports have pointed out a total of 976
human cases with at least 470 deaths, which means
nearly 50% of lethality'®. The virus primarily spreads
through direct contact with infected birds or contami-
nated environments'”.
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Figure 1. Molecular determinants of pathogenicity and host adaptation in avian influenza viruses. A: comparison of
hemagglutinin (HA) cleavage sites in low pathogenic avian influenza (LPAI) and highly pathogenic avian influenza
(HPAI) strains. LPAI HA contains a monobasic cleavage site restricted to trypsin-like proteases, limiting replication to
mucosal tissues. In contrast, HPAI HA features a polybasic cleavage site cleaved by ubiquitous furin-like proteases,
enabling systemic infection. B: host adaptation through PB2 protein mutation. The E627K substitution enhances
polymerase activity in mammalian cells, facilitating cross-species transmission. C: structural features of
neuraminidase (NA) influencing viral egress and virulence. Shortened stalk regions can improve sialic acid cleavage
efficiency, contributing to increased avian host replication.

H7N9 was first detected in humans in China in 2013.
This strain has caused severe respiratory illness in
humans, with a significant number of cases resulting in
death. Most human infections have been linked to
exposure to live poultry markets'®.

H5N6 emerged in 2014 and has caused outbreaks in
poultry and sporadic human infections, mainly in Asia.
The virus has shown genetic reassortment with other
influenza viruses, raising concerns about its potential
to also adapt to humans. Human infections are rare but
can be severe, with a high case fatality rate'®.

H5N8 has primarily affected wild birds and domestic
poultry since 2016, causing widespread outbreaks in
Europe, Asia, and Africa. While it has not been

commonly linked to human infections, its rapid spread
in avian populations makes it a major concern for ani-
mal health®’. In 2021, the first human cases of H5N8
were reported in Russia, highlighting the need for
ongoing surveillance?'.

Cross-Species transmission and global
expansion of avian influenza H5N1

The 2022 outbreak of HPAI H5N1 in the United States
was one of the most extensive and costly animal health
events in the country’s history, affecting over 57 million
commercial and backyard poultry across 47 states®>23,
This outbreak had significant impacts on the poultry



industry, particularly on turkey farms and commercial
table egg production®.

The 2020-2021 outbreak of HPAI H5N8 in Europe
caused significant losses in poultry farms across seve-
ral countries, including Germany, France, and the
Netherlands. This outbreak was one of the most devas-
tating HPAI epidemics ever recorded in Europe, affec-
ting numerous poultry farms and wild birds. The
outbreak resulted in the culling of millions of poultry
birds, leading to substantial economic losses in the
poultry sector. In total, around 22,400,000 poultry ani-
mals were affected across 28 European countries?®®.
Enhanced biosecurity measures were recommended to
prevent further spread, including stringent monitoring
and reporting of increases in daily mortality and drops
in production parameters?®.

Since September 2025, several outbrakes in poultry
farms have hitten different countries in Europe inclu-
ding Portugal, Germany, France, Poland, Spain, UK
and Hundary, forcing the culling of millions of farm
birds. Avian influenza viruses, particularly H5N1, have
demonstrated a repeated ability to infect a wide range
of species beyond poultry, in addition to humans, pigs,
cows, goats, cats, dogs, ferrets, minks, horses, civets,
raccoons, seals, sea lions, dolphins, and other terres-
trial and aquatic mammals, as well as many different
wild birds?”%%, These cross-species transmission
events are shaped by host ecology, viral adaptation,
and environmental exposure and have become increa-
singly relevant in the context of the global spread of
HPAIVs from initial waterflow circulating LPAI (Fig. 2).

Among non-avian hosts, swine have long been
recognized as critical intermediaries due to their sus-
ceptibility to both avian and human influenza A viruses.
This dual susceptibility enables genetic reassortment,
a process implicated in the emergence of pandemic
strains such as H2N2 (1957), H3N2 (1968), and
H1N1 (2009)%'%2. Swine are natural hosts for specific
swine influenza-adapted viruses and recipients of
human and avian strains®’. Swine influenza clinical
signs include fever, lethargy, anorexia, coughing,
sneezing, nasal discharge, and dyspnea. Pregnant
sows may abort due to febrile episodes®*. Transport
stress and co-infections further exacerbate transmis-
sion and disease severity®6,

Dairy cattle have recently emerged as unexpected
hosts for H5N1. As of March 2025, infections have been
confirmed in at least 16 U.S. states, including California,
Colorado, Idaho, Michigan, and Texas®*. Clinical
signs are generally mild, like reduced appetite, decrea-
sed milk production, and abnormal milk consistency.
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Viral replication appears concentrated in the mammary
glands, with high titers detected in milk®. Evidence
supports cow-to-cow transmission and spillover to
nearby poultry facilities*°.

Companion animals, such as cats and dogs, have
also been affected. Infections typically result from con-
tact with infected birds or contaminated environments.
Clinical signs include respiratory symptoms, conjuncti-
vitis, fever, lethargy, and in severe cases, neurological
manifestations*'. A notable event occurred in December
2016, when an outbreak of H7N2 among shelter cats
in New York City led to the first documented case of
cat-to-human transmission“>44,

Human infections occur primarily through direct or
indirect contact with infected birds or mammals, espe-
cially poultry and dairy cattle. Mild-to-moderate cases
resemble seasonal influenza, while severe cases may
progress to pneumonia, acute respiratory distress syn-
drome, multi-organ failure, and death. In the current
U.S. outbreak, 70 human cases have been reported as
of March 2025, 41 linked to dairy cows, 24 to poultry,
and 5 with unknown or other exposures*®. Most cases
have been mild, with conjunctivitis as the predominant
symptom (93%), followed by fever (49%) and respiratory
symptoms (36%). Two pediatric cases are suspected of
being linked to the consumption of raw milk. A single
fatal case occurred in Louisiana in January 2025, invol-
ving an elderly individual with previous underlying
pathologies likely exposed to infected wild birds or
poultry“, Other two pediatric cases were recorded
during this outbreak but out of the U.S. One of them
was in Canada, in a 13-year-old adolescent with mild
asthma and elevated body mass index who survived®’,
and a 3-year-old girl from Mexico who finally died*s,
both cases with unknown animal connection.

Since 2021, the global expansion of H5N1, particu-
larly the clade 2.3.4.4b variant, has intensified con-
cerns. Initially detected in Europe, this strain rapidly
spread to Africa, Asia, the Americas, and even
Antarctica through migratory birds*®°°. It has caused
mass mortality among wild birds, especially seabirds,
waterfowl, and raptors, and large-scale outbreaks in
domestic poultry, prompting extensive culling. The
virus’s broad host range and environmental persistence
have facilitated its dissemination and zoonotic
potential®!52,

Recent mammalian outbreaks, including minks, sea
lions, and cows, suggest that HSN1 has acquired muta-
tions enhancing replication and transmission in mam-
mals. In particular, the PB2 gene mutations E627K and
D701N are associated with increased viral fitness in
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Figure 2. Emergence and interspecies dissemination of avian influenza viruses. The diagram illustrates the initial
circulation of low pathogenic avian influenza (LPAI) among wild birds, followed by its evolution into highly
pathogenic avian influenza (HPAI). Arrows indicate main transmission pathways across species, including spillovers

to mammals such as pigs, cattle, and humans.

mammalian cells and have been detected in multiple
species®®. Although sustained human-to-human trans-
mission has not yet occurred, the accumulation of
adaptive mutations and expanding host range unders-
core the pandemic risk.

Pandemic risk

Although avian influenza H5N1 continues to circulate
globally and has demonstrated zoonotic potential, it has
not yet acquired efficient human-to-human transmissi-
bility. Consequently, the World Health Organization
(WHO) has issued regular risk assessments evaluating
the likelihood of an HPAI pandemic. As of August 2025,
the primary exposure risk remains concentrated among
poultry workers, veterinarians, and individuals handling
live or deceased birds. The most recent assessment
reaffirms that the risk of transmission from birds to
humans and subsequent human-to-human spread
remains low®.

Sustained transmission among mammals remains
limited, primarily affecting marine mammals, mink,
and dairy cattle. The virus is not currently capable of
efficient spread among humans®. For this to occur,
H5N1 would require further adaptation, which may

arise through genetic drift, involving the gradual accu-
mulation of mutations, or through genetic reassortment
with mammal-adapted influenza viruses, such as
those circulating in swine and humans. Such reas-
sortment may give rise to novel strains with altered
virulence, expanded host range, and enhanced
transmissibility®6-6°,

The adaptation of HA receptor specificity is a critical
factor in the transition of avian influenza viruses, such
as H5N1, to infect humans efficiently. Avian influenza
viruses typically bind to sialic acid residues linked
through alpha-2-3 glycosidic bonds (SAa.2,3Gal), which
are prevalent in the lower respiratory tract of birds. In
contrast, human influenza viruses preferentially bind to
alpha-2-6-linked sialic acids (SAc2,6Gal), which are
abundant in the human upper respiratory tract, facilita-
ting efficient human-to-human transmission®':62,

Although only a few mutations in HA are needed to
alter receptor binding preference, these changes
alone seem to be insufficient. Specific mutations in
HA can switch the receptor binding preference from
avian-type (0:2,3-linked sialic acid) to human-type
(a2,6-linked sialic acid) receptors. For instance, the
Q223R mutation in HIN1 changes the binding prefe-
rence to avian-type receptors but does not enhance



viral growth in cell culture, suggesting that receptor
binding changes alone are not enough for full adap-
tation®. Similarly, the S221P and K216E mutations in
H5N1 could enhance binding to human receptors, but
models suggest that this does not ensure efficient
transmission®. Additional concomitant mutations in
HA, NA, PB2, possibly PA%, and yet unidentified,
adaptive mutations are likely required to enable sus-
tained human-to-human transmission.

Several factors may signal the emergence of a
human influenza pandemic caused by an avian-origin
virus. These include genetic changes that enhance
human viral infectivity and transmissibility, evidence of
sustained human-to-human transmission and increa-
sed clinical severity compared to seasonal influenza,
and widespread geographic distribution of cases.
Monitoring these indicators is essential for early detec-
tion and rapid response to mitigate the pandemic risk.

Control measures of avian influenza

Effective prevention and control of avian influenza
rely on surveillance and early detection. Surveillance
programs in birds, such as those conducted by the
USGS National Wildlife Health Center, involve systema-
tic monitoring of wild and domestic bird populations.
Diagnostic methods in humans and animals include
PCR and serology-based tests with the ability to per-
form the test at the point of care and in residual waste
waters. The integration of these surveillance and diag-
nostic methods facilitates the understanding of virus
circulation, helping to control the spread of avian
influenza and mitigate its impact. The WHO and the
ECDC have surveillance systems for avian influenza
viruses in humans, using existing seasonal influenza
surveillance networks, such as the GISRS®%%7, or the
European ECDC surveillance®. These networks, com-
posed of multiple reference laboratories worldwide, are
tasked with promptly forwarding non-subtypable
influenza A samples to designated reference centers
for identification. In addition, if these regional laborato-
ries have the capacity to identify avian influenza cases
by molecular diagnosis, they must immediately report
these identifications.

Biosecurity measures are crucial to prevent the
spread of avian influenza in poultry farms. Sanitation
and quarantine protocols involve regular cleaning and
disinfection of facilities and quarantining new birds
before introducing them to the flock®®7°, Movement res-
trictions on birds and poultry products help prevent the
virus from spreading between farms and regions.
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Eradication strategies during outbreaks include culling
infected birds and implementing control zones to con-
tain the virus.

Antiviral medications can play a crucial role in the
treatment of avian influenza in humans in the case of
an outbreak. They are most effective when administe-
red early in the course of the disease, ideally within
48 h of symptom onset. The most commonly used
antivirals are neuraminidase inhibitors, which include
NA inhibitors oseltamivir (Tamiflu), zanamivir (Relenza),
and peramivir (Rapivab). Oseltamivir and zanamivir are
recommended for both treatment and prophylaxis of
avian influenza infections".

Another antiviral, Baloxavir marboxil (Xofluza), has
shown efficacy against avian influenza viruses.
Baloxavir inhibits the cap-dependent endonuclease
enzyme, which is involved in viral RNA transcription.
This newer antiviral offers a different mechanism of
action compared to neuraminidase inhibitors and can
be used as an alternative or complementary treatment
option against H5N1 viruses’?. The potential appea-
rance of scape mutants could be avoided by the com-
bination of two antivirals against the NA and viral
polymerase activities. Novel strategies include the
development of long-acting, broad-spectrum antivirals
that could serve as immediate prophylactic interven-
tions while a virus-specific pandemic vaccine is being
produced.

Vaccines for poultry and humans play a significant
role in preventing the disease and reducing complica-
tions. While vaccines for humans are not widely avai-
lable, they can be developed and stockpiled for potential
use in a pandemic if the pipeline and industrial proce-
dures are ready and available in case of need. Vaccines
targeting animal populations have also been developed
and are available to mitigate the impact of farm out-
breaks and reduce the risk of zoonotic transmission in
alignment with One Health strategies’. Timely imple-
mentation of H5 vaccination in poultry farms in the
context of One Health approach can lessen the impact
of HPAI in livestock and reduce the chances of spillover
to humans.

Selective breeding of farm animals with reduced sus-
ceptibility to influenza A virus and particularly to HPAI
represents a potential strategy to mitigate zoonotic risk
and enhance biosecurity. Genetic selection of animals
with impaired viral entry, replication, or host factor com-
patibility includes altered sialic acid receptor distribu-
tion or modified ANP32A isoforms. Naturally diminished
permissiveness to viral infection may allow to establish
of livestock populations that act as epidemiological



dead ends, reducing viral amplification and spillover
potential.

Finally, it will also be important to continue research
focused on developing “universal” influenza virus vac-
cines able to prevent infection and disease with any
influenza virus subtype. Such vaccines are based on
the induction of broadly protective immune responses
against conserved antigens of the virus, and preclinical
results in animal models are very encouraging.

Conclusion

The threat of an avian influenza pandemic remains a
significant global health concern. Lessons from the
COVID-19 pandemic highlight the need for robust pre-
paredness measures. Effectively addressing challen-
ges related to viral adaptation, surveillance, vaccine
development, antiviral resistance, economic impact,
public communication, and international cooperation
requires a comprehensive, multifaceted approach. By
investing in research, strengthening public health
infrastructure, and fostering global collaboration, the
world can enhance its preparedness and mitigate the
risks of a future avian influenza pandemic.
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